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Abstract. 
We extend Balser-Kostov method of studying summability properties of a singularly perturbed inhomogeneous linear system with regular singularity at origin to nonlinear systems of the form  with  a -valued function, holomorphic in a polydisc . We show that its unique formal solution in power series of , whose coefficients are holomorphic functions of , is -summable under a Siegel-type condition on the eigenvalues of . The estimates employed resemble the ones used in KAM theorem. A simple lemma is applied to tame convolutions that appear in the power series expansion of nonlinear equations. Applications to spherical Bessel functions and probability theory are indicated. The proposed summability method has certain advantages as it may be applied as well to (singularly perturbed) nonlinear partial differential equations of evolution type.



1. Introduction
We consider singularly perturbed nonlinear systems of the form ( means derivative of  with respect to ) 
 with  and   -vector functions,  holomorphic in a polydisc, say  for some  (here,  denotes an open disc of radius , centered at ,  denotes its closure and ) such that the  matrix  is invertible, a condition that makes (1) possess a regular singularity at .
When (1) is linear, i.e., , where  and  are, respectively, a -vector and a  matrix, whose entries are holomorphic in the polydisc , , such that  exists, Balser and Kostov [1] have established the following: (a) there exists a unique formal solution in the ring  of formal power series 
 in  with coefficients  in the ring  of holomorphic functions on , continuous in its closure, satisfying 
 for some positive constants ,  and ; (b) provided the closed sector  of opening angle  about the bisecting direction  and radius  does not contain any ray on the direction of the eigenvalues ’s of , 
 is the -Gevrey asymptotic expansion as  tends to  of a holomorphic function  in ; (c) if  is chosen so that (4) holds, then the formal series  is, by an analogue of Borel-Ritt’s theorem for Gevrey asymptotic expansion (see, e.g., Section 3.2 of [2]), -summable in the direction  and its sum equals .
Summability of formal solutions to singularly perturbed linear systems with irregular singularity at ,
 with the Poincaré rank , has been investigated before in [3]. Contrarily to the previous case , the unique formal power series solution  is always -summable, irrespective of whether (4), the additional condition satisfied by the eingenvalues of , holds or not. The case of , on the other hand, has been studied in [4] for  and the summability of the formal series can be read from the properties of the initial data of (5). The case  separates the two cases and we refer to [3] for an explanation on summability properties for each of distinct cases of simple examples in which  and  are a scalar and a scalar function depending only on . For recent investigations of the linear meromorphic system (5) with , , and , about summable-resurgent of the Borel transform of its highest level’s reduced formal solutions and connection-to-Stokes formulas, see [5] and references therein.
In the present article, all the three statements regarding the summability of the formal series , (a)–(c) above, will be extended for nonlinear differential equations (1).
The nonlinear extension of Balser-Kostov’s statements has been requested by our investigation of renormalization group (RG) flow equation over probability measures in , starting from a measure restricted to the sphere  of radius , as  goes to . Let  be the unique extension in , with , of the meromorphic function 
 where  is the Bessel function of order . This function is the logarithmic derivative of the Fourier-Stieltjes transform  of the uniform measure  on the -dimensional sphere of radius . In [6],  is shown to satisfy a continued fraction of Gauss, convergent in  uniformly in  and this domain of analyticity is extended to the upper half-plane provided  is real. In [7],  given by (6) is the initial data whose summability properties are conjectured to be preserved under the RG dynamics. We refer to [6, 7] for the statistical mechanics context.
Retrospectively, the development of summability methods in probability started with the classical Wiener’s Tauberian theory (see [8, 9] for a concise and, respectively, extensive overviews). The most common types of summation methods called matrix methods may be used as a criterion for asymptotic distribution functions (mod ) of numerical sequences (see Section 7 in Chapter 1 of [10] for a review and [11] for necessary conditions on general dynamical systems, in connection with Gaussian processes). Summability methods are also used in the context of Lagrange interpolation of zeros of Jacobi polynomials and complete monotonicity of certain functions (see [12] and references therein). Related to the present work is the Borel summability of the  expansion for the -vector statistical model at high temperatures proved in [13] (see also [14] for similar results on related models). Our investigation considers a hierarchical version of this model at the critical temperature, from a dynamical point of view.
The  dependence in the argument of the r.h.s. of (6) is chosen in such way that  attains, as  goes to , a limit function 
 (see Proposition 2.1 of [6]).  satisfies an ordinary differential equation of Riccati type 
 which, despite being nonlinear, can be dealt with by Balser-Kostov’s method. Equation (8) is of the form (1) with  and (Statements (a)–(c) hold with  in (8) replaced by  for any 1-summable  formal series in  direction. In this case, the limit function (7) is replaced by ) 
Balser-Kostov summability proof in [1] of the formal series solution  does not follow the usual route by which the (formal) Borel transform  of  is analytically continued along some sector of infinite radius (see, e.g., [2]). Their proof establishes instead Gevrey asymptotic expansion directly from (5), requiring for this an auxiliary lemma regarding an infinite system of linear equations of the same type whose coefficient matrix  is independent of . Although (1) is nonlinear, the system of infinitely many equations obtained by taking derivatives of (1) with respect to  is linear and Balser-Kostov’s method carries over to equation of the form (1). To prove these statements, suitable formulas and a simple but efficient way of estimating higher power of  are provided.
The layout of this paper is as follows. In Section 2 (Proposition 3), we prove existence of a unique solution of (1) in power series of . In Section 3 (Proposition 6), we show that the formal power series in  solution of (1) is Gevrey of order . In Section 4 (Proposition 7) Gevrey asymptotic is established. Our main result, the -summability of the formal solution of (1), is stated in Section 5 (Theorem 9) and proved using Propositions 3, 6, and 7 of the previous sections. The main ingredient (Lemma 4) is employed to tame arbitrarily large number of convolutions arisen in the expansion of  in powers of . The advantage of the proposed summability method is that it can be applied to nonlinear partial differential equations of evolution type [7, 15].
2. Power Series in 
Under the hypothesis on , the series
 converges (in norm) absolutely in , uniformly in , with the coefficients , regarded as a multilinear operator, 
 endowed with an operator norm induced by the Euclidean space :
 holomorphic in  as a function of .
In (12) and from now on,  denotes a -vector with -th component  and Euclidean norm . The product  is denoted by  to distinguish from the components ’s of .
Since the left hand side of (1) vanishes for , and  is assumed in (10), a solution  of (1) in power series reads 
Remark 1.  Observe that  admits a trivial solution  for  which is unique by the implicit function theorem. For the  corresponding to example (9),  does not vanish identically but  and (9) may be replaced by  and according to which  and  hold. Equations (1), under the hypothesis of invertible , can always be reduced to the same form with  satisfying (10). For this, by the implicit function theorem,  can be solved for  and  satisfies .
Substituting the power series (14) into (10) together with (1), we are led to a system of equations 
 with  given by 
 for ; for any two sequences  and , their convolution product  is a sequence defined by  and 
 The restriction  in (18) results from the fact that our sequence  starts with  and a convolution involving  sequences cannot have nonvanishing component  if .
Consequently, for any  arbitrary, (16) for  forms a closed system of  equations, involving  unknown functions which can be solved by iteration starting from
 If (16) for  and  have been solved, then
 Regarding the inverse matrix , we have the following.
Lemma 2 (see Lemma 1 of [1]).  Suppose (4) holds with  and , , eigenvalues of . One can always find  such that, if  for some , the inverse matrix in (21), given by is bounded and satisfies , uniformly in . If , let , , the eigenvalues of , be so that their distances from every ray  intercepting  are bounded from below by a constant : Then, together with the formula  for inverse of a matrix , where  is the transposed of the cofactors matrix of  (see, e.g., [16]) and the boundedness in  of all cofactors of  gives uniformly in  for every .
Proposition 3.  Let  be given by (10) with the eigenvalues of  obeying hypothesis (4). There exist , , and  such that (1) has a solution  holomorphic in . The solution  converges, as  in the sector , to the unique solution  of  in  satisfying .
Proof. Since (14) solves (1), its coefficients  satisfy the formal relations (16) whose solution depends on the existence of inverse matrix  for every  and . Assuming (4) holds for every eigenvalue of , let  and  be such that (23), and consequently (25), holds. Hence,  given by (21) is bounded uniformly in , uniquely defined for every  and, in view of these, holomorphic in .
Let  and  be the supremum in  of  and , respectively: By Cauchy formula and there exists  (=, ) such thatNow, we prove that the majorant series  converges and is bounded by  for some . For this, the following lemma will play an important role here and in the further sections. See Lemma 3.1 of [17] for similar result and Lemma 2.1 of Treves [18].
. Let  be given and let . Consider the sequence  with  or  and Thenholds for every . 
Proof. Since , and  holds for any real numbers  and , we have
It thus follows from (31) with  that 
 holds for any  and the sum is equal to  for .
Let  and  be as in Lemmas 2 and 4. Let  and  in (29) be such that (see Remark 5) for some  and . Supposeholds for , with  the sequence in Lemma 4 with  and .
Hence, by (20) together with (25), (27), and (36), we have and, by (21) and (18) together with (25), with  denoting the sequence . Taking the sup over  in both sides together with (27), (34), and (36), holds for , provided  and With  and  satisfying these conditions, we conclude and  is a sequence of holomorphic functions, uniformly bounded in  by , whose sum  is bounded (in norm) byprovided  satisfies , by (41). Under this choice of ,  uniformly in  and the solution we have obtained by the formal expansions (16) and (18) acquires sense. The power series solution (14) of (1) thus converges to a unique analytic function  in . The proof of uniqueness will be omitted.
From the uniform convergence of (14) we conclude that, for any fixed , the solution  tends to where  is the unique solution of equation for , by the analytic implicit function theorem (see, e.g., Section 2.3 of [19]). Note that the solution  is regular at  since, by (14), it must satisfy  and this concludes the proof of Proposition 3.     
Remark 5.  As observed at end of Section 1 of [1], the estimate  for the (uniformly in ) radius of convergence of (14) can be much smaller than the radius of the largest disk in which , the radius of convergence for the solution of the linear system  at . The Cauchy majorant method (see Section 3.3 of [19]) applied to (45) yields a majorant of , holomorphic in a disc , where  depends on , with  a constant defined in (29), and . Another (not sharp) method of this type, exploiting Lemma 4 to eliminate convolutions, yields a majorant holomorphic in a disc  of radius possibly smaller than . Despite this, since the latter method is undeniably practical and more suitable for extensions, we shall apply it in all further sections.
3. Formal Power Series in 
As in (10), the double series 
 converges (in norm) absolutely in , uniformly in , with the coefficients  regarded as a multilinear operator 
 By consistency,  but  may not be identically zero. From here on, when no ambiguity arises, we drop the dot that precedes the power of  in , introduced to distinguish from its components .
Proposition 6.  Suppose the formal power series (2) satisfies (1), formally, with  obeying the hypotheses stated after (1). Then, the coefficients  of (2) are analytic functions of  in the open disc  and there exist positive constants  and  such that holds for all  and , with . In other words, the formal power series is of Gevrey order 1; that is, .
Proof.  Substituting the power series (2) into (47), we are thus led to the following equations: for , we have which has already been solved for . Recall that  solves  and the coefficients  of the power series  in  satisfy as the estimates for  in the previous section, uniformly in , hold for . However, together with (50) can be used, since the  do not depend on , to improve the disk  of convergence of the series of . See Remark 5.
For , we have Observe that the sum over  has no limit as the sequence  starts from  and the convolution product, now defined by for any two sequences  and , imposes no restriction on their number.
To isolate , the largest index term in (53), we have to show that the matrix (recall ) is invertible for every  for some . For this, we take  so small that and, consequently,  holds uniformly in .
It follows from (53) and (55) that and this relation determines uniquely  in terms of earlier coefficients. Note that  is holomorphic in  and, by (51) and (43) for any , by letting  small enough. Now, to obtain an estimate on the growth rate of , let  denote the -th Nagumo norm of  and let  the supremum in  of . The properties we shall use on Nagumo’s norms is proved in [1] and references therein and are here summarized:
;
;
;
,
 for any two functions  and  holomorphic in  and nonnegative integers .
Let us assume that holds for  with , for some positive constants  and  to be determined. Similar to (29) and (36), holds for some  and  large enough. Then, it follows by (57), (61), and (34) and the properties of Nagumo normswhere the last inequality holds provided  and and this completes the induction: with  and  fixed so that (58) and (63) hold.
By definition (59) of Nagumo norm, holds for all  uniformly in  for some , with  and , which concludes the proof of Proposition 6.
4. Gevrey Asymptotic
In order to set up an equation involving derivatives of  with respect to , we write
 and  for the sequence of those functions defined on ; analogously to (10) and (47), we write 
 where  stands for the -th derivative of  with respect to the first argument divided by . The -th “total derivative” of  with respect to  ( depends on  explicitly and implicitly through ) can thus be written as 
 where
 is a linear operator (matrix) and  depends only on derivatives of  with respect to  of order lower than .
Differentiating (1)  times with respect to , dividing by , we have 
 for , where
 may be considered as inhomogeneous holomorphic function of  in , and for  simply (1): 
Proposition 7.  Let  be the unique holomorphic solution of (1) on  with , , and  as in Proposition 3. There exist , , and positive constants  and  such that holds for all  and every point  in .
Proof.  The case  follows straightforwardly from Proposition 3. (70) which is a linear singular perturbation equation with regular singularity which can be dealt with in the following auxiliary result due to Balser-Kostov [1] (see Lemma 3 therein). For this, we drop temporarily all subindices  in (70).
Let  be expanded in power of ,and consider a sequence  satisfying the systemBy (74) and linearity, the sum over all equations in (75) yields an equation of the form (70) satisfying by the sum . We assume that  admits an expansionabsolutely convergent for , uniformly in . For  given by (68) and (71) this will actually be proven by induction when we resume the proof of Proposition 7. We write, in addition,  if  is majorized by , i.e., if  holds for all . If  is a -vector or a  matrix  means majorized relation for each component. For any , let  denote the vector  and analogous notation for the matrix .
. There exists a unique sequence of functions , holomorphic in , satisfying (75). Each  has a zero of order  at : , and satisfies where holds for some  and  small enough.  is, in addition, the unique analytic solution in  of with . 
Proof. Let us assume that , as a function of  and for every , has a zero of order  at  and is represented by We will show that these assumptions lead to the actual solution of (75). Plugging (81) into (75) yields for  and . Observe that, by (69) and (74), together with the fact that  (recall ), is invertible for every  if we take  so small that and  holds uniformly in .
From these relations, we have Defining it follows, by (25), (78), and (79), that for . Since  for  and  for  hold for all , we conclude (77) provided the geometric series  converges for some . By (74) and (69) if  is chosen small enough and, thence,  is a uniformly convergent series of analytic functions in  which solves (80). Since no other solution of (80), regular at , exists, the proof of Lemma 8 is concluded.
We continue the proof of Proposition 7. It remains to show that the series (76) is uniformly convergent in . This follows by induction. Clearly,  is holomorphic in . Suppose that  is holomorphic in  for each . Then, by (71),  is holomorphic in the same domain. By Lemma 8,  is holomorphic in  and, by (71), we conclude it also holds for , justifying its representation as a convergent series (76), uniformly in . By induction,  is holomorphic in  for each  and where  depends on the  with . For , by (78), holds for all  and . For , we consider the modification of Nagumo norms: with . Recalling (71), (76), and (78), it follows from (89) thatwhere, by (68),and, together with the properties of Nagumo norms, for From these, together with (92), a recursive relation of the same type studied in Section 3 may be derived for the  (see (60)–(64)) and one may conclude that (the details for this estimate are left to the reader)holds for all  and some suitable constants  and . Picking  together with the property of Nagumo norms yields for all  uniformly in , with  and . We choose  in order to include the  case. This concludes the proof of Proposition 7.
5. Summability of the Formal Series
Theorem 9.  Let (1) be considered with  given by (10) where the eigenvalues of  obey hypothesis (4) for  in a domain  with . Then, there exists a radius  such that for  the formal solution  is 1-summable in  direction.
Proof.  By Taylor’s theoremwhere the integral is along a path from  to  inside . This, together with Proposition 7, implies for every  and , with  any proper subsector of . In addition, Proposition 6 states that , a formal solution of (1), is an element of  and therefore is an element of  for any . Take now  and  sufficiently small. Hence, by definition (see Section 1.5 of [2]),  is an asymptotic expansion of order , as  in the sector , of , which by Proposition 3 is an analytic solution of (1) in the domain . Then, as , by hypothesis,  is the only Gevrey order  asymptotic expandable function in  which has  as its asymptotic expansion, and  is -summable in  direction (see, e.g., Section 3.2 of [2]).
6. Summary of Results
Let  be a singularly perturbed nonlinear system with  holomorphic in a polydisc  for some  and the  matrix  invertible. In Sections 3, 4, and 5, we have proven the following:(a)There exists a unique formal solution in the ring  of formal power series  in  with coefficients  in the ring  of holomorphic functions on , continuous in its closure, satisfying , for some positive constants , , and .(b)Provided the closed sector  of opening angle  about the bisecting direction  and radius  does not contain any ray on the direction of the eigenvalues ’s of  (the Siegel-type condition (4)),  is the -Gevrey asymptotic expansion as  tends to  of a holomorphic function  in .(c)If  is chosen so that the eigenvalues ’s of  are Siegel-type, then the formal series  is -summable in the direction  and its sum equals .
To prove (a)–(c) we have extended Balser-Kostov summability method [1], establishing in Section 4 Gevrey asymptotic expansion directly from the equation. The ingredient for this is Lemma 8 (analogous to Lemma 3 of [1]), regarding an infinite system of linear equations of type (5) with  and  independent of . Although (1) is nonlinear, a system of infinitely many linear equations is obtained by taking as many derivatives of (1) with respect to  as one wishes. Lemma 4 is the additional key ingredient that has provided to all the three statements suitable formulas and simple but efficient way of estimating higher power of .
The nonlinear extension of Balser-Kostov summability method has been requested by our investigation of renormalization group (RG) flow equation over probability measures  in  as  goes to . In terms of its Fourier transform  the initial value problem of the RG flow equation reads
 with , the Fourier transform of the uniform measure  on the -dimensional sphere of radius . We observe that the Gaussian measure  is one stationary solution of the flow equation (99). The problem is to find  so that the initial uniform measure  is driven by RG flow to the Gaussian  stationary point, interpreted in probability theory as the Gaussian scaling limit of nonlinear process (99), starting from the uniform measure on the -sphere. The paper [6] deals with the  case, for which the critical value is . The large  case is approached through resummation method [7] writing the Legendre transform of the RG flow and  in formal power series expansion in .
We have used the radial coordinate  to describe the flow: . As explained in the introduction, the result of the present paper applies to the initial condition . Let  be the unique extension in , with  and , of the meromorphic function 
 Then,  satisfies the Riccati type differential equation (8), which is of the forma (1) with  and  given by (9), so the above summarized statements apply in this case. The usefulness of Balser-Kostov summability method combined with Lemma 4 is illustrated in [7, 15]. The method when applied to the RG flow equation (99) yields existence of formal series in  together with Gevrey estimates to the coefficients, uniformly in  (global existence) at the critical value .
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