Minimal Wave Speed in a Predator-Prey System with Distributed Time Delay

Fuzhen Wu and Dongfeng Li

Department of Basic, Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang 310018, China

Correspondence should be addressed to Fuzhen Wu; fuzhwu@yeah.net

Received 14 March 2018; Accepted 6 May 2018; Published 31 May 2018

Academic Editor: Nikos I. Karachalios

This paper is concerned with the minimal wave speed of traveling wave solutions in a predator-prey system with distributed time delay, which does not satisfy comparison principle due to delayed intraspecific terms. By constructing upper and lower solutions, we obtain the existence of traveling wave solutions when the wavespeed is the minimal wave speed. Our results complete the known conclusions and show the precisely asymptotic behavior of traveling wave solutions.

1. Introduction

Traveling wave solutions of predator-prey systems have been widely utilized to model population invasion, and the minimal wave speed of traveling wave solutions is often regarded as an important threshold to characterize the invasion feature in many examples, see Owen and Lewis [1] and Shigesada and Kawasaki [2, Chapter 8]. Moreover, Lin [3] and Pan [4] confirmed that, in a Lotka-Volterra type system, the minimal wave speed of invasion traveling wave solutions is equal to the invasion speed of the predator. Here, the invasion speed is estimated by the corresponding initial value problem when the initial value of the predator admits a nonempty compact support.

When the wave system of predator-prey system is of finite dimension, there are many important results, for example, the earlier results by Dunbar [5–7]. But when the corresponding wave system is of infinite dimension, there are some open problems on the minimal wave speed, for example, in the following system [8]:

\[
\begin{aligned}
\frac{\partial u_1 (x, t)}{\partial t} &= d_1 \Delta u_1 (x, t) + r_1 u_1 (x, t) F_1 (u_1, u_2) (x, t), \\
\frac{\partial u_2 (x, t)}{\partial t} &= d_2 \Delta u_2 (x, t) + r_2 u_2 (x, t) F_2 (u_1, u_2) (x, t),
\end{aligned}
\]

where \(x \in \mathbb{R}, t > 0, d_1 > 0, d_2 > 0, r_1 > 0, r_2 > 0, u_1 \in \mathbb{R}, u_2 \in \mathbb{R} \), and

\[
\begin{aligned}
F_1 (u_1, u_2) (x, t) &= 1 - u_1 (x, t) \\
&\quad - a_1 \int_{-\tau}^{0} u_1 (x, t + s) d\eta_{11} (s) \\
&\quad - b_1 \int_{-\tau}^{0} u_2 (x, t + s) d\eta_{12} (s), \\
F_2 (u_1, u_2) (x, t) &= 1 - u_2 (x, t) \\
&\quad - a_2 \int_{-\tau}^{0} u_2 (x, t + s) d\eta_{22} (s) \\
&\quad + b_2 \int_{-\tau}^{0} u_1 (x, t + s) d\eta_{21} (s),
\end{aligned}
\]

in which \(a_1 \geq 0, a_2 \geq 0, b_1 \geq 0, b_2 \geq 0, \) and \(\tau \geq 0 \) are constants such that

\[
\eta_{ij} (s) \text{ is nondecreasing on } [-\tau, 0],
\]

\[
\eta_{ij} (0) - \eta_{ij} (-\tau) = 1, \quad i, j = 1, 2.
\]
For (1), a traveling wave solution is a special solution with the form

$$u_i(x, t) = \phi_i(\xi), \quad \xi = x + ct, \quad i = 1, 2,$$

where \((\phi_1, \phi_2) \in C^2(\mathbb{R}, \mathbb{R}^2) \) is the wave profile and \(c > 0 \) is the wave speed. Therefore, \((\phi_1, \phi_2)\) and \(c \) satisfy

$$d_1\phi''_1(\xi) - c\phi'_1(\xi) + r_1\phi_1(\xi) F_1(\phi_1, \phi_2)(\xi) = 0,$$

$$\xi \in \mathbb{R},$$

$$d_2\phi''_2(\xi) - c\phi'_2(\xi) + r_2\phi_2(\xi) F_2(\phi_1, \phi_2)(\xi) = 0,$$

$$\xi \in \mathbb{R},$$

with

$$F_1(\phi_1, \phi_2)(\xi) = 1 - \phi_1(\xi) - a_1\int_0^\xi \phi_1(\xi + cs)d\eta_{11}(s),$$

$$- b_1\int_0^\xi \phi_2(\xi + cs)d\eta_{12}(s),$$

$$F_2(\phi_1, \phi_2)(\xi) = 1 - \phi_2(\xi) - a_2\int_0^\xi \phi_2(\xi + cs)d\eta_{21}(s),$$

$$+ b_2\int_0^\xi \phi_1(\xi + cs)d\eta_{22}(s).$$

In Pan [8], the author defined a threshold given by

$$c^* = \max \left\{ 2\sqrt{d_1r_1}, 2\sqrt{d_2r_2} \right\}$$

and showed the existence (nonexistence) of desired traveling wave solutions if the wave speed \(c > c^* \) \((c < c^*) \). When the wave speed \(c = c^* \), the author presented the existence of traveling wave solutions under special conditions. Besides [8], there are also some results on the existence of traveling wave solutions of predator-prey models similar to (1) when the wave speed is large; see Huang and Zou [9], K. Li and X. Li [10], and Lin et al. [11].

The purpose of this paper is to confirm the existence of nontrivial traveling wave solutions of (1) without other conditions when the wave speed \(c = c^* \). Since Pan [8, Theorem 3.5] also holds when \(c = c^* \), we shall not investigate the limit behavior as \(\xi \to \infty \) and focus on the existence of positive solution of (5) satisfying

$$\lim_{\xi \to \infty} \phi_i(\xi) = 0, \quad i = 1, 2.$$

Motivated by Lin and Ruan [12] on an abstract result of traveling wave solutions of delayed reaction-diffusion systems, we shall construct proper upper and lower solutions similar to those in Fu [13] and Lin [14] to study the existence of traveling wave solutions.

2. Main Results

When \(c = c^* \), we define

$$y_1 = \frac{c - \sqrt{c^2 - 4d_1r_1}}{2d_1},$$

$$y_2 = \frac{c - \sqrt{c^2 - 4d_2r_2}}{2d_2}.$$

By these constants, we first present our main conclusion as follows.

Theorem 1. Assume that \(c = c^* \) holds. Then (5) admits a bounded positive solution \((\phi_1, \phi_2)\) satisfying

1. \(\lim_{\xi \to -\infty} (\phi_1(\xi)/\xi^\frac{3}{2}) = 1, \lim_{\xi \to -\infty} (\phi_2(\xi)/\xi^\frac{3}{2}) = 1 \)

 if \(c = c^* = 2\sqrt{d_1r_1} > 2\sqrt{d_2r_2} \);

2. \(\lim_{\xi \to -\infty} (\phi_1(\xi)/\xi^\frac{3}{2}) = 1, \lim_{\xi \to -\infty} (\phi_2(\xi)/\xi^\frac{3}{2}) = 1 \)

 if \(c = c^* = 2\sqrt{d_2r_2} > 2\sqrt{d_1r_1} \);

3. \(\lim_{\xi \to -\infty} (\phi_1(\xi)/\xi^\frac{3}{2}) = 1, \lim_{\xi \to -\infty} (\phi_2(\xi)/\xi^\frac{3}{2}) = 1 \)

 if \(c = c^* = 2\sqrt{d_2r_2} = 2\sqrt{d_1r_1} \).

We shall prove the result by three lemmas, which will study three cases \(d_1r_1 > d_2r_2, d_1r_1 < d_2r_2, \) and \(d_1r_1 = d_2r_2 \). For this purpose, we first show the following result in Lin and Ruan [12].

Lemma 2. Suppose that \(\phi_1(\xi), \phi_1(\xi), \phi_1(\xi), \phi_2(\xi) \) and \(\phi_2(\xi) \) are continuous functions and

\(A1) 0 \leq \phi_1(\xi) \leq \phi_1(\xi) \leq 1, 0 \leq \phi_2(\xi) \leq \phi_2(\xi) \leq 1 + b_2, \)

\(\xi \in \mathbb{R}; \)

(A2) they are twice differentiable except a set \(E \) containing finite points of \(\mathbb{R} \) and

$$\phi_i'(\xi), \phi_i''(\xi), \phi_i''(\xi), \phi_i''(\xi), \phi_i''(\xi), \phi_i''(\xi), \phi_i''(\xi)$$

are continuous and bounded if \(\xi \in \mathbb{R} \setminus E; \)

\(A3) \) when \(x \in E \), they satisfy

$$\phi_i'(\xi) \leq \phi_i'(\xi),$$

$$\phi_i'(\xi) \leq \phi_i'(\xi).$$
(A4) they satisfy the following inequalities:
\[d_1\phi''_1(\xi) - c\phi'_1(\xi) + r_1\phi_1(\xi) \left(1 - \bar{\phi}_1(\xi)\right) - a_1\int_{-\tau}^{0} \phi_1(\xi + cs) d\eta_{11}(s) - b_1\int_{-\tau}^{0} \phi_1(\xi + cs) d\eta_{12}(s) \leq 0,\]
\[d_2\phi''_2(\xi) - c\phi'_2(\xi) + r_2\phi_2(\xi) \left(1 - \bar{\phi}_2(\xi)\right) - a_2\int_{-\tau}^{0} \phi_2(\xi + cs) d\eta_{21}(s) + b_2\int_{-\tau}^{0} \phi_2(\xi + cs) d\eta_{22}(s) \leq 0,\]
for \(\xi \in \mathbb{R} \setminus E.\)

Then (5) has a positive solution \((\phi_1(\xi), \phi_2(\xi))\) such that
\[
\phi_1(\xi) \leq \bar{\phi}_1(\xi), \quad \phi_2(\xi) \leq \bar{\phi}_2(\xi), \quad \xi \in \mathbb{R}.
\]

Remark 3. In the above lemma, \((\bar{\phi}_1(\xi), \bar{\phi}_2(\xi))\) and \((\phi_1(\xi), \phi_2(\xi))\) are a pair of (generalized) upper and lower solutions of (5). That is, the existence of positive solutions of (5) can be obtained by the existence of (generalized) upper and lower solutions of (5).

Lemma 4. Assume that \(d_1r_1 > d_2r_2\). Then (1) of Theorem 1 holds.

Proof. For simplicity, we shall denote \(c^* = 2\sqrt{d_1r_1}\) by \(c\) and define
\[y_3 = \frac{c + \sqrt{c^2 - 4d_2r_2}}{2d_2}.\]

Let \(K > 0\) be a constant such that
(K1) \((-\xi + K)e^{\eta\xi}\) is monotone if \(\xi \leq 0;\)
(K2) \(K > 1\) or sup\(_{\xi \geq 0}\) \((-\xi + K)e^{\eta\xi} > 1.\)

Moreover, select \(\eta > 1\) with
\[\eta y_2 < \min \left\{y_2 + \frac{y_1}{2}, 2y_2, y_3\right\}\]
and \(M > 1 + b_2\) such that
(M1) \(e^{y_3K} + Me^{\eta y_2} < 1 + b_2\) implies \((-\xi + K)e^{\eta\xi} \leq e^{\eta y_3/2};\)
(M2) \(M > -2r_2b_2/(d_2\eta^2y_2^2 - c\eta y_2 + r_2) + 1 + b_2;\)
(M3) \(e^{y_3K} + Me^{\eta y_2} < 1 + b_2\) implies \((d_2\eta^2y_2^2 - c\eta y_2 + r_2) + 2r_2b_2e^{\eta y_3/2} < 0,\)
and \(N > 1\) such that
(N1) \(e^{y_3K} - Ne^{\eta y_2} > 0\) implies \(e^{y_3K} + Me^{\eta y_2} < 2e^{y_3K};\)
(N2) \(N > -4r_2(1 + a_2)/(d_2\eta^2y_2^2 - c\eta y_2 + r_2) + 1.\)

Select \(L > 1\) such that
(L1) \(\xi < -L^2\) implies \((-\xi + K)e^{\eta\xi} < e^{y_3K} < 1,\) where \(y_1' \in (0, y_1)\) such that
\[2y_1' - y_1 > 0,\]
\[y_1' + y_2 > 0;\]
(L2) \(\xi < -L^2\) implies \(e^{y_3K} + Me^{\eta y_2} < 2e^{y_3K};\)
(L3) \(L > \sup_{\xi < -1}(4\sqrt{(-\xi)^3}(1 + a_2)e^{y_3K} + 2r_2b_2e^{\eta y_3/2}\gammaK)\).

The admissibility of \(L, M, N,\) and \(K\) is clear by the limit behavior of these functions as \(\xi \to -\infty.\) Mathematically, we first fix \(K,\) then select \(M,\) and finally define \(N, L.\) Here, \(N\) and \(L\) are independent of each other.

We now define
\[
\bar{\phi}_1(\xi) = \begin{cases}
(-\xi + K)e^{\eta\xi}, & \xi \leq \xi_1, \\
1, & \xi > \xi_1,
\end{cases} \\
\bar{\phi}_2(\xi) = \begin{cases}
(-\xi - L\sqrt{-\xi})e^{\eta\xi}, & \xi \leq -L^2, \\
0, & \xi > -L^2,
\end{cases}
\]
where \(\xi_1 < 0\) such that \(\bar{\phi}_1(\xi)\) is continuous by (K1)-(K2) and
\[
\bar{\phi}_2(\xi) = \min \left\{e^{\eta\xi} + Me^{\eta y_2}, 1 + b_2\right\},
\]
\[
\phi_2(\xi) = \max \left\{0, e^{\eta\xi} - Ne^{\eta y_2}\right\}.
\]

If these functions satisfy (12), then our result holds by Lemma 2. Now, we are in a position of verifying these
inequalities. For $\overline{\phi}_1(\xi)$, we shall prove the first inequality of (12) when $\xi \neq \xi_1$. If $\xi > \xi_1$ and $\overline{\phi}_1(\xi) = 1$, then

$$1 - \overline{\phi}_1(\xi) - a_1 \int_{\tau}^{0} \phi_1(\xi + cs) d\eta_1(s)$$

$$- b_1 \int_{\tau}^{0} \phi_2(\xi + cs) d\eta_2(s) \leq 0$$

and the first inequality of (12) is clear. When $\overline{\phi}_1(\xi) = (-\xi + K)e^{r\xi} < 1$, then

$$d_1 \overline{\phi}_1''(\xi) - c \overline{\phi}_1'(\xi) + r_1 \overline{\phi}_1(\xi)$$

$$= (-\xi + K) \left(d_1 y_1^2 - c y_1 + r_1 \right) e^{r\xi}$$

and the verification on the first inequality of (12) is finished.

When the second inequality on $\overline{\phi}_2(\xi)$ is concerned, it is also clear if $\overline{\phi}_2(\xi) = 1 + b_2 < e^{r\xi} + Me^{r\xi}$. When $\phi_2(\xi) = e^{r\xi} + Me^{r\xi} < 1 + b_2$, then (M1) leads to

$$r_2 \overline{\phi}_2(\xi) \left[1 - b_2 \overline{\phi}_2(\xi) - a_2 \int_{\tau}^{0} \phi_2(\xi + cs) d\eta_2(s)
ight]$$

$$+ b_2 \int_{\tau}^{0} \phi_1(\xi + cs) d\eta_1(s) \leq r_2 \overline{\phi}_2(\xi) \left[1$$

$$+ b_2 \phi_1(\xi) \right] \leq r_2 \left(e^{r\xi} + M e^{r\xi} \left(1 + b_2 e^{r\xi} \right) \right)$$

$$= r_2 \left(e^{r\xi} + M e^{r\xi} \right) + r_2 b_2 \left(e^{1/2} e^{r\xi} + M e^{1/2} e^{r\xi} \right).$$

Note that

$$d_2 \overline{\phi}_2''(\xi) - c \overline{\phi}_2'(\xi) = \left(d_2 y_2^2 - c y_2 \right) e^{r\xi}$$

$$+ M \left(d_2 y_2^2 - c y_2 \right) e^{r\xi}$$

then the definition of y_2 implies that the desired inequality is true if

$$M \left(d_2 y_2^2 - c y_2 \right) e^{r\xi}$$

$$+ r_2 b_2 \left(e^{1/2} e^{r\xi} + M e^{1/2} e^{r\xi} \right) \leq 0$$

or

$$2M \left(d_2 y_2^2 - c y_2 \right) + 2r_2 b_2 \left(e^{1/2} e^{r\xi} + M e^{1/2} e^{r\xi} \right) \leq 0.$$
We now consider $\phi_1(\xi)$, that is, the forth inequality of (12). When $\phi_2(\xi) > 0$, the definition implies

$$\int_{-\tau}^0 \phi_2(\xi) \, d\eta_{t2}(s) \geq r_2 \left[-\phi_2^2(\xi) - a_2 \phi_2(\xi) \right]$$

$$+ b_2 \phi_2(\xi) \int_{-\tau}^0 \phi_2(\xi + cs) \, d\eta_{t2}(s)$$

$$\geq r_2 \left[-\phi_2^2(\xi) - a_2 \phi_2(\xi) \right]$$

$$+ b_2 \phi_2(\xi) \int_{-\tau}^0 \phi_2(\xi + cs) \, d\eta_{t2}(s) \geq 0,$$

by (N1) as well as

$$d_2 \phi_2'(\xi) = c \phi_2^2(\xi) + r_2 \phi_2(\xi)$$

$$= e^{\gamma \xi} \left(d_2 \eta^2_2 - c \gamma \eta_2 + r_2 \right)$$

$$- N e^{\gamma \xi} \left(d_2 \eta^2_2 - c \gamma \eta_2 + r_2 \right)$$

$$= -N e^{\gamma \xi} \left(d_2 \eta^2_2 - c \gamma \eta_2 + r_2 \right).$$

Thus, the desired inequality is true if

$$N > \frac{-4r_2 (1 + a_2)}{d_2 \eta^2_2 - c \gamma \eta_2 + r_2} + 1 > 1$$

since $\xi < 0$ such that $e^{\gamma \xi} < e^{\gamma \eta_2}$, which holds by (N2). The proof is complete.

Lemma 5. Assume that $d_1 r_1 < d_2 r_2$. Then (2) of Theorem 1 is true.

Proof. Similar to the proof of the previous lemma, it suffices to construct proper upper and lower solutions. When $c = 2\sqrt{d_1 r_2}$, let

$$\gamma_2 = \frac{c + \sqrt{c^2 - 4d_1 r_1}}{2d_1}.$$

Fix $\eta > 1$ such that

$$\eta \in \left(1, \min \left\{ 2, \frac{\gamma_2 + \gamma_2/2}{\gamma_1}, \frac{\gamma_2}{\gamma_1} \right\} \right).$$

Select $N_1 > 1$ such that

$$\sup_{\xi < -1} \left\{ -\xi + N \sqrt{-\xi} e^{\gamma \xi} \right\} \geq 1 + b_2, \quad N > N_1.$$

Let $\xi_2 < -1$ be the smaller root of $(-\xi + N \sqrt{-\xi}) e^{\gamma \xi} = 1 + b_2$. Clearly, if $N \to \infty$, then $\xi_2 \to -\infty$.

By these constants, we define

$$\bar{\phi}_1(\xi) = \min \left\{ 1, e^{\gamma \xi} \right\},$$

$$\bar{\phi}_1(\xi) = \max \left\{ 0, e^{\gamma \xi} - Q e^{\gamma \xi} \right\},$$

$$\bar{\phi}_2(\xi) = \begin{cases} 1 + b_2, \quad \xi \geq \xi_2, \\ \left(-\xi + N \sqrt{-\xi} \right) e^{\gamma \xi}, \quad \xi < \xi_2, \end{cases}$$

$$\bar{\phi}_2(\xi) = \begin{cases} 0, \quad \eta \geq -R^2, \\ \left(-\xi - R \sqrt{-\xi} \right) e^{\gamma \xi}, \quad \xi < -R^2. \end{cases}$$

where $N, Q,$ and R are positive constants satisfying that

(N1) $N > N_1$ is large such that $-d_2/4 + r_2 b_2 (-\xi)^{5/2} e^{\gamma \xi} / N + r_2 b_2 (-\xi)^2 e^{\gamma \xi} < 0, \xi < \xi_2$;

(Q1) $Q > Q_1 > 1$ such that $e^{\gamma \xi} - Q e^{\gamma \xi} > 0$ implies $(-\xi + N \sqrt{-\xi}) e^{\gamma \xi} < e^{\gamma \xi}/2$;

(Q2) $Q \geq (r_1 (1 + a_1) + r_1 b_1) / (d_1 \eta^2_2 - c \gamma \eta_2 + r_1) + Q_1$;

and

(R0) $R > 1$ is a constant such that $\xi < -R^2 < -1$ implies $\phi_2(\xi) \leq \phi_2(\xi)$.

(R1) $R > R_1 > R_2$ such that $\xi < -R^2$ implies $\phi_2(\xi) < e^{\gamma \xi}$, where γ_2 satisfies

$$2 \gamma_2 - \gamma_2 > 0,$$

$$\gamma_2 + \gamma_2 > 0,$$

$$\gamma_2 ^{e^{\gamma \xi}} \in (0, \gamma_2).$$

On the first inequality of (12), if $\bar{\phi}_1(\xi) = 1 < e^{\gamma \xi}$, then

$$1 - \bar{\phi}_1(\xi) - a_1 \int_{-\tau}^0 \phi_1(\xi + cs) \, d\eta_{t1}(s)$$

$$- b_1 \int_{-\tau}^0 \phi_1(\xi + cs) \, d\eta_{t1}(s) \leq 0,$$

and the result is clear. If $\bar{\phi}_1(\xi) = e^{\gamma \xi} < 1$, then

$$1 - \bar{\phi}_1(\xi) - a_1 \int_{-\tau}^0 \phi_1(\xi + cs) \, d\eta_{t1}(s)$$

$$- b_1 \int_{-\tau}^0 \phi_1(\xi + cs) \, d\eta_{t1}(s) \leq 1,$$

$$d_1 \phi_1'(\xi) - c \phi_1(\xi) e^{\gamma \xi} + r_1 \phi_1(\xi) = (d_1 \eta^2_2 - c \gamma \eta_2 + r_1) e^{\gamma \xi} = 0,$$
which completes the verification on $\bar{\phi}_1(\xi)$. On the second inequality, it is evident if $\bar{\phi}_2(\xi) = 1 + b_2$. When $\bar{\phi}_2(\xi) = (-\xi + N \sqrt{-\xi})e^\nu \xi < 1 + b_2$, we have

$$
\begin{align*}
& r_2 \bar{\phi}_2(\xi) \left[1 - \bar{\phi}_2(\xi) - a_2 \int_{-\tau}^{0} \bar{\phi}_2(\xi + cs) \, d\eta_{22}(s) \right] \\
+ & b_2 \int_{-\tau}^{0} \bar{\phi}_1(\xi + cs) \, d\eta_{21}(s) \leq r_2 \bar{\phi}_2(\xi) \left[1 + b_2 \bar{\phi}_2(\xi) \right] = r_2 \bar{\phi}_2(\xi) + r_2 b_2 \bar{\phi}_2(\xi) e^{r_2 \xi},
\end{align*}
$$

(41)

Therefore,

$$
\begin{align*}
d_2 \bar{\phi}_2''(\xi) - c \bar{\phi}_2''(\xi) + r_2 \bar{\phi}_2(\xi) & \times \left[1 - \bar{\phi}_2(\xi) \right] \\
- & a_2 \int_{-\tau}^{0} \bar{\phi}_2(\xi + cs) \, d\eta_{22}(s) \\
+ & b_2 \int_{-\tau}^{0} \bar{\phi}_1(\xi + cs) \, d\eta_{21}(s) \leq d_2 \left[y_0 \bar{\phi}_2(\xi) \\
- & 2y_2 e^{r_2 \xi} - \frac{N y_2 e^{r_2 \xi}}{2 \sqrt{-\xi}} - \frac{N e^{r_2 \xi}}{4 (-\xi)^{3/2}} \right] - c \left[y_2 \bar{\phi}_2(\xi) \\
- & e^{r_2 \xi} - \frac{N e^{r_2 \xi}}{2 \sqrt{-\xi}} \right] + \bar{\phi}_2(\xi) + r_2 b_2 \bar{\phi}_2(\xi) e^{r_2 \xi} \\
= & - \frac{d_2 N e^{r_2 \xi}}{4 (-\xi)^{3/2}} + r_2 b_2 \left[(-\xi + N \sqrt{-\xi}) e^{r_2 \xi} \right] \\
= & e^{r_2 \xi} \left[- \frac{d_2 N}{4 (-\xi)^{3/2}} + r_2 b_2 \left[(-\xi + N \sqrt{-\xi}) e^{r_2 \xi} \right] \right] \\
= & e^{r_2 \xi} \left[- \frac{d_2 N}{4 (-\xi)^{3/2}} + \frac{r_2 b_2 (-\xi^{5/2} + N (-\xi)^2) e^{r_2 \xi}}{N} + \frac{r_2 b_2 (-\xi)^{5/2} e^{r_2 \xi}}{N} + r_2 b_2 (-\xi)^2 e^{r_2 \xi} \right] \leq 0
\end{align*}
$$

by (N1).

On the third inequality, it is clear if $\bar{\phi}_2(\xi) = 0$. When $e^{r_2 \xi} - Q e^{r_2 \xi} > 0$, (Q1) implies

$$
\begin{align*}
r_1 \bar{\phi}_1(\xi) \left[- \bar{\phi}_1(\xi) - a_1 \int_{-\tau}^{0} \bar{\phi}_1(\xi + cs) \, d\eta_{11}(s) \right] \\
- & b_1 \int_{-\tau}^{0} \bar{\phi}_1(\xi + cs) \, d\eta_{12}(s) \geq -r_1 \bar{\phi}_1^2(\xi) \\
- & r_1 a_1 \bar{\phi}_1(\xi) \int_{-\tau}^{0} \bar{\phi}_1(\xi + cs) \, d\eta_{11}(s) - r_1 b_1 \bar{\phi}_1(\xi) \\
\cdot & \int_{-\tau}^{0} \bar{\phi}_1(\xi + cs) \, d\eta_{12}(s) \geq -r_1 (1 + a_1) \\
\cdot & \bar{\phi}_1^2(\xi) - r_1 b_1 \bar{\phi}_1(\xi) \bar{\phi}_2(\xi) \geq -r_1 (1 + a_1) e^{2r_2 \xi} \\
& - r_1 b_1 e^{r_2 \xi + r_2 \xi / 2}.
\end{align*}
$$

Since

$$
\begin{align*}
d_1 \bar{\phi}_2''(\xi) - c \bar{\phi}_2''(\xi) + r_1 \bar{\phi}_2(\xi) & \times \left[1 - \bar{\phi}_2(\xi) \right] \\
- & a_1 \int_{-\tau}^{0} \bar{\phi}_2(\xi + cs) \, d\eta_{22}(s) \\
+ & b_1 \int_{-\tau}^{0} \bar{\phi}_1(\xi + cs) \, d\eta_{21}(s) \leq d_1 \left[y_0 \bar{\phi}_2(\xi) \\
- & 2y_2 e^{r_2 \xi} - \frac{N y_2 e^{r_2 \xi}}{2 \sqrt{-\xi}} - \frac{N e^{r_2 \xi}}{4 (-\xi)^{3/2}} \right] - c \left[y_2 \bar{\phi}_2(\xi) \\
- & e^{r_2 \xi} - \frac{N e^{r_2 \xi}}{2 \sqrt{-\xi}} \right] + \bar{\phi}_2(\xi) + r_2 b_2 \bar{\phi}_2(\xi) e^{r_2 \xi} \\
= & - \frac{d_1 N e^{r_2 \xi}}{4 (-\xi)^{3/2}} + r_2 b_2 \left[(-\xi + N \sqrt{-\xi}) e^{r_2 \xi} \right] \\
= & e^{r_2 \xi} \left[- \frac{d_1 N}{4 (-\xi)^{3/2}} + r_2 b_2 \left[(-\xi + N \sqrt{-\xi}) e^{r_2 \xi} \right] \right] \\
= & e^{r_2 \xi} \left[- \frac{d_1 N}{4 (-\xi)^{3/2}} + \frac{r_2 b_2 (-\xi^{5/2} + N (-\xi)^2) e^{r_2 \xi}}{N} + \frac{r_2 b_2 (-\xi)^{5/2} e^{r_2 \xi}}{N} + r_2 b_2 (-\xi)^2 e^{r_2 \xi} \right] \leq 0
\end{align*}
$$

(44)

then the third is true by (Q2).

We now consider the fourth inequality, which is clear if $\bar{\phi}_2(\xi) > 0$. When $\bar{\phi}_2(\xi) > 0$, we have

$$
\begin{align*}
\bar{\phi}_2'(\xi) & = y_2 \bar{\phi}_2(\xi) - e^{r_2 \xi} + \frac{R}{2 \sqrt{-\xi}} e^{r_2 \xi},
\end{align*}
$$

(45)

$$
\begin{align*}
\bar{\phi}_2''(\xi) & = y_2 \bar{\phi}_2'(\xi) - 2y_2 e^{r_2 \xi} + \frac{R y_2}{\sqrt{-\xi}} e^{r_2 \xi} + \frac{R}{4 \sqrt{(-\xi)^3}} e^{r_2 \xi},
\end{align*}
$$

(46)

which implies

$$
\begin{align*}
d_2 \bar{\phi}_2''(\xi) - c \bar{\phi}_2''(\xi) + r_2 \bar{\phi}_2(\xi) & \times \left[1 - \bar{\phi}_2(\xi) \right] \\
= & - \frac{d_2 N}{4 (-\xi)^{3/2}} + r_2 b_2 \left[(-\xi^{5/2} + N (-\xi)^2) e^{r_2 \xi} \right] \\
+ & \frac{r_2 b_2 (-\xi)^{5/2} e^{r_2 \xi}}{N} + r_2 b_2 (-\xi)^2 e^{r_2 \xi} \right] \leq 0
\end{align*}
$$

by (N1).
Moreover, (R0) and (R1) imply that
\[
\begin{align*}
& r_2 \phi_2 (\xi) \left[-\phi_2 (\xi) - a_2 \int_{-\xi}^{0} \phi_2 (\xi + c s) \, d \eta_2 (s) \\
& + b_2 \int_{-\tau}^{0} \phi_2 (\xi + c s) \, d \eta_2 (s) \right] \\
& \geq -r_2 (1 + a_2) \phi_2^2 (\xi)
\end{align*}
\]
(47)
and so
\[
\frac{R \theta e^{\gamma \xi}}{4 \sqrt{(-\xi)^3}} - r_2 (1 + a_2) e^{2 \gamma \xi}
= R \theta \xi \left[\frac{d_2}{4 \sqrt{(-\xi)^3}} - \frac{r_2 (1 + a_2) e^{(2 \gamma - \gamma) \xi}}{R} \right] > 0
\]
(48)
by (R2), which completes the verification and proof.

\[\square\]

Lemma 6. Assume that $d_1 r_1 = d_2 r_2$. Then (3) of Theorem 1 is true.

Proof. Utilizing the parameters similar to those in Lemmas 4 and 5, we define
\[
\begin{align*}
\overline{\phi}_1 (\xi) &= \begin{cases}
(\xi + K) e^{\gamma \xi}, & \xi \leq \xi_1, \\
1, & \xi \geq \xi_1,
\end{cases} \\
\overline{\phi}_2 (\xi) &= \begin{cases}
(\xi - L \sqrt{(-\xi)}) e^{\gamma \xi}, & \xi \leq -L^2, \\
0, & \xi > -L^2,
\end{cases} \\
\underline{\phi}_1 (\xi) &= \begin{cases}
(\xi + N \sqrt{(-\xi)}) e^{\gamma \xi}, & \xi \leq \xi_2, \\
1 + b_2, & \xi \geq \xi_2,
\end{cases} \\
\underline{\phi}_2 (\xi) &= \begin{cases}
(\xi - R \sqrt{(-\xi)}) e^{\gamma \xi}, & \xi \leq -R^2, \\
0, & \xi > -R^2,
\end{cases}
\end{align*}
\]
(49)
where $\xi_1 < 0$ and $\xi_2 < 0$ such that $\overline{\phi}_1 (\xi)$ and $\overline{\phi}_2 (\xi)$ are continuous. Similar to the proof of Lemmas 4 and 5, we can complete the proof.

\[\square\]

Before ending this paper, we make the following remarks on the minimal wave speed.

Remark 7. In Lin [15] and Pan [16], the authors studied the asymptotic spreading of (1) if $r = 0$, in which one species spreads in the minimal wave speed of traveling wave solutions. However, (1) does not satisfy the comparison principle of classical predator-prey systems in [15, 16]; there are also some technical problems in estimating the asymptotic spreading of (1), which will be further investigated in our future research.

Remark 8. From Pan [8], we see that a traveling wave solution with large wave speed decays exponentially as $\xi \to -\infty$.

However, when the minimal wave speed is concerned, it does not decay exponentially as $\xi \to -\infty$.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

Dongfeng Li was supported by the National Key Research and Development Program of China (no. 2016YFC0402502).

References

