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A driving risk status prediction algorithm based on Markov chain is presented. Driving risk states are classified using clustering
techniques based on feature variables describing the instantaneous risk levels within time windows, where instantaneous risk levels
are determined in time-to-collision and time-headway two-dimension plane. Multinomial Logistic models with recursive feature
variable estimation method are developed to improve the traditional state transition probability estimation, which also takes into
account the comprehensive effects of driving behavior, traffic, and road environment factors on the evolution of driving risk status.
The “100-car” natural driving data from Virginia Tech is employed for the training and validation of the prediction model. The
results show that, under the 5% false positive rate, the prediction algorithm could have high prediction accuracy rate for future
medium-to-high driving risks and could meet the timeliness requirement of collision avoidance warning. The algorithm could
contribute to timely warning or auxiliary correction to drivers in the approaching-danger state.

1. Introduction

Road traffic injuries and deaths have been a major public
health issue globally. According to World Health Organi-
zation (WHO), approximately 1.25 million people die from
roadway traffic accidents each year, while 20∼50 million peo-
ple suffer nonfatal injuries with many resulting in disabilities
[1]. Vehicle driving risk prediction based on the perception of
real-time movement and environment features of the vehicle
could be vital for developing collision warning/intervention
strategies in intelligent driver assistance systems to reduce
collision risks and improve roadway safety.

Most existing collision warning methods calculate the
selected warning parameters in real time and compare them
with the default thresholds of different risk levels, and
the most widely used warning parameters include time-to-
collision (TTC), time-headway (THW), and distance [2–4].
However, it is too simplified to describe the whole driving
risk evolution process from the formation of risk to the occur-
rence of accident with only a single warning parameter, and
more complex models and algorithms are required for more
intelligent driving risk prediction. Although such advanced
collision warning models/algorithms have received increas-
ing attention over the years, many published studies usually

only consider the vehicle operating characteristics (such as
vehicle’s relative position to potential conflicts, vehicle speed,
and acceleration characteristics) [5–7], while ignoring the
impact of dynamic driver behavior, road, and environmental
characteristics on the driving risk status, which has been
researched and confirmed in many traffic accident causation
studies [8–10]. Thus, a driving risk prediction method that
could reflect the dynamic changes in driver behavior, road,
and environment is needed.

As the future risk state of a driving vehicle has strong
randomness and no aftereffect (i.e., “the state of the previous
moment has no direct influence on the state of the next
moment” [11]), the driving risk evolution process follows the
Markov property. Markov chains have been widely used in
the engineering field and have already been applied to the
area of transportation, such as traffic flow and travel speed
forecasting [11–13], but have not been extensively researched
in driving risk prediction. To solve the problem of driving
risk prediction for vehicle collision avoidance, the paper
aims to explore a Markov chain driving risk state forecasting
model that considers the dynamic changes of real-time driver
behavior, road, and environmental characteristics.The results
of the study could provide a new basis for vehicle collision
warning and risk control.
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Table 1: Retrieved risk-related attributes from “100-car” NDS dataset.

Recoded data attributes

Level 1 (1) Vehicle movement parameters Vehicle speed, acceleration, distance from the leading vehicle,
rate of change in distance from the leading vehicle

Level 2

(2) Driver attributes
Driver’s driving maneuver prior to (near) accident, driver
attention area, the number of secondary tasks, the highest
complexity level of the secondary tasks

(3) Road attributes Number of lanes, traffic flow density, road alignment, road
longitudinal slope

(4) Environmental attributes Lighting, weather conditions, roadway conditions
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Figure 1: Vehicle driving state transition process.

The driving risk prediction problem is briefly stated in
the next section, followed by a description of the driving
state data for establishing the real-time risk predictionmodel.
The methodology for model development is presented in
Section 4, followed by model parameter experiment, valida-
tion, and results of data analysis.Thefinal section summarizes
the findings and concludes the paper.

2. Problem Statement

In order to realize the real-time driving risk prediction,
driving state parameters of the vehicle need to be collected in
real time through sensors and instruments.The time interval
of data acquisition by sensors and instruments divides the
continuous time variable into a discrete time series 𝑡 ={. . . , 𝑖 − 3, 𝑖 − 2, 𝑖 − 1, 𝑖, 𝑖 + 1, 𝑖 + 2, 𝑖 + 3, . . .}. Accordingly,
the continuous evolving process of vehicle driving state can
be expressed as a discrete sequence corresponding to each
discretized time moment: 𝑆(𝑡) = {. . . , 𝑆(𝑖 − 3), 𝑆(𝑖 − 2), 𝑆(𝑖 −1), 𝑆(𝑖), 𝑆(𝑖+1), 𝑆(𝑖+2), 𝑆(𝑖+3), . . .} (Figure 1) [11].The discrete
sequence 𝑆(𝑡) has strong randomness and the probability of
the vehicle being at the next state depends only on the current
state and not the previous states:

Pr {𝑆 (𝑖 + 1) = 𝑆󸀠 | 𝑆 (𝑖) , 𝑆 (𝑖 − 1) , . . . , 𝑆 (1)}
= Pr {𝑆 (𝑖 + 1) = 𝑆󸀠 | 𝑆 (𝑖)} . (1)

As such, the above-described vehicle driving state evolu-
tion process accords with the Markov property and could be
well described by a Markov model.

3. Data Source

The driving risk evolution observation data in this paper
were derived from the “100-car” Natural Driving Study
(NDS) database collected by Virginia Tech from 2004 to
2005 [14], which includes 68 accidents and 760 near-
accidents (where drivers took an emergency braking or
evasive steering behavior) data. Each set of data records
information concerning vehicle movement features as well
as driver behavior, traffic, and environmental status from
30 s before and 10 s after the occurrence of accident (or
near-accident), which could well meet the research objective
of the paper in exploring driving risk prediction method
that could reflect dynamic driver behavior, road, and envi-
ronmental characteristics. As the dataset does not record
the complete set of parameters for vehicle driving involved
in lane-changing conflicts, only rear-end accidents and
near-rear-end accidents samples were selected for study.
After deleting the invalid observation records (with miss-
ing/unreasonable values) and recoding the selected risk-
related attributes, a total of 𝑁 = 114 samples {X1,X2,. . . ,X𝑁} were finally obtained, where each sample X𝑖 (𝑖 =1, 2, . . . , 𝑁) is a time series recording vehicle movement
status values (with a duration of 𝑇𝑖 and sampling interval
at 0.1 s or 10Hz), along with a set of driver, road and,
environment status attributes values, as summarized in
Table 1.

As presented in Table 1, the four categories of the recoded
attributes could be grouped into Level 1 and Level 2, where
Level 1 attributes feature the moving status of the vehicle,
while Level 2 attributes feature the state-changing affect-
ing/causal factors. As such, Level 1 attributes would be first
used for the classification of driving risk states in Section 4.1
and then for the estimation of state transition probability
of Markov chain model together with Level 2 attributes in
Section 4.2.

The obtained time-series samples were then randomly
divided into two groups, of which 70 (about 60%) time-series
samples would be used for model training (in Section 5)
and the remaining 44 (about 40%) for model verification (in
Section 6).
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4. Methodology

Following the Markov chain property, the state of a research
object at time 𝑡 + 1 is determined by the product of the initial
state probability distribution vector at time 𝑡 (𝜋𝑡) and the
state transition probability matrix 𝐴 [15] as follows:

𝜋𝑡+1 = 𝜋𝑡𝐴. (2)

Therefore, the paper would focus on the two aspects
of research including risk state classification and transition
probability estimation.

4.1. Driving Risk State Classification. Previous research has
demonstrated that vehicle driving risk level could be well
characterized by the driver’s braking features [16–18]. There-
fore, the vehicle movement parameters at the start of braking
in the accident and near-accident samples were selected to
classify the instantaneous driving risk level. TTC and THW
are two widely recognized parameters in measuring vehicle
driving risk, which are defined as follows [3]:

TTC = 𝐷𝑉𝑟
THW = 𝐷𝑉𝑠 ,

(3)

where 𝐷 measures the distance from the subject vehicle to
the leading vehicle; 𝑉𝑟 and 𝑉𝑠 represent the relative speed of
the two vehicles and the traveling speed of the subject vehicle.
Equations (3) imply that the risk evaluation by TTC is limited
in the small relative distance risk scenario, and THW could
not account for the scenario when the relative speed of the
two vehicles increases. To overcome the limits in using one of
the two parameters, 𝐾-means clustering of {−iTTC,THW}
vectors observed at the start of braking was implemented
to identify different risk level areas (𝐾-means clustering
algorithm was employed here for its wide application to and
good performance in risk state classification [5, 16, 17]). Note
that iTTC is the inverse of TTC and was utilized instead of
TTC to avoid the problem of infinite TTC when the relative
speed is very small, and the negative sign before iTTC ensures
that it maintains the same increasing/decreasing trend as
THWwhen risk level changes (i.e., both a smaller −iTTC and
a smaller THW indicate a higher driving risk).

Both of the training and test setswere utilized for risk level
clustering (with a total of 190 braking processes obtained),
and the optimum number of clusters was estimated to be five
by the elbowmethod [19].The general distribution pattern of{−iTTC,THW} pair clusters at the start of driver braking is
presented in Figure 2 (where each cluster area is represented
with a different color). As could be noted from Figure 2, the
whole risk observations at braking could generally be divided
into five regions following the lines near iTTC = 0.7, THW =
0.9, THW = 1.3, THW = 1.8, and THW = 2.5, respectively.
Notice that there exist risk pairs with a negative iTTC
(which is assigned to no risk level according to TTC-based
classification) but with a relatively small THW, indicating the
necessity for joint consideration of both parameters for risk

Risk data at braking
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Figure 2: Vehicle movement parameter distribution at the start of
braking.

Table 2: Instantaneous driving risk level definition.

Risk group Risk level Thresholds

High risk RL9 1.0 ≤ iTTC
RL8 0.67 ≤ iTTC < 1.0

⇓ RL7 0 ≤ iTTC < 0.67 & THW < 0.9
RL6 0 ≤ iTTC < 0.67 & 0.9 ≤ THW < 1.3
RL5 0 ≤ iTTC < 0.67 & 1.3 ≤ THW < 1.8

Low risk

RL4 0 ≤ iTTC < 0.67 & 1.8 ≤ THW < 2.5
RL3 iTTC < 0 & THW < 2.5
RL2 0 ≤ iTTC < 0.67 & 2.5 ≤ THW
RL1 iTTC < 0 & 2.5 ≤ THW

assessment. According to the distribution of the clustering
results, as well as referencing the typical TTC-based risk level
classification according to accident-to-conflict ratio (which
is estimated to be 0.8, 0.6, 0 for 1.0 ≤ iTTC, 0.67 ≤ iTTC< 1.0, iTTC < 0 intervals, resp.) [20], an instantaneous
driving risk level (RL) indexing integrating driving behavior
characteristics (driver braking features) and conflict severity
(accident-to-conflict ratio) could be defined as in Table 2
(also marked in Figure 2).

In order to improve model performance regarding accu-
racy as well as timeliness, instead of using single point risk
level observation to define risk condition, driving risk state at
any time 𝑡 was defined over a time window (ending at time 𝑡)
based on statistics to capture the range and trend of risk level
over a short time period.

4.1.1. Rolling Time Window. A rolling time window scheme
was used to segment the time-series data samples. As shown
in Figure 3, the length of the rolling time window (TW) is𝑤, which is continuously rolling forward at a rolling interval𝜑 (equal to the sampling interval [0.1 s or 10Hz] in the NDS
dataset). Transition step 𝛿 defines the unit increase of the
discretemoments of time 𝑡 = 1, 2, . . . , 𝑇, at which theMarkov
state transitions (e.g., the transition of risk states from time𝑡 to time 𝑡 + 1) are observed. Accordingly, a total of 𝑁󸀠 =∑𝑁𝑖=1(⌊(𝑇𝑖 −𝑤)/𝜑⌋ + 1) time windows could be retrieved after
segmenting each time series sample X𝑖 (𝑖 = 1, 2, . . . , 𝑁),
where 𝑇𝑖 represents the total time length of X𝑖. To achieve
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Figure 3: Diagram of rolling time window.

optimumprediction accuracy as well as timeliness, the length
of rolling time window 𝑤 and transition step 𝛿 for Markov
chain model prediction would be calibrated based on the
training sample data by grid searching (to be discussed in
Section 5).

4.1.2. TimeWindow-BasedRisk State Clustering. Asdescribed
above, the driving risk state at any time t is represented by
the time window ending at t and could be determined by
the statistics of the observation sequence of risk levels within
the corresponding time window. By principle components
analysis of possible statistics, the mean risk level within
time window (RLavg) and a trend statistic contrast (CON)
were selected as the feature statistics for each time window.
The two statistics, along with the instantaneous risk level
at time t (RLlast, i.e., the last observed risk level in time
window), were then served as feature variables in risk state
clustering analysis for state classification. The trend value
CON is widely used in the field of image analysis to describe
the variation in grayscale of an image [21]. For risk state
prediction problem, CONmeasures the degree of variation of
the risk level observation sequence within the time window,
which is defined as follows:
CON = ∑

𝑖,𝑗

(𝑗 − 𝑖) 󵄨󵄨󵄨󵄨𝑗 − 𝑖󵄨󵄨󵄨󵄨 𝑑𝑖𝑗
𝑑𝑖𝑗
= number of risk level pairs (𝑖, 𝑗)with distance 1

total number of possible pairs with distance 1 ,
(4)

where 𝑑𝑖𝑗 represents the 𝑖th row and 𝑗th column element of
the risk level cooccurrence matrix (both 𝑖 and 𝑗 represent
the instantaneous driving risk level index). Given a risk level
observation sequence, the risk level cooccurrence matrix
could be created by calculating how often it occurs when a
contiguous risk level pair is at level 𝑖 and level 𝑗. An example
calculation of CON for a time window consisting of ten risk
level observations is presented in Figure 4.

Formula (4) shows that CONwould yield a positive value
when the risk level has an increasing trend over time and a

negative value when it has a decreasing trend. As such, CON
not only measures the contrast intensity of each observed
risk level with its neighboring observations but also reflects
the characteristics of changing trend in risk level within the
time window period and thus is suitable for characterizing
the variation of risk level within the time window.

To facilitate future development of early collisionwarning
scheme, driving risk state was classified into S1, low-risk state,
S2, medium-risk state, and S3, high-risk state, by 𝐾-means
clustering (𝐾 = 3) technique, which was performed on all
the feature vectors [RLavg,RLlast,CON] retrieved from the
obtained time windows based on the training sample (the
results of clustering would be discussed in Section 6). The
classified driving risk states were defined as Markov chain
states {𝑆𝑖}, 𝑖 = 1, 2, 3 for Markov chain modeling.

As 𝐾-means clustering is distance-based, the initial risk
state probability distribution𝜋0 could also be estimated based
on the Euclidean distance 𝜌 between the initially observed
three-dimension feature vector x0 = [RLavg0,RLlast0,CON0]
and the risk state cluster centroids {c𝑖 = [RLavg𝑐𝑖 ,RLlast𝑐𝑖 ,
CON𝑐𝑖]}, 𝑖 = 1, 2, 3, as shown in the following formula:

𝜋0𝑆𝑖 = 1/𝜌 (x0, c𝑖)∑𝐾𝑗=1 1/𝜌 (x0, c𝑗) , 𝑖 = 1, 2, 3

𝜌 (x0, c𝑖) = √ 3∑
𝑗=1

(x0 (𝑗) − c𝑖 (𝑗))2, 𝑖 = 1, 2, 3.
(5)

4.2. Driving Risk State Transition Probability Estimation. As
shown in (2), in the Markov chain forecasting process,
the estimation of state transition probability matrix would
directly affect the accuracy of prediction and is the key to
model development. In practical applications, the probability
of state transition is usually calculated based on the transition
frequency between states, which could be expressed as
follows:

𝐴 = [[[[[

𝑎11 ⋅ ⋅ ⋅ 𝑎1𝐾... d
...𝑎𝐾1 ⋅ ⋅ ⋅ 𝑎𝐾𝐾
]]]]]

=
[[[[[[[[[

𝑁(𝑆1, 𝑆1)∑𝐾𝑘=1𝑁(𝑆1, 𝑆𝑘) ⋅ ⋅ ⋅ 𝑁 (𝑆1, 𝑆𝐾)∑𝐾𝑘=1𝑁(𝑆1, 𝑆𝑘)... d
...𝑁 (𝑆𝐾, 𝑆1)∑𝐾𝑘=1𝑁(𝑆𝐾, 𝑆𝑘) ⋅ ⋅ ⋅

𝑁 (𝑆𝐾, 𝑆𝐾)∑𝐾𝑘=1𝑁(𝑆𝐾, 𝑆𝑘)

]]]]]]]]]
,

(6)

where 𝐾 refers to the number of classified states (which is 3
in our case),𝑁(𝑆𝑖, 𝑆𝑗) represents the number of observations
in a sample which shift from state 𝑆𝑖 to state 𝑆𝑗. As presented
in the figure of state transition frequency pattern based on
the given training sample (Figure 5), driving risk states have a
high tendency to stay in the same state for a short time period,
while more state shifts are observed for higher risk states as
time increases.
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Figure 4: Calculation of risk level cooccurrence matrix.
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Figure 5: Driving risk state transition pattern (TW = 1.0 s).

In order to improve prediction accuracy, the paper
utilized the Multinomial Logistic (MNL) regression model
to characterize the pattern of transitions between states. The
MNL-based category selectionmethod has good stability and
has been widely used for prediction in engineering [22].
In line with the definition of the rolling time window in
Section 4.1, the probability of the time window being in state𝑆𝑗 at time 𝑡 + 1 given the current observed time window (at
time 𝑡) being in state 𝑆𝑖 could be estimated via the following
MNL formula:

𝑎𝑖𝑗 (Z𝑡) = Pr (𝑞𝑡+1 = 𝑆𝑗 | 𝑞𝑡 = 𝑆𝑖) = 𝑒𝛽(𝑖)𝑗 ⋅Z(𝑖)𝑡∑𝐾𝑘=1 𝑒𝛽(𝑖)𝑘 ⋅Z(𝑖)𝑡 ,𝑖, 𝑗 = 1, 2, 3,
(7)

where Z𝑡 = [𝑧1𝑡, 𝑧2𝑡, . . . , 𝑧𝑚𝑡] refers to the independent
variable vector, which consists of the time window feature
variables RLavg,RLlast,CON (obtained from Level 1 data as
listed in Table 1) as well as the driver, road, and environ-
ment information variables (Level 2 data). 𝛽𝑗 represents
the regression coefficient vector for the𝑗th risk category in
MNL model. The index value 𝑖 within the parentheses in
the upper right of Z𝑡 and 𝛽𝑗 means the estimated model
conditioning on observations being in state 𝑆𝑖. Accordingly,𝐾 = 3 datasets need to be generated conditional on the
state of the previous time window, resulting in 𝐾 = 3 MNL
models estimating transition probabilities for each of the
three risk states separately. Considering the relative small
number of observations in state shifting (i.e., 𝑞𝑡+1 ̸= 𝑞𝑡)
given the sample (as shown in Figure 5), in order to improve
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Initialization:
(1) Calculate and obtain the feature variable vector x0 = [RLavg0,RLlast0,CON0] for time window at 𝑡 = 0.
(2) Calculate the initial state probability 𝜋0 by Eqn. (5)
(3) Obtain the corresponding independent variable vector for the initially observed time window:

Z0 = [RLavg0,RLlast0,CON0,DM0] = [x0,DM0]
MNL-based state transition probability estimation:

(4) For 𝑛 = 1
(4.1) Calculate 𝐴(Z0) by Eqn. (7).
(4.2) Calculate the state probability distribution at 𝑡 = 𝑛 = 1 by Markov property: 𝜋1 = 𝜋0𝐴(Z0)=[𝜋1𝑆1 , 𝜋1𝑆2 , 𝜋1𝑆3 ]
(4.3) Estimate the three-dimension feature variable vector x1by solving a set of three equations {𝜋1𝑆𝑖 = (1/𝜌(x1, c𝑖))/(∑3𝑗=1 1/𝜌(x1, c𝑗))}, 𝑖 = 1, 2, 3 according to Eqn. (5)
(4.4) Obtain the updated independent variable vector Ẑ1 = [x̂1,DM0] (assuming the driving mode remains unchanged).

(5) For 𝑛 = 2, . . . , 𝑇 − 1
(5.1) Calculate 𝐴(Ẑ𝑛−1) by Eqn. (7).
(5.2) Calculate the state probability distribution at 𝑡 = 𝑛 by Markov property: 𝜋𝑛 = 𝜋𝑛−1𝐴(Ẑ𝑛−1)=[𝜋𝑛𝑆1 , 𝜋𝑛𝑆2 , 𝜋𝑛𝑆3 ]
(5.3) Estimate the three-dimension feature variable vector x𝑛in the same way as step (4.3).
(5.4) Obtain the updated independent variable vector Ẑ𝑛 = [x̂𝑛,DM0] (same assumption as step (4.4)).

Outputs:
(6) Return the predicted state probability distribution for time window 𝑡 = 𝑇:
𝜋𝑇 = 𝜋0𝐴(Z0)𝐴(Ẑ1) ⋅ ⋅ ⋅ 𝐴(Ẑ𝑇−1)

Algorithm 1: The description of MNL-based Markov chain risk state prediction algorithm.

the convergence performance of the MNL models, instead
of using the whole high-dimensional set of driver, road,
and environmental information variables (Level 2 variables),
a new “driving mode” (“DM”) variable was constructed
in the paper by clustering these Level 2 variables (could
also be regarded as driving pattern characteristics) into 𝐾󸀠
patterns by elbow method. MNL model training results
would be discussed in Section 6. In sum, the independent
variable vector for MNL models could be expressed as Z𝑡 =[RLavg𝑡,RLlast𝑡,CON𝑡,DM𝑡].

According to the Markov property, starting from the
current observed time window at 𝑡 = 0, the risk state of any
future time window at 𝑡 = 𝑇 (i.e., to proceed with Δ = 𝑇
transition steps in a Markov chain) could be determined
by the initial state distribution probability 𝜋0 and 𝑇 sets
of MNL-based one-step state transition probability matrix
(estimated in (7)) as follows:
𝜋𝑇 = 𝜋𝑇−1𝐴 (Z𝑇−1) = 𝜋𝑇−2𝐴 (Z𝑇−2) 𝐴 (Z𝑇−1) = ⋅ ⋅ ⋅
= 𝜋0𝐴 (Z0) 𝐴 (Z1) ⋅ ⋅ ⋅ 𝐴 (Z𝑇−1) . (8)

In the actual prediction problem, when the number of
transition stepsΔ ≥ 2 (i.e., to predict future risk state for time
window at 𝑡 = 2 and its subsequent time windows given the
observed independent variable vector at 𝑡 = 0), the indepen-
dent variable vectorsZ𝑡, 𝑡 = 1, . . . , 𝑇−1 (for time window𝑡 =1 and its subsequent time windows), cannot be observed and
cannot be directly applied either to (7) for estimating state
transition probability or to (8) for predicting the state of the
target time window. In order to meet the requirement for
prediction and to improve the prediction accuracy, a MNL-
basedMarkov chain algorithmwith recursive feature variable

estimation (referred to as RMNL-Markov) was proposed,
as described in Algorithm 1. The key idea of the proposed
algorithm is that the state probability distribution could be
determined by both of the Euclidean distance (to risk state
cluster centroids) based estimation method (see (5)) and
Markov property (see (8)), which leads to a set of three
equations solving the three-dimension future feature variable
x𝑡 = [RLavg𝑡,RLlast𝑡,CON𝑡], 𝑡 = 1, . . . , 𝑇 − 1.

In order to validate the proposed algorithm, two baseline
algorithms (as listed below) would also be performed and
compared using the same training set (with results discussed
in the next section):

(1) Freq-Markov: frequency-based state transition prob-
ability estimation algorithm (see (6))

(2) CMNL-Markov: MNL-based state transition proba-
bility estimation with constant Z𝑡 (assuming that the
future independent variable vectors stay unchanged
over time: Z𝑡 = Z0, 𝑡 = 1, . . . , 𝑇 − 1)

5. Model Training

The training of the model mainly includes optimal selection
of three parameters: (1) the length of time window 𝑤, (2) the
length of transition step 𝛿, and (3) the number of predicted
transition steps Δ. Among them, the length of time window𝑤 would directly affect the classification of risk state, the
length of transition step 𝛿would affect the estimation of state
transition probability, and the number of predicted transition
steps Δ would affect the prediction length (vision) of the
model. The optimal combination of the parameters {𝑤, 𝛿, Δ}
would be searched via grid searching and discussed in the
following sections.
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Table 3: Classification of prediction results.

Observed Predicted
Safe (low & medium risk state) Dangerous (high risk state)

Safe (low & medium risk state) True negative (TN) False positive (FP)
Dangerous (high risk state) False negative (FN) True positive (TP)

5.1. Selected Evaluation Indexes. The selection of evaluation
index of model performance establishes the basis for deter-
mining optimal parameters. Taking into account the possible
differences in prediction accuracy across different risk states,
overall and state-based prediction accuracy measurements
were both employed to evaluate the prediction performance
of the model.

5.1.1. Overall Prediction Accuracy Measurement. An overall
prediction accuracy rate was calculated using the following
formula:

𝑅acc = 1𝑛
𝑛∑
𝑗=1

𝛿 (𝑠󸀠𝑗, 𝑠𝑗)
𝛿 (𝑠󸀠𝑗, 𝑠𝑗) = {{{

1, 𝑠󸀠𝑗 = 𝑠𝑗0, 𝑠󸀠𝑗 ̸= 𝑠𝑗,
(9)

where 𝛿(𝑠󸀠𝑗, 𝑠𝑗) represents a Dirac delta function, 𝑠󸀠𝑗 and 𝑠𝑗
are the predicted and the observed risk states, respectively,
and 𝑛 is the total number of predictions made. The overall
prediction accuracy rate measures the overall prediction
performance in accuracy for all risk states.

5.1.2. State-Based Prediction AccuracyMeasurement. Asmost
states tend to stay unchanged over small-to-medium-sized
transition steps (as presented in Figure 5), the performance
of predicting state-shifting cases (i.e., 𝑞𝑡+1 ̸= 𝑞𝑡 in (7)) should
be evaluated separately to eliminate the dominant effects of
prediction performance for state-staying cases. As a result,
general and state-shifting prediction accuracy rates were
utilized for state-based prediction performance evaluation.
Such state-shifting measurement could be critical for real-
world application as a high prediction accuracy rate is usually
required for forecasting changing state scenarios, especially
for those shifting from lower risk states to higher risk states.

The state-based general prediction accuracy rate could be
determined as follows:

𝑅acc(𝑖) = 1𝑛(𝑖)
𝑛(𝑖)∑
𝑗=1

𝛿 (𝑠󸀠𝑗, 𝑠𝑗(𝑖)) , 𝑖 = 1, 2, 3, (10)

where 𝑠𝑗(𝑖) represents the observed 𝑖th risk state and 𝑛(𝑖) is
the total number of observations in the 𝑖th risk state. The
general state-based prediction accuracy rate measures the
overall prediction accuracy for each of the risk states.

The state-based state-shifting (SS) prediction accuracy
rate was calculated as follows:

𝑅acc(𝑖)SS = 1𝑛(𝑖)SS
𝑛(𝑖)SS∑
𝑗=1

𝛿 (𝑠󸀠𝑗, 𝑠𝑗(𝑖)) , 𝑖 = 1, 2, . . . , 𝐾, (11)

where 𝑛(𝑖)SS is the total number of observations in the 𝑖th
risk state which are shifted from the𝑗th (𝑗 ̸= 𝑖) state.
The accuracy rate of state-shifting prediction measures the
prediction accuracy for each of the risk states that involve
state shifting.

5.1.3. Additional Prediction Measurement. For two-category
risk classification problem (e.g., being safe versus dangerous),
true positive rate (TPR) and false positive rate (FPR) are
usually employed to assess prediction performance from the
perspective of users [23]. In the paper, the low and medium
risk states were combined into a “safe” category to perform
the TPR and FPR calculation, as shown in Table 3.

TPR and FPR are defined as follows:

TPR = TP(TP + FN)
FPR = FP(FP + TN) .

(12)

As could be noted from equations above, a higher TPR
(the rate of observed high risk states correctly predicted
to be high risk states) indicates a higher percentage of
correctness in predicting the high risk states, and accordingly
the prediction system is believed to be more effective in
preventing accidents. However, seeking a high TPR may
also cause overfitting problem of the model which should
be avoided, and thus it is necessary to ensure that the FPR
(the rate of observed medium and low risk states wrongly
predicted to be high risk states) from the prediction model
lies within a reasonable range. Considering the tolerance of
drivers for false warnings, 5% is usually chosen as the highest
FPR in practice.

The following sections would present and discuss the
selection of parameters based on the selected prediction
performance evaluation indexes.

5.2. Parameter Selection and Overall Prediction Accuracy.
Considering the accuracy and timelines requirement for
driving risk state prediction, the length of time window 𝑤 ∈[0.1, 2.0] sec (gridded at 0.1 sec), the length of transition step𝛿 ∈ [0.1, 2.0] sec (gridded at 0.1 sec), and the number of
predicted transition steps Δ ∈ [1, 10] (gridded at 1) were



8 Discrete Dynamics in Nature and Society

RMNL-Markov
CMNL-Markov
Freq-Markov

75

80

85

90

95

100

O
pt

im
al

 o
ve

ra
ll 

pr
ed

ic
tio

n
ac

cu
ra

cy
 (%

)

0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.90.1
w (s)

Figure 6: Prediction accuracy and time window length.
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Figure 7: Prediction accuracy and transition step length.

experimented via grid searching for optimal prediction out-
come. Among all the prediction results from these parameter
value combinations, the highest overall prediction accuracy
rate under a given time window length was taken as its
optimal overall prediction accuracy rate. Figure 6 presents
the trend of optimal overall prediction accuracy rates over
different time window lengths. In the same way, the trend
of optimal overall prediction accuracy rates over different
transition step lengths and number of predicted transition
steps are shown in Figures 7 and 8.

Figures 6–8 show that the optimal overall prediction
accuracy rate does not increase or decrease significantly with
the change of the time window length 𝑤, while with the
increase in the transition step length 𝛿 and the number of
predicted transition steps Δ, the optimal overall prediction
accuracy rate decreases gradually.The reason for the decrease
in accuracy may be that as 𝛿 and Δ increase, the length
of prediction (vision to future) also increases, which makes
the prediction more challenging given the same amount
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Figure 9: Mean prediction results of the top 10 parameter combina-
tions.

of current state information. Also, results show that the
two MNL-based models perform much better than the
frequency-based model when 𝛿 increases (Figure 7), vali-
dating the effectiveness of such MNL-based state transition
estimation methodology. In addition, compared with the
CNML-Markov model, the increase in number of transition
steps causes less reduction in the optimal overall predic-
tion accuracy rate for the RMNL-Markov model (Figure 8),
indicating the effectiveness of the proposed recursive feature
variable estimation method.

5.3. Parameter Selection and State-Based Prediction Accuracy,
TPR, and FPR. Considering the high accuracy requirement
for predicting state-shifting (SS) cases in real-time driving
risk prediction application, the average accuracy rates in
predicting SS risk states under different combinations of
parameter values were sorted, with the mean prediction
results of the highest 10 combinations listed in Figure 9.
It could be noted that the state-based general prediction
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Table 4: Ten best parameter combinations for RMNL-Markov
model.

Comb. number 1 2 3 4 5 6 7 8 9 10𝑤 1.9 1.9 1.7 1.7 1.7 1.4 1.4 1.9 1.7 1.4𝛿 0.2 0.2 0.1 0.2 0.1 0.4 0.4 0.9 0.9 0.7Δ 1 2 1 1 2 1 2 1 1 1

accuracy rates 𝑅acc(𝑖), 𝑖 = 1, 2, 3 (labeled as Racc1, Racc2, and
Racc3 in Figure 9), are generally higher than the state-based
SS prediction accuracy rates 𝑅acc(𝑖)SS , 𝑖 = 1, 2, 3 (labeled as
Racc SS1, Racc SS2, and Racc SS3 in Figure 9), whichmay be
due to the high ratio of the number of observed state reten-
tions to that of observed state shifts in the sample (Figure 5).
Consistentwith the prediction performance shown in Figures
6–8, the proposed RMNL-Markov model also maintains the
highest state-based prediction accuracy rates compared to the
two baseline models and thus was selected for the following
analysis.

The 10 parameter combinations with the top 10 average
prediction accuracy rates in predicting SS risk states using the
RMNL-Markov model are listed in Table 4, with prediction
results presented in Figure 10. It could be noted that all
the average SS prediction accuracy rates of the top 10
combinations are more than 80%, and all of them could
meet the 5% FPR level. Also, the first 7 combinations have
higher SS prediction for higher risk states than that for
lower risk states, which could better meet the practical early
warning requirements on timely prediction of higher risk
states. Among them, the number 7 combination features a
longer prediction length (= 𝛿 × Δ = 0.4 × 2 = 0.8 sec)
while maintaining a relatively high prediction accuracy (its
SS prediction accuracy rates are more than 85% for both
high risk and medium risk states). Taking into account both
the accuracy and timeliness requirements for driving risk
prediction model, parameter combination number 7 was
selected as the final optimal parameters for the proposed
RMNL-Markov model.

5.4. Prediction Model with Selected Parameters

5.4.1. Classified Driving Risk States. Based on the selected
time window length parameter 𝑤 = 1.4 sec, a total of
10,651 rolling time windows were obtained from the training
sample. The clustering results of the time window-based risk
states are summarized in Table 5 and Figure 11.

As presented in Table 5, with the risk state getting higher,
its corresponding average iTTC has an increasing trend,
while its average THW has a decreasing trend, which is
consistent with what one would expect. At the same time,
two points should be noted from Figure 11: (1) in Figure 11(c),
some observations with an average iTTC ∈ (0, 0.4] (i.e.,
TTC > 2.5 sec) but with low average THW (<2 sec) and
positive CON (indicating an increasing trend in the risk
level sequence within the time window) are allocated to the
high risk state; (2) in Figure 11(b), some observations with an
average iTTC > 1 (i.e., TTC < 1 sec) but with negative CON
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Figure 10: Prediction results of the top 10 parameter combinations
for RMNL-Markov.

(indicating an decreasing trend in the risk level sequence
within the time window) and ending in low risk level (at
the last time point of the time window) are allocated to the
medium risk state rather than the high risk state. Such param-
eter value discrepancies exist between the classified risk state
here and the traditional TTC-based risk classification because
the risk states in the paper were defined based on the TTC-
and-THW two-dimension plane, of which prediction values
are not comparable to the single parameter prediction results
by other approaches in the literature. Anyhow, it could be
noted that the high risk cluster has an average TTC value
around 2.2 sec (iTTC avg = 0.453 sec in Table 5) which is
close to the 2.4 sec TTC warning threshold recommended by
NHTSA [24], which to some extent validates the risk state
classification results here.

5.4.2. Estimated State Transition Probability. Given the train-
ing sample and based on the selected parameters {𝑤 =1.4 sec, 𝛿 = 0.4 sec}, a total of 2,643 independent-dependent
variable pairs were obtained for MNL training based on the
selected parameter combination, with training results shown
in Table 6.

Results show that the driving mode variable has a signif-
icant impact on state transition probability for each risk state
(at 𝛼 = 0.05 level).The results prove the necessity of including
the real-time driver, road, and environment characteristics
in developing the Markov chain model for driving risk state
prediction.
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Table 5: Characteristics of TW-based driving risk state clusters.

(TW = 1.4 s) Cluster group C1 (low risk) C2 (medium risk) C3 (high risk)

Clustering variables
RL avg 2.329 5.027 7.115
RL last 2.293 5.053 7.484
CON −0.054 −0.002 0.188

Observed parameters

iTTC avg −0.065 0.114 0.453
iTTC std 0.029 0.039 0.226
THW avg 2.471 1.254 0.666
THW std 0.239 0.059 0.067
# of obs. 5587 (52.4%) 3064 (28.8%) 2000 (18.8%)

Table 6: MNL training results based on test set.

Variables Future state: 1 Future state: 2 Future state: 3
Initial state: (1) low risk

Driving mode −0.474∗ −0.497∗∗ ref.
RL avg −0.569∗∗ −0.151∗ ref.
RL last −0.150∗ 0.543∗∗ ref.
CON 0.153∗ −0.213∗ ref.
Constant 9.608 6.194 ref.𝐿(0) −321.583𝐿(𝐵) −128.311
Rho-square 0.601

Initial state: (2) medium risk
Driving mode −0.105∗ −0.018∗ ref.
RL avg 0.857∗∗ 0.279∗ ref.
RL last 1.587∗∗ 0.599∗ ref.
CON −0.672∗ −0.172∗ ref.
Constant −0.421 2.483 ref.𝐿(0) −144.884𝐿(𝐵) −26.989
Rho-square 0.814

Initial state: (3) high risk
Driving mode 0.038 0.096∗ ref.
RL avg −0.025∗ −0.052∗ ref.
RL last −0.264∗ −0.619∗∗ ref.
CON 0.054 0.125∗ ref.
Constant −27.884 −2.213 ref.𝐿(0) −161.964𝐿(𝐵) −19.525
Rho-square 0.880
Note. “ref.” represents the reference state in MNL regression. ∗Statistical 𝑡-
test significance, 𝑝 < 0.05. ∗∗Statistical 𝑡-test significance, 𝑝 < 0.01.
“L(0)” represents initial likelihood of the model with constants only; “𝐿(𝐵)”
represents likelihood of the specified model. Pseudo-𝑅2 = 1 − 𝐿(0)/𝐿(𝐵).

6. Model Validation

Given the selected parameters {𝑤 = 1.4 sec, 𝛿 = 0.4 sec, Δ =2}, a total of 877 observation-prediction time window pairs
were obtained based on the test set for Markov chain
forecasting using the established RMNL-Markov model in
Section 5, of which 172 risk state shifts were observed. TPR

and FPR of the model prediction are 96.6% and 2.7%,
respectively, indicating that the established model has a good
overall prediction performance in accuracy. Results of state-
shifting (SS) prediction (in Table 7) show that the average SS
prediction accuracy rate is 85.3% across the states, with the
highest SS prediction accuracy rate at 90.0% for high risk
state, indicating that the established model could effectively
predict higher risk driving conditions.

The time-series samples in the testing set were also used
as virtual online observations (as virtual online tests) to
validate the timeliness performance of the proposed model.
The moment when a high risk state was correctly predicted
was recorded and compared to the moment when the high
risk state was first observed in real time. Results show that
on average the model could make correct high risk state
predictions 0.7 sec earlier than the real high risk state occurs.
As previous research shows, at least 60%∼90% of rear-end
accidents could be avoided as long as the driver could
be warned 0.5∼1.0 sec prior to the collision risk [25]; the
established model is promising for early warning in reducing
most of the accidents.

7. Conclusion

AMNL-basedMarkov chainmodel was proposed for driving
risk state prediction. The prediction model was trained and
validated using the “100-car” NDS data from Virginia Tech.
The results show that, compared to the traditional frequency-
based state transition probability estimation method, the
recursive MNL-based algorithm proposed in the paper could
capture the comprehensive effects of driver, road, and envi-
ronment on the evolution of driving risk states and obtain
promising prediction results. Prediction accuracy rate for
states shifting to medium and high risk states could reach
over 85% under 5% FPR, and the virtual online tests show
that the proposed algorithm could generally meet the timely
requirement of early warning for collision avoidance. More
future works would be focused on model improvement and
verification by collecting more driving risk observations
through NDS and conducting vehicle tests to further validate
the real-time prediction performance of the model. Note
that the proposed recursiveMNL-basedMarkov chainmodel
could also be applied to other domains featuring state
evolution process such as real-time traffic state prediction for
traffic management and fault state prediction for predictive
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Figure 11: Driving risk level time window clustering results. Note. The random observed time window samples were sorted according to the
average value of iTTC within the time window for easier understanding.

Table 7: SS prediction results based on test set.

Predicted SS state
Risk state S1Low S2Medium S3High Accuracy rate

Observed SS state
S1 63 11 4 80.80%
S2 3 46 5 85.20%
S3 1 3 36 90.00%

Average 85.30%
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maintenance. Thus, such a study not only provides new
basis for driving safety evaluation but also offers significant
potential for engineering applications.
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