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Abstract. 
Relying on Nevanlinna theory and the properties of L-functions in the extended Selberg class, we mainly study the uniqueness problems on L-functions concerning certain differential polynomials. This generalizes some results of Steuding, Li, Fang, and Liu-Li-Yi.



1. Introduction
The Riemann hypothesis as one of the millennium problems has been given a lot of attention by mathematical workers for a long time. Selberg guessed that the Riemann hypothesis is also true for L-functions in the Selberg class. Such an L-function based on Riemann zeta function as the prototype is defined to be a Dirichlet seriesof a complex variable  satisfying the following axioms:
(i) Ramanujan hypothesis:  for every 
(ii) Analytic continuation: there is a nonnegative integer  such that  is an entire function of finite order
(iii) Functional equation:  satisfies a functional equation of type where with positive real numbers Q, , and complex numbers ,  with  and 
(iv) Euler product: , where  unless  is a positive power of a prime and  for some 
It is mentioned that there are many Dirichlet series only satisfying axioms (i)-(iii) [1] and are regarded as the extended Selberg class. All the L-functions are studied in this article from the extended Selberg class. Therefore, the conclusions obtained in this article are also true for L-functions in the Selberg class. The uniqueness of two L-functions was firstly studied by Steuding [2], as seen from Theorem 1.
Theorem 1 (see [2]).  Suppose that  is a finite complex number. If two L-functions  and  with  share  CM, then .
In 2016, Hu and Li [3] gave an example  and . From this we can know the above theorem is false when .
Due to the complication to study the distribution of public zero of two L-functions, researchers take up study of the relationship of an L-function and a meromorphic function. Since L-function itself can be analytically continued as a meromorphic function in the whole complex plane, therefore, L-functions will be taken as special meromorphic functions, with the help of Nevanlinna’s value distribution theory, in order to study the uniqueness of L-functions. Suppose that  and  are two nonconstant meromorphics in the whole complex plane;  denotes a values in the extended complex plane. If  and  have the same zeros counting multiplicities, we say that  and  share  CM. If  and  have the same zeros ignoring multiplicities, then we say that  and  share  IM. One nonconstant meromorphic function in the whole complex plane can be determined by five such preimages or four such preimages [4, 5]. In 2010, Li [6] considered a meromorphic function and a nonconstant L-function and he obtained the following.
Theorem 2 (see [6]).  Let  and  be two distinct finite values and  be a meromorphic function in the complex plane with finitely many poles. If  and a nonconstant L-function  share  CM and  IM, then .
In 1997, the following question was raised by Lahiri [7]: what is the relationship between function  and function , when two differential polynomials have the same nonzero finite value? The two differential polynomials are generated by  and , respectively. In this direction, Fang [8] proved the following theorem.
Theorem 3 (see [8]).  Let  and  be two nonconstant entire functions, and let ,  be two positive integers. Suppose that  and  share 1 CM. If , then .
Recently, Liu-Li-Yi [9, 10] considered an L-function and a meromorphic function whose certain differential polynomials share one finite nonzero value. The following conclusions were obtained.
Theorem 4 (see [9]).  Let  be a nonconstant meromorphic function, let  be an L-function, and let  and  be two positive integers. Suppose that  and  share 1 CM. If , then  for a constant  satisfying .
Theorem 5 (see [10]).  Let  be a nonconstant meromorphic function, let  be an L-function, and let  and  be two positive integers. Suppose that  and  share 1 CM. If  and , then .
Naturally, is it still set up if it can be generalized to the general differential polynomials, for instance,  or ? For simplicity, we use the notations  and , where 
In this paper, we have the results as follows.
Theorem 6.  Let  be a nonconstant meromorphic function, let  be an L-function, and let , , and  be three positive integers and ,  be two constants satisfying . Suppose that  and  share 1 CM. If , then , where(i)when ,  is a constant such that (ii)when , ,  is a constant such that 
Remark 7.  In Theorem 6, if , , we can get Theorem 4. If , , we can get Theorem 5. Moreover, if the condition  substitutes  in Theorem 5, then we can obtain , which implies the conclusion remains valid in Theorem 5. Therefore, Theorem 6 is the generalization of Theorems 4 and 5.
Remark 8.  In Theorem 6, the condition  cannot be dropped. Let , , , , , . Then , . This shows that  and  share 1 CM. But .
Theorem 9.  Let  be a nonconstant meromorphic function, let  be an L-function, and let , , and  be three positive integers. Suppose that  and  share 1 CM. If  and , then  or .
Remark 10.  In Theorem 9, if , we can get Theorem 5. Actually, if  and , we can get a contradiction by subcase 3.2 in the proof of Theorem 6. We can also see that Theorem 5 is included in Theorem 9.
Moreover, we consider what will happen if the CM becomes the IM in Theorems 6 and 9. The theorems are then established.
Theorem 11.  Let  be a nonconstant meromorphic function, let  be an L-function, and let , , and  be three positive integers and ,  be two constants satisfying . Suppose that  and  share 1 IM. If , then , where(i)when ,  is a constant such that (ii)when , ,  is a constant such that 
Theorem 12.  Let  be a nonconstant meromorphic function, let  be an L-function, and let , , and  be three positive integers. Suppose that  and  share 1 IM. If , , then  or .
Corollary 13.  Let  be a nonconstant meromorphic function, let  be an L-function, and let ,  be two positive integers. Suppose that  and  share 1 IM. If , then  for a constant  satisfying .
Corollary 14.  Let  be a nonconstant meromorphic function, let  be an L-function, and let ,  be two positive integers. Suppose that  and  share 1 IM. If  and , then .
To prove the main theorems, the order  of a meromorphic function  will be needed. It is defined to be a superior limit Next, we introduce some definitions.
Definition 15.  Suppose that  is a positive integer and  is a value in the extended complex plane. Then  is defined as the counting function of those zeros of  of order .  is defined as the counting function of those zeros of  of order . ,  are defined as the corresponding reduced counting functions.
Definition 16.  Suppose that  is a common c-point of  and  with multiplicity  and , respectively. We denote by  the reduced counting function of those c-points of  and  where  and denote by  the reduced counting function of those c-points of  and  where . Similarly, we can define  and .
Definition 17.  Suppose that  is a value in the extended complex plane and  is a positive integer. We define 
2. Some Lemmas
In order to facilitate the proofs of the theorems, we list some important lemmas which will be employed in this paper.
Lemma 18 (see [11]).  Let  be a nonconstant meromorphic function and let be an irreducible rational function in  with constant coefficients  and , where  and . Then , where .
Lemma 19 (see [4], Theorem 3.2).  Let  be a nonconstant meromorphic function, let  be a positive integer, and let  be a nonzero finite complex number. Then  where  is the counting function which only counts those points such that  but .
Lemma 20 (see [5]).  Let  be a nonconstant meromorphic function and  be a positive integer. Then 
Lemma 21.  Let  be a nonconstant meromorphic function, let  be an L-function, and let , , and  be three positive integers and ,  be two constants satisfying . SetIf  and  share 1 CM and , then , where ,  are two constants.
Proof.  LetIf  is a constant, we have from (12) that  is a constant, . Since  and  share 1 CM, we obtain . Using Lemma 18, we deduceMoreover, from Lemma 19, we know  Combining (13) with , we get that  is a nonconstant L-function. Similarly, using Lemma 18, we deduceSince , we getSuppose ,  is a zero of  of order , and  is a zero of  of order , in view of  and  sharing 1 CM. By checking the Laurent expansion of , we have  when  and  when . ThusSimilarly, assume that  is a pole of  of order 1; we get . If  is a pole of  of order 1, we get . Therefore, we get, by a calculation and (11), thatwhere  is the reduced counting function of those zeros of  not that of . From the definition, we obtainBy Lemma 20, we obtainCombining (19) with (20), we haveWe can getin view of the assumption that  and  share 1 CM. Combining (17)-(22), the second fundamental theorem yieldsFrom the first fundamental theorem, we know whereLet  be a zero of  of order , . Since , , we can deduce the zeros of  of order . ThusAlso, for , we can deduce thatCombining (24)-(27), we getBy Lemma 20, we obtainUsing the first fundamental theorem, we haveFrom(13), (16), (28)-(30), we getSimilarly, we haveSince  at most has one pole, we know . At the same time, we know , , . By (31) and (32), we can obtain the following results, respectively:Assume that there exists some subset  with its linear measure  satisfying , as  and . Then it follows from (33) that , which contradicts . Assume that there exists some subset  with its linear measure  such that , as  and . Then it follows from (34) that , which contradicts . Therefore, . That is,  Integrating this gives , where ,  are two constants.
This completes the proof of Lemma 21.
Remark 22.  Suppose that  and  are replaced by  and , respectively, in Lemma 21. That is still true. In fact,  is replaced by  in (31) and (32); we still get  in (33) and (34).
Lemma 23 (see [12], Theorem 1.2).  Suppose that  is a meromorphic of finite order in the complex plane and that  has finitely many zeros for some . Then  has finitely many poles in the complex plane.
Lemma 24 (see [4]).  Let  be a transcendental meromorphic function, and let ,  be two distinct meromorphic functions such that , . Then 
Lemma 25 (see [13]).  Let  and  be relatively prime integers, and let  be a finite complex number such that . Then there exists one and only one common zero of  and .
Lemma 26 (see [14, 15]).  Let  be a nonconstant meromorphic function, and let ,  be two positive integers. Then 
Lemma 27.  Let  be a nonconstant meromorphic function, let  be an L-function, and let , , and  be three positive integers and ,  be two constants satisfying . SetIf  and  share 1 IM, , then , where ,  are two constants.
Proof.  LetIn the same manner as Lemma 21, we know  is a nonconstant L-function. By Lemma 18, we haveSince , we getSuppose ;  is a zero of  of order , and  is a zero of  of order , which is possibly different from , in view of  and  sharing 1 IM. By checking the Laurent expansion of , we have  when . ThusSimilarly, if  is a pole of  of order 1, we get . If  is a pole of  of order 1, we get . Therefore, we get, by a calculation and (39), thatwhere  is the reduced counting function of those zeros of  not that of . Note that  and  share 1 IM. We haveCombining (44)-(46), we getNote thatSubstituting (48) into (47), we obtainBy the second fundamental theorem and (49), we get  Namely,Note that Let  be a zero of  of order , . Since , , we can deduce the zeros of  of order . Therefore,Also, for , we haveCombining (51)-(54) and the first fundamental theorem shows thatFrom (43), we see thatBy (55), (56), and the first fundamental theorem, we haveBy Lemma 20, we haveBy Lemma 26, we haveIn addition, we know thatThe same inequality (58)-(60) holds for . Substituting (58)-(60) into (57), and with (41) we deduce thatLikewise, we haveSince  at most has one pole, we get . At the same time, we have , , . By (61) and (62), we can obtain the following results, respectively:Assume that there exists some subset  with its linear measure  satisfying , as  and . Then it follows from (63) that , which contradicts . Assume that there exists some subset  with its linear measure  satisfying , as  and . Then it follows from (64) that , which contradicts . Therefore, . That is,  Integrating this gives , where ,  are two constants.
This completes the proof of Lemma 27.
Remark 28.  In Theorem 11, let . By Lemma 27, we can get , where ,  are two constants. We can get that  and  share 1 CM. Then we can get Theorem 11 by Theorem 6. Similarly, we get Theorem 12 by Theorem 9.
3. Proof of Theorem 6
LetBy Lemma 21, we havewhere ,  are two constants.
We discuss three cases.
Case 1.   and . Then (67) can be written asSubcase 1.1. . From (68) we have ,Let  be the degree of . Then , where  and  are the numbers of the axiom (iii) of the definition of L-function. Thus, by Steuding [2], p.150, we getNext we distinguish two cases.
Subcase 1.1.1.. By (69), (70), Lemma 18, and a result from Whittaker [16], p.82, we haveSince  at most has one pole , we deduce by (69) that  at most has one zero . By (71), the assumption , and Lemma 23, we have that  and so  has at most finitely many poles. This together with (69) implies that  has at most finitely many zeros. Moreover, by the assumption , we deduce that  has at most finitely many zeros. Thus,where  is a rational function such that  has neither a pole nor a zero, , and  are constants. In view of (72) and Hayman [4], p.7, we have  which contradicts (70).
Subcase 1.1.2. . By , we can consider two subcases.
Subcase 1.1.2.1., . Then (69) becomes . Assume that  is a zero of  of order . Then, we can get that  is a pole of  of order , satisfying , that is, , and we have , which contradicts the assumption . Hence, we prove that  has no zeros,where  is a rational function satisfying that  has no poles and ,  are two constants. In view of (74) and Hayman [4], p.7, we have  which contradicts (70).
Subcase 1.1.2.2. , . By using the argument as in Subcase 1.1.2.1, we obtain that , and so , which contradicts the assumption . Hence, we know that  has no zeros. Similarly, we get a contradiction.
Subcase 1.2.. Then it follows from (68) thatNoting that  has at most one pole, then  has at most one pole; from (76) we have that  has at most one zero. By Lemma 19, we obtain  which contradicts .
Case 2.   and . Then from (67), we haveSimilarly, noting that  has at most one pole, from (78) we have that  has at most one zero. By using the same method as in Subcase 1.2, we know it is a paradox.
Case 3.   and . From (67) we getso thatwhere  is a polynomial of degree at most . By (70), we get that  is a transcendental meromorphic function, and so  is a transcendental meromorphic function. Then, we obtain . If , then . Considering  has at most one pole, we get from (80) and Lemma 24 thatIn addition, from (80) and Lemma 18 we have . Using this in (81) we have  we get that , a contradiction. Hence, we have . By (80), we obtain thatConsider two subcases as follows.
Subcase 3.1. , by ; we deduce , where  is a constant satisfying .
Subcase 3.2.; set ; by (83) we deduceWe discuss two subcases.
Subcase 3.2.1.  is a constant. If , by (84), we get that  is a constant, which contradicts the assumption that  is a nonconstant L-function. Therefore, , and so it follows by (84) that ; that is,  and . We get .
Subcase 3.2.2. is a nonconstant meromorphic function. From (84), we haveSince  has at most one pole, we divide this case into two subcases again.
Subcase 3.2.2.1.  has no poles. Then, from (85) we get every 1-point of  has to be 1-point of . Since , we have any 1-point of  be a 1-point of . In view of , we deduce that  is a constant, which contradicts the assumption.
Subcase 3.2.2.2. has one and only one pole. Then, from (85) we get every zero of  has to be zero of  with one exception. Set  where  are  distinct finite complex numbers satisfying , , ;  are  distinct finite complex numbers satisfying , , .
Let . From Lemma 25 we know  and  have only one common zero; then  cannot be equal to any  values of . By , we deduce  is a constant, which contradicts the assumption.
Let . If any 1-point of  is a 1-point of , then any 1-point of  is a 1-point of , since , a contradiction to the assumption that  is nonconstant. If there is at least one , , , then  cannot be equal to any  values of . By , we deduce  is a constant, which contradicts the assumption.
This completes the proof of Theorem 6.
4. Proof of Theorem 9
SetBy Lemma 18, we getBy Lemma 21, we havewhere  and  are two constants.
We discuss three cases.
Case 1.   and . By (91), we haveSubcase 1.1. ; then from (92) ,Let  be the degree of . Then , where  and  are the numbers of the axiom (iii) of the definition of L-function. Thus, by Steuding [2], p150, we getBy (93), (94), Lemma 18, and a result from Whittaker [16], p.82, we haveSince  at most has one pole , we deduce by (93) that  at most has one zero . By (95), the assumption , Lemma 23, we get  and so  has at most finitely many poles. This together with (93) implies that  has at most finitely many zeros. Moreover, by the assumption , we deduce that  has at most finitely many zeros. Thus,where  is a rational function satisfying  has no zeros and poles, , and  are constants. By (96) and Hayman [4], we get  which contradicts (94). 
Subcase 1.2.  ; then from (92) we haveIn view of  having at most one pole , we know that  has at most one pole , from (98) we have that  has at most one zero. By (89) and Lemma 19 we obtainwhich contradicts .
Case 2.   and . From (91), we haveSimilarly, noting that  has at most one pole , by (100) we have that  has at most one zero. By using the same method as in Subcase 1.2, we know it is a paradox.
Case 3.   and . Then, from (91), we haveso thatwhere  is a polynomial of degree at most . By (94), we get  is a transcendental meromorphic function, and so  is a transcendental meromorphic function. Then, we get . If , then . From (102) and Lemma 24 we haveIn addition, by (102) and Lemma 18 we have . Using this in (103) we have  which contradicts . Hence, we get . By (102), we obtain ; that is,That is,Set . If  is a nonconstant meromorphic function, from (105) we get . If  is a constant, from (106) we get  which implies . Therefore, .
This completes the proof of Theorem 9.
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