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Abstract. 
In this paper, the bounds on the solutions of certain delay dynamic integrodifferential systems on time scales are considered. Based on a new Gronwall-Bellman type delay integral inequality, we can estimate the boundedness of solutions to integrodifferential systems. At the end, an example is presented to state the main results.



1. Introduction
The theory of time scales was established and developed by Hilger [1] and Bohner and Peterson [2, 3]. At present, different kinds of integral inequalities and their applications in differential, integral, and integrodifferential equations have become the research focus; see the papers [4–23]. To list a few, Ma and Pečarić [10] established an integral inequality on time scales to study the boundedness of solutions of the delay dynamic differential system. Wang and Xu [13] investigated some integral inequalities in two independent variables on time scales. In [15, 16], Ma et al. considered the generalized two-dimensional fractional differential system with Hadamard derivative. However, to the best of our knowledge, there are very little known results on discussing the bounds on the solutions of delay integrodifferential system on time scales.
Motivated by the works in [10, 15, 16], we further investigate the delay dynamic integrodifferential system on time scales. By introducing a new Gronwall-Bellman type integral inequality, we obtain the bounds on the solutions of a class of delay dynamic integrodifferential system on time scales.
In the following,  denotes the set of real numbers and ,  represents the class of all continuous functions defined on set  with range in the set .  denotes an arbitrary time scale, , , and  denotes the set of rd-continuous functions.
2. Problem Description and Preliminaries
Consider the following delay integrodifferential systemwith the initial conditionwhere ,  are continuous functions, , , , ,  are some positive constants, and .
Remark 1.  If we let , the system considered in this paper reduces to the one in [10].
The following lemmas are useful in our main results.
Lemma 2 (see [4], Lemma 2.1).  Assume that  and . Thenfor any .
Lemma 3.  Assume that , , and  is nondecreasing. If thenwhere
Proof.  First we assume that ; from (3), we have Defining a function  by right side of (6), we obtain  is nondecreasing, and which implies that where  is defined as in (5). Combining (7) and (9), we get the required inequality (4).
If  for , we carry out the above procedure with  instead of , where  is an arbitrary small constant, and subsequently pass to the limit as  to obtain (4). The proof is complete.
3. Main Results
Theorem 4.  Assume that hold, where  (),  (),  is a continuous function satisfying for , where  is continuous ,  and  are constants, and  is a constant with , . Furthermore, suppose that  is a solution of system (1) satisfying the initial condition . Then, for any constant , where 
Proof.  The solution  of system (1) satisfies Combining (10) and (14), we have Defining and we can obtain that  and  are nondecreasing, and Case 1: for  with , we obtain Case 2: for  with , by the initial condition , we have Both (19) and (20) imply that This together with (16) and (17) yields Define Combining (22) and (23), we have By Lemma 2 and (24), for any real number , we get andBy assumption (11) and the last inequalities, it follows that andSubstituting the last inequalities into (23), we can obtain andwhere  and  are defined as in (13).
Let From (30), we have Since  is nondecreasing, by Lemma 3, we have where  is defined as in (13). Since  is nondecreasing, it follows from (33) that where  is defined as in (13). Substituting (34) into (29), we can obtain Using Lemma 3, we get where  and  are defined as in (13). From (34), we have Combining (36) and (37) with (24) and (18), we obtain the desired inequality (12). This completes the proof.
Remark 5.  Theorem 4 generalizes [10, Theorem 3.1].
Remark 6.  Assumptions (10) and (11) are easily satisfied. For example, we can choose , and it is not difficult to verify that where .
4. Application
In this section, we present an example to illustrate the main results.
Example 7.  Consider system (1) with the initial condition  and , , , , and  satisfy with . Then the solution of system (1) satisfies where In fact, the solution of system (1) satisfies the following integral equation Therefore, We can choose and Since  can be selected as . Similarly, we choose  Applying Theorem 4 to (42) yields (40).
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