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An improved car following model on one road with three lanes is presented in this paper, which considers the relative velocity
in front on the main lane and the left and the right adjacent lanes. The stability criterion and neutral stability curve are obtained
by linear stability theory. The nonlinear stability analysis is investigated further to get the solution of the modified Korteweg-de
Vries (mKdV) equation and get the three areas of stability, metastability, and unstability. The new LRVDmodel (left and right lane
velocity difference model) with bigger stable area can stabilize middle lane traffic flow better, which is proved by the linear theory,
nonlinear theory, and the simulation.The LRVDmodel shows if drivers on themiddle lane paymore attention tomore cars in front
on the two side lanes on the three-lane road, the middle lane traffic flow is certain to be more stable in real life. On the complex
three-lane road, if intelligent traffic management system based on the huge traffic data for drivers is applied in real life, it is very
helpful to ensure traffic safety, which is also the trend of transportation development in future.

1. Introduction

With the development of the economy, transportation has
made great progress.The road congestion problem especially
has attracted more and more attention. Therefore, the rela-
tionship of vehicles in traffic flow becomes an importation
issue. Car following theory is a main method to study cars
behavior in the microscopic traffic flow. In 1995, Bando et
al. [1] proposed an optimal velocity model, OV car following
model. A lot of importantmodels on one single road appeared
[2–16]. In 2000, Jiang et al. [5] proposed the full speed
difference car following model (FVD), which was based on
the positive and negative speed difference. Li et al. [15]
proposed an improved model reconsidering the influence of
safety distance and velocity difference on the acceleration
of following car. Then Yu et al. [17] proposed the LVD
model to explain cars behavior on the two-lane road, which
indeed enhances the stability of model to describe the real
phenomenon.However limited research has beendonewhich
considers the three-lane road in the real traffic situation.
Chen et al. [18] proposed a three-lane traffic flow model to
investigate the effect of car accidents on the traffic flow. The

extended lane-changing rules are presented in this model.
The cases where the car accidents occupy the exterior or
interior lane, the medium lane, and two lanes are studied by
numerical simulations.The results show that the car accident
has a different effect on the traffic flow when it occupies
different lanes. The car accidents have a more serious effect
on the whole road when they occupy two lanes. The larger
the density is, the greater the influence on the traffic flow
becomes. Until now scholars have not considered how the
cars behavior is affected by the relative speed in front on
the three lanes of one road. In fact, with the development
of society, more and more roads with high traffic capacity
have been developed to adapt to the rapid social life. So this
research on the three-lane road is very necessary. But no
existing models can explain the complicated phenomenon
that cars behavior on the middle lane with cars driving in
front of the three lanes of one road in real life, but which is
more common. If the cars ahead on the left or right lane slow
down, the following driver on the middle lane may think the
signal light in front has turned red, or there are some traffic
accidents or traffic jam in front. This will cause the cars on
the middle lane to also slow down. If the cars ahead on the
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left or right lane speed up, the drivers on the middle lane may
believe a smaller number of cars run in front, which causes
the driver to increase the speed too, or the drivers on the
middle lane would like to decrease their speed, since they
want to avoid cars on the adjacent lanes having to change
lanes which could cause an accident when some emergency
appears in front on the adjacent lane. On the three-lane
road especially, cars’ accelerationmay appear on one adjacent
lane and deceleration phenomenon could happen on the
other adjacent lane at the same time, which must be more
complicated. So it is meaningful for us to study the complex
phenomenon above on three lanes by considering the relative
speed ahead on the three lanes on one road to explain these
complex phenomena in this paper.

In this paper, the new LRVD model is proposed, which
studies the cars behavior on the middle lane of one road with
three lanes. In Section 2, the LRVD model is elaborated in
detail. In Section 3, the linear analysis theory of LRVDmodel,
including the neutral curve, is presented. In Section 4, by
studying the nonlinear theory, we get the coexisting curve
of the model, which divides the traffic flow into stable,
metastable, and unstable regions. In Section 5, simulation
results also prove LRVDmodel indeed enhances the stability
of the traffic flow.The last section concludes some remarks of
LRVD model.

2. Model

At the very beginning, Chowdhury et al. [4] proposed car
following model on one single road just as follows:

𝑑𝑥2𝑛𝑑𝑡2 = 𝑓sti (V𝑛, Δ𝑥𝑛, ΔV𝑛) , (1)

where the function 𝑓sti(⋅) represents the drivers’ response to
the stimulus, which is related to the speed of 𝑛th car V𝑛, the
relative speed between the cars in front of the 𝑛th car and the𝑛th car, and the distance between them.

Newell [6] proposed a simple single road car following
model.

𝑑𝑥𝑛 (𝑥 + 𝜏)𝑑𝑡 = 𝑉 (Δ𝑥𝑛 (𝑡)) , (2)

where 𝑉(Δ𝑥𝑛(𝑡)) is the optimal velocity function, which just
contains the distance between the 𝑛th car and the car in front.𝜏 is the delay time; the driver of the 𝑛th car can respond to the
stimulus of the (𝑛 + 1)th car in front after the time lag 𝜏.

Yu [8] considered that the optimal velocity may be
determined not only by the successive space but also by the
response to the stimulus of the relative velocity. In this case,𝑑𝑥𝑛(𝑡 + 𝜏)/𝑑𝑡 = 𝑉(Δ𝑥𝑛(𝑡), ΔV𝑛(𝑡)), which further describes
the car following process as follows, namely, RV model:

𝑑2𝑥𝑛 (𝑡)𝑑𝑡2 = 𝛼 [𝑉 (Δ𝑥𝑛 (𝑡)) − V𝑛 (𝑡)] + 𝑘1ΔV𝑛 (𝑡) . (3)

Yu et al. [17] proposed the LVD model based on the
RV model, which considers the impact from the relative
velocity on the main and adjacent lanes. By expanding (2)

into𝑑𝑥𝑛(𝑡+𝜏)/𝑑𝑡 = 𝑉(Δ𝑥𝑛(𝑡), ΔV𝑛(𝑡), ΔV𝑛LVD(𝑡)), and assum-
ing 𝑉(Δ𝑥𝑛(𝑡), ΔV𝑛(𝑡), ΔV𝑛LVD(𝑡)) = 𝑉(Δ𝑥𝑛(𝑡)) + 𝜆1ΔV𝑛(𝑡) +𝜆2𝜏ΔV𝑛LVD(𝑡), the LVD model is obtained as follows:

𝑑2𝑥𝑛 (𝑡)𝑑𝑡2 = 𝛼 [𝑉 (Δ𝑥𝑛 (𝑡)) − V𝑛 (𝑡)] + 𝑘1ΔV𝑛 (𝑡)
+ 𝜆2ΔV𝑛LVD (𝑡) .

(4)

The scholars have improved the car following model in
many aspects before; however no paper was takenwith regard
to the cars behavior on the middle lane of the three-lane
road. In fact, one road with three same lanes, as Figure 1 has
shown, is more common than one single road or two-lane
road in real life. Considering the complex phenomena above,
the LRVD model is proposed in this paper. Equation (2) can
be expanded into such differential equation:

𝑑𝑥𝑛 (𝑡 + 𝜏)𝑑𝑡
= 𝑉 (Δ𝑥𝑛 (𝑡) , ΔV𝑛 (𝑡) , ΔVLVD𝑛 (𝑡) , ΔVRVD𝑛 (𝑡)) , (5)

where ΔVLVD𝑛 (𝑡) = mean(V𝐿𝑚, V𝐿𝑚+1, . . . , V𝐿𝑚+𝑠−1) − V𝑛, andΔVRVD𝑛 (𝑡) = mean(V𝑅𝑘 , V𝑅𝑘+1, . . . , V𝑅𝑘+𝑠−1) − V𝑛. V𝑛 is the speed
of the 𝑛th car on the main lane. 𝑠 is the car number on the
left lane and the right lane. The mean(V𝐿𝑚, V𝐿𝑚+1, . . . , V𝐿𝑚+𝑠−1)
is the average speed of all the cars on the left lane. The
mean(V𝑅𝑘 , V𝑅𝑘+1, . . . , V𝑅𝑘+𝑠−1) is the average speed of all the cars
on the right lane.

Here we suppose the linear combination of 𝑉(Δ𝑥𝑛(𝑡),ΔV𝑛(𝑡), ΔVLVD𝑛 (𝑡), ΔVRVD𝑛 (𝑡)):
𝑉(Δ𝑥𝑛 (𝑡) , ΔV𝑛 (𝑡) , ΔVLVD𝑛 (𝑡) , ΔVRVD𝑛 (𝑡))
= 𝑉 (Δ𝑥𝑛 (𝑡)) + 𝜆1ΔV𝑛 (𝑡) + 𝜆2𝜏ΔV𝑛LVD (𝑡)
+ 𝜆3𝜏ΔVRVD𝑛 (𝑡) .

(6)

Then after applying Talor expanding to (5), we get the
following model:

𝑑2𝑥𝑛 (𝑡)𝑑𝑡2 = 𝛼 [𝑉 (Δ𝑥𝑛 (𝑡)) − V𝑛 (𝑡)] + 𝑘1ΔV𝑛 (𝑡)
+ 𝜆2ΔV𝑛LVD (𝑡) + 𝜆3ΔVRVD𝑛 (𝑡) ,

(7)

where 𝑘1 = 𝜆1/𝜏 and 𝜆1 is the response coefficient of the
relative speed between the 𝑛th car and the (𝑛 + 1)th car
in front. 𝜆2 is the response coefficient of the relative speed
between cars on the main and left adjacent lane, which are
just in front of the 𝑛th car. 𝜆3 is the response coefficient of the
relative speed between cars on the main and right adjacent
lanes, which are just in front of the 𝑛th car.𝑉(Δ𝑥𝑛(𝑡)) is the optimal velocity of 𝑛th car at time 𝑡,
which is defined as follows:

𝑉 (Δ𝑥𝑛) = Vmax2 (tanh (Δ𝑥𝑛 − ℎ𝑐) + tanh (ℎ𝑐)) , (8)

where ℎ𝑐 is the safe distance of successive cars and Vmax is
the maximum velocity. Note that when we ignore the relative
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Figure 1: Three-lane road traffic situation.

speed on the right adjacent lane, namely, 𝜆3 = 0, the LRVD
model proposed can be degenerated to the LVDmodel.Then
if we also ignore the relative speed on the left adjacent lane
and the right adjacent lane, 𝜆2 = 𝜆3 = 0, the LRVD model
proposed can be degenerated to the RV model. Further, if
we continue to ignore the relative speed on the main lane,
namely, 𝜆1 = 𝜆2 = 𝜆3 = 0, the new LRVD model can
be degenerated into the original OV model. So the theory
continuity of the OV, RV, LVD and LRVD models indicates
the LRVD model proposed is reasonable and it can indeed
explain some complicated phenomenon on three-lane road
that scholars have not studied before. In a word, LRVDmodel
is the basement of the three-lane road traffic phenomenon.

The dynamic equation (7) can be discretized by the
asymmetric forward difference, so we get

𝑥𝑛 (𝑡 + 2𝜏) = 𝑥𝑛 (𝑡 + 𝜏) + 𝜏𝑉 (Δ𝑥𝑛 (𝑡))
+ 𝜆1 (Δ𝑥𝑛 (𝑡 + 𝜏) − Δ𝑥𝑛 (𝑡))
+ 𝜆2𝜏(1𝑠

𝑠∑
𝑗=1

Δ𝑥𝐿𝑚+𝑗−1 (𝑡) − Δ𝑥𝑛 (𝑡))

+ 𝜆3𝜏(1𝑠
𝑠∑
𝑗=1

Δ𝑥𝐿𝑘+𝑗−1 (𝑡) − Δ𝑥𝑛 (𝑡)) .

(9)

Here, 𝜆1, 𝜆2, and 𝜆3 are defined as follows:

𝜆1 = {{{
𝜋, Δ𝑥𝑛 < 𝑠𝑐,
0, Δ𝑥𝑛 ≥ 𝑠𝑐,

𝜆2 = {{{
𝜂, Δ𝑥𝐿𝑚 < 𝑠𝑐,
0, Δ𝑥𝐿𝑚 ≥ 𝑠𝑐,

𝜆3 = {{{
𝜙, Δ𝑥𝑅𝑘 < 𝑠𝑐,
0, Δ𝑥𝑅𝑘 ≥ 𝑠𝑐,

(10)

where 𝜋, 𝜂, 𝜙 are the given response coefficients and 𝑠𝑐
is a critical successive space. If the distance between the

two successive cars on the main lane is more than Δ𝑥𝑛,
the speed difference of these two cars would not affect the
following car’s behavior at all. If the distance between the
car on the main lane and the car in front of it on the left
adjacent lane is beyond the critical successive space, these two
cars’ relative speed can be ignored. If the distance between
the car on the main lane and the car in front of it on
the right adjacent lane is more than the critical successive
space 𝑠𝑐, these two cars’ relative speed can be ignored
together.

Eq. (9) can be rewritten as

Δ𝑥𝑛 (𝑡 + 2𝜏) = Δ𝑥𝑛 (𝑡 + 𝜏) + 𝜏𝑉 (Δ𝑥𝑛+1 (𝑡))
− 𝜏𝑉 (Δ𝑥𝑛 (𝑡)) + 𝜆1 (Δ𝑥𝑛+1 (𝑡 + 𝜏) − Δ𝑥𝑛+1 (𝑡)
− Δ𝑥𝑛 (𝑡 + 𝜏) + Δ𝑥𝑛 (𝑡))
+ 𝜆2𝜏[[(

1𝑠
𝑠∑
𝑗=1

Δ𝑥𝐿𝑚+𝑗 (𝑡) − Δ𝑥𝐿𝑚+𝑗−1 (𝑡))

− (Δ𝑥𝑛+1 (𝑡) − Δ𝑥𝑛 (𝑡))]]
+ 𝜆3𝜏[[(

1𝑠
𝑠∑
𝑗=1

Δ𝑥𝑅𝑘+𝑗 (𝑡) − Δ𝑥𝑅𝑘+𝑗−1 (𝑡))

− (Δ𝑥𝑛+1 (𝑡) − Δ𝑥𝑛 (𝑡))]] .

(11)

3. Linear Stability Analysis

The hypotheses of LRVD model are (a) cars cannot change
their lane, (b) the three lanes on one road are the same, (c)
neither overtaking nor ramp exists in this model, and (d) all
the cars on the right and left adjacent lanes can be affected
by the cars in front on the middle lane and also on their own
respective lanes.
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Here we study the uniform traffic flow stability on each
lane, which is given as the solution of the uniformly steady
state of (9), which is shown as

𝑥(0)𝑛 (𝑡) = ℎ𝑛 + 𝑉 (ℎ) 𝑡, ℎ = 𝐿𝑁1 ,
𝑥𝐿(0)𝑚 (𝑡) = ℎ𝑙𝑚 + 𝑉𝑙 (ℎ𝑙) 𝑡, ℎ𝑙 = 𝐿𝑁2 ,
𝑥𝑅(0)𝑘 (𝑡) = ℎ𝑟𝑘 + 𝑉𝑟 (ℎ𝑟) 𝑡, ℎ𝑟 = 𝐿𝑁3 ,

(12)

where 𝑁1, 𝑁2 and 𝑁3 represent the number of cars on the
main lane, the left adjacent lane, and right adjacent lane; ℎ,ℎ𝑙, and ℎ𝑟 are the successive space on the main lane, the left
adjacent lane, and the right adjacent lane; 𝐿 is the length of
the road; 𝑉(ℎ), 𝑉𝑙(ℎ𝑙), and 𝑉𝑟(ℎ𝑟) indicate the optimal speed
of the main lane, the left adjacent lane, and the right adjacent
lane; 𝑥(0)𝑛 (𝑡), 𝑥𝐿(0)𝑚 (𝑡), and 𝑥𝑅(0)

𝑘
(𝑡) are the position of the 𝑛th

car on the main lane, the 𝑚th car on the left adjacent lane,
and the 𝑘th car on the right adjacent lane at 𝑡 = 0 in the stable
state.

Considering the small perturbation into the steady state
solutions in (12), 𝑥𝑛(𝑡) = 𝑥(0)𝑛 (𝑡) + 𝑦𝑛(𝑡), 𝑥𝐿𝑚(𝑡) = 𝑥𝐿(0)𝑚 (𝑡) +𝑦𝐿𝑚(𝑡), and the linear stability equation can be obtained:

Δ𝑦𝑛 (𝑡 + 2𝜏) = Δ𝑦𝑛 (𝑡 + 𝜏) + 𝜏𝑉 (Δ𝑦𝑛+1 (𝑡) − Δ𝑦𝑛 (𝑡))
+ 𝜆1 (Δ𝑦𝑛+1 (𝑡 + 𝜏) − Δ𝑦𝑛+1 (𝑡) − Δ𝑦𝑛 (𝑡 + 𝜏)
+ Δ𝑦𝑛 (𝑡))
+ 𝜆2𝜏[[(

1𝑠
𝑠∑
𝑗=1

Δ𝑦𝐿𝑚+𝑗 (𝑡) − Δ𝑦𝐿𝑚+𝑗−1 (𝑡))

− (Δ𝑦𝑛+1 (𝑡) − Δ𝑦𝑛 (𝑡))]]
+ 𝜆3𝜏[[(

1𝑠
𝑠∑
𝑗=1

Δ𝑦𝑅𝑘+𝑗 (𝑡) − Δ𝑦𝑅𝑘+𝑗−1 (𝑡))

− (Δ𝑦𝑛+1 (𝑡) − Δ𝑦𝑛 (𝑡))]] ,

(13)

where 𝑉(ℎ) = 𝑑𝑉(Δ𝑥)/𝑑Δ𝑥. Expanding Δ𝑦 into the (13)
with Δ𝑦𝑛(𝑡) = 𝐴 exp{𝑖𝑘𝑛 + 𝑧𝑡},

Δ𝑦𝐿𝑚 (𝑡) ≅ 𝛾𝐴 exp {𝑖𝑘𝑛 + 𝑧𝑡} ,
Δ𝑦𝑅𝑘 (𝑡) ≅ 𝛾𝐴 exp {𝑖𝑘𝑛 + 𝑧𝑡} , (14)

where 𝛾 represents the average strength coefficient which
describes the perturbations between the main lane and the
adjacent lanes. Then we get (13) as follows:

𝑒2𝑧𝜏 = 𝑒𝑧𝜏 + 𝑉 (𝑒𝑖𝑘 − 1) 𝜏 + 𝜆1 (𝑒𝑖𝑘+𝑧𝜏 − 𝑒𝑖𝑘 − 𝑒𝑧𝜏 + 1)
+ 𝜆2𝜏[[

𝑟𝑠
𝑠∑
𝑗=1

(𝑒𝑖𝑘𝑗 − 𝑒𝑖𝑘(𝑗−1)) − (𝑒𝑖𝑘 − 1)]]
+ 𝜆3𝜏[[

𝑟𝑠
𝑠∑
𝑗=1

(𝑒𝑖𝑘𝑗 − 𝑒𝑖𝑘(𝑗−1)) − (𝑒𝑖𝑘 − 1)]] .
(15)

Inserting 𝑧 = 𝑧1(𝑖𝑘) + 𝑧2(𝑖𝑘)2 + ⋅ ⋅ ⋅ into (15), we obtain
𝑧1 = 𝑉 + (𝜆2 + 𝜆3) (𝛾 − 1) ,
𝑧2 = −32𝑧21𝜏 + 𝑉



2 + 𝜆1𝑧1 + (𝜆2 + 𝜆3) 𝛾𝑠 − 12 . (16)

The flow is unstable if 𝑧2 < 0, and stable if 𝑧2 > 0. So the
neutral stability condition is given by 𝑧2 = 0:

𝜏 = 𝑉 + 2𝜆1𝑧1 + (𝜆2 + 𝜆3) (𝛾𝑠 − 1)3𝑧21 . (17)

Considering the inverse of delay time 𝜏 which is the
critical sensitivity 𝛼𝑐, the neutral stability curve is shown as
follows:

𝛼𝑐
= 3 [𝑉 + (𝜆2 + 𝜆3) (𝛾 − 1)]2𝑉 + 2𝜆1 [𝑉 + (𝜆2 + 𝜆3) (𝛾 − 1)] + (𝜆2 + 𝜆3) (𝛾𝑠 − 1) .

(18)

The unstable and stable areas are

𝛼𝑐
< 3 [𝑉 + (𝜆2 + 𝜆3) (𝛾 − 1)]2𝑉 + 2𝜆1 [𝑉 + (𝜆2 + 𝜆3) (𝛾 − 1)] + (𝜆2 + 𝜆3) (𝛾𝑠 − 1) ,
𝛼𝑐
> 3 [𝑉 + (𝜆2 + 𝜆3) (𝛾 − 1)]2𝑉 + 2𝜆1 [𝑉 + (𝜆2 + 𝜆3) (𝛾 − 1)] + (𝜆2 + 𝜆3) (𝛾𝑠 − 1) .

(19)

In Figure 2, suppose that the OV model with 𝜆1 = 𝜆2 =𝜆3 = 0, RV model with 𝜆1 = 0.2, 𝜆2 = 𝜆3 = 0, the LVD
model with 𝜆1 = 𝜆2 = 0.2, 𝜆3 = 0, 𝛾 = 0.4, the LRVD model
with 𝜆1 = 𝜆2 = 𝜆3 = 0.2, 𝛾 = 0.4, 𝑠 = 1, and Vmax = 3m/s.
Through Figure 2, we know the stable area of LRVDmodel is
the biggest compared to others, whichmeans considering the
cars’ relative speed on the third adjacent lane indeed improves
the traffic flow stability. So it is necessary to propose the new
LRVD model in this paper, which also can describe the real
traffic phenomenon on the three-lane road in real life.

As Figure 3 has shown, if drivers on the middle lane pay
more attention to the cars behavior on the two adjacent lanes,
the stable area is much bigger.Themore attention is paid, the
more stable the area is. So if the drivers on the middle lane
pay more attention to the cars’ speed on the two side lanes,
the traffic flow on the middle lane will be more stable.
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As Figure 4 has shown, if the drivers on the middle lane
pay the same attention to the two other lanes, the more cars
on the two adjacent lanes are considered by the drivers on the
middle lane and themore stable the traffic flow on themiddle
lane will be.

Through Figures 3 and 4, we realize the cars’ driving truth
on the three-lane road. Firstly, if the drivers on the middle
lane pay more attention to the other lanes, rather than only
see the cars on middle lane or one adjacent lane just like the
existing model only on the single road or two-lane road, the
traffic flow on the middle lane must be more stable. Secondly,
in the same condition of the middle lane, if more cars in front
on the two adjacent lanes are noticed by the driver on the
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2 = 3 = 0.2, s = 3

Figure 4: Different stable curves with different car numbers on the
two adjacent lanes in LVRD model.

middle lane, the middle lane traffic flow is certain to be more
stable.

4. Nonlinear Stability Analysis

To prove that the relative speed on the three lanes on one road
indeed affects the traffic flow on the middle lane effectively,
we conduct a nonlinear stability of the LRVD model. Here
the nonlinear method is used to study the slowly varying
behavior of long waves near the critical point (ℎ𝑐, 𝑎𝑐), and the
slow scales for space variable 𝑛 and time variable 𝑡. The slow
variables𝑋 and 𝑇 are defined as follows:

𝑋 = 𝜀 (𝑛 + 𝑏𝑡) ,
𝑇 = 𝜀3𝑡,

0 < 𝜀 ≪ 1,
(20)

where 𝑏 is a constant to be decided later. Considering a
small disturbance 𝜀𝑅(𝑋, 𝑇), the distances between the two
successive cars can be rewritten as follows:

Δ𝑥𝑛 (𝑡) = ℎ𝑐 + 𝜀𝑅 (𝑋, 𝑇) . (21)

Then expanding (11) to the 𝜀 fifth order by substituting (20)
and (21), we can get the nonlinear partial differential equation
as follows:

𝜀2 [𝑏 − 𝑉 − (𝜆2 + 𝜆3) (𝛾 − 1)] 𝜕𝑋𝑅 + 𝜀3 (3𝑏2𝜏2 − 𝑉2
− 𝜆1𝑏 − (𝜆2 + 𝜆3) 𝛾𝑠 − 12 ) 𝜕2𝑋𝑅 + 𝜀4 [𝜕𝑇𝑅
+ (76𝑏3𝜏2 − 𝑉



6 − 𝜆1𝑏 (1 + 𝑏𝜏)2
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− (𝜆2 + 𝜆3) 𝑟𝑠2 − 16 ) 𝜕3𝑋𝑅 − 𝑉6 𝜕𝑋𝑅3]
+ 𝜀5 [(58𝑏4𝜏3 − 𝑉



24 − 𝜆1
𝑏 (2𝑏2𝜏2 + 3𝑏𝜏 + 2)

12
− (𝜆2 + 𝜆3) 𝑠3𝛾 − 124 ) 𝜕4𝑋𝑅] 𝜀5 [(3𝑏𝜏 − 𝜆1) 𝜕𝑋𝜕𝑇𝑅
− 𝑉12 𝜕2𝑋𝑅3] = 0.

(22)

Near the critical point (ℎ𝑐, 𝑎𝑐), (22) is written as

𝜀4 (𝜕𝑇𝑅 − 𝑔1𝜕3𝑋𝑅 + 𝑔2𝜕𝑋𝑅3)
+ 𝜀5 (𝑔3𝜕3𝑋𝑅 + 𝑔4𝜕2𝑋𝑅3 + 𝑔5𝜕4𝑋𝑅) = 0, (23)

where

𝑔1 = (𝑉6 + 𝜆1𝑏 (1 + 𝑏𝜏𝑐)2 + (𝜆2 + 𝜆3) (𝛾𝑠2 − 1)6
− 7𝑏3𝜏2𝑐6 ) ,

𝑔2 = −𝑉6 ,
𝑔3 = 3𝑏2𝜏𝑐2 ,
𝑔4 = 6𝑏𝜏𝑐 − 2𝜆1 − 112 𝑉,
𝑔5 = −238 𝑏4𝜏3𝑐 + 12𝜏𝑐 − 4𝜆1 − 124 𝑉 + 𝜆1 (5𝑏2𝜏𝑐4
+ 5𝑏3𝜏2𝑐2 − 𝜆1𝑏 (1 + 𝑏𝜏𝑐)2 − 𝑏6) + (𝜆2 + 𝜆3)
⋅ (12𝑏𝜏𝑐 − 4𝜆1) (𝛾𝑠2 − 1) − (𝛾𝑠3 − 1)24 .

(24)

Then a transformation for (23) is shown as follows:

𝑇 = 𝑔1𝑇,
𝑅 = √𝑔1𝑔2𝑅.

(25)

Here, the regularized equation of (23) is obtained:

𝜕𝑇𝑅 − 𝜕3𝑋𝑅 + 𝜕𝑋𝑅3
+ 𝜀(𝑔3𝑔1 𝜕2𝑋𝑅 +

𝑔4𝑔2 𝜕2𝑋𝑅3 +
𝑔5𝑔1 𝜕4𝑋𝑅) = 0.

(26)

Ignoring the 𝑂(𝜀) term in (26), we get the modified KdV
equation

𝑅0 (𝑋, 𝑇) = √c tanh√ c2 (𝑋 − 𝑐𝑇) , (27)

where 𝑐 is the propagation velocity of the kink wave, which
is determined by 𝑂(𝜀) term. In order to decide the value of 𝑐,
the solvability condition must be satisfied:

(𝑅0,𝑀 [𝑅0])
= ∫∞
−∞
𝑑𝑋𝑅0 (𝑋, 𝑇)𝑀[𝑅0 (𝑋, 𝑇)] = 0, (28)

where

𝑀[𝑅0] = 𝑔3𝑔1 𝜕2𝑋𝑅 +
𝑔4𝑔2 𝜕2𝑋𝑅3 +

𝑔5𝑔1 𝜕4𝑋𝑅. (29)

After integration, we get the selected speed 𝑐 = 5𝑔2𝑔3/(2𝑔2𝑔5 − 3𝑔1𝑔4). Then, the solution of the modified KdV
equation is obtained

𝑅 (𝑋, 𝑇) = √𝑔1𝑐𝑔2 tanh√
𝑐2 (𝑋 − 𝑐𝑔1𝑇) . (30)

From (8), we know 𝑉 = Vmax/2, 𝑉 = −Vmax. The amplitude
of the kink solution is given by 𝐴 = [(𝑔1𝑐/𝑔2)(𝑎𝑐/𝑎 − 1)]1/2
with

𝑎𝑐 = 3 (Vmax + 2 (𝜆2 + 𝜆3) (𝛾 − 1))22Vmax + 4𝜆1 (Vmax + 2 (𝜆2 + 𝜆3) (𝛾 − 1) + 4 (𝜆2 + 𝜆3) (𝛾𝑠 − 1)) . (31)

Through the mKdV equation, the coexisting curves are
obtained. The coexisting phase consists of congested phase
with high density and freely moving phase with low density.
The successive space in freely moving phase is Δ𝑥 = ℎ𝑐 + 𝐴,

and that in congested phase is Δ𝑥 = ℎ𝑐 − 𝐴. The coexisting
curve and neutral stability curve divide the whole area into
stable, metastable, and unstable areas, just as Figure 2 has
shown.
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Figure 5: (Color online) speed-time profile of the LRVD model (a) and LVD model (b) after the first car stops from the 100 s to 103 s. (a)𝜆1 = 𝜆2 = 𝜆3 = 0.2 (b) 𝜆3 = 0, 𝜆1 = 𝜆2 = 0.2. As time passes by, the red line represents the speed fluctuation of the 3rd car behind the first
car, the blue line represents the speed fluctuation of the 25th car, and the green line represents the speed fluctuation of the 50th car.

5. Simulation

In this section, we use simulation results to describe the
LRVD model. The initial parameters are given as follows:

On the main lane Vmax = 4m/s, ℎ𝑐 = 4m, 𝑎 = 2 s−1,
V𝑛(0) = 2m/s,𝑁 = 50, and 𝑇 = 0.1 s, where𝑁 is the
car number and 𝑇 is the time step.
On the left and right side lanes: V𝐿𝑚(0) = V𝑅𝑘 (0) =2m/s, 𝑁𝐿 = 𝑁𝑅 = 50, and ℎ𝑚 = ℎ𝑘 = 4m; all the
cars on the two side lanes and the main lane keep the
same characteristics during the whole simulation. All
the cars are driving at the speed of 2m/s until 100 s on
their own lanes. From 100 s to 103 s, the leading car on
the main lane stops for three seconds as a disruption
to the traffic flow, and then the leading car runs later
at the recovery speed of 2m/s.

Here in the SLVD model, 𝜆1 = 𝜆2 = 𝜆3 = 0.2. In the
LVD model, 𝜆1 = 𝜆2 = 0.2, 𝜆3 = 0. Figure 5 shows the speed
fluctuation of the 3rd, 25th, and 50th cars after 100 s, when𝜆2 = 𝜆3 = 0.2 in LRVD model and 𝜆2 = 0.2, 𝜆3 = 0 in the
LVD model.

When perturbation is set in the stable traffic flow, it will
be amplified with time.The traffic jam, go-and-stop wave and
speed fluctuationwill all appear in the simulation. In Figure 5,
the speed fluctuation in LRVD model is smaller than that in
LVD model, which means the stability of LRVD model has
been improved compared to the LVD model. The cars run
with less perturbation effect when considering the relative
speed on the other adjacent lane in LRVD model.

To explore the improved stability of LRVD model, we
pay attention to the distances between the first car and every
following car behind it on the main lane. Figure 6 shows the
distance-time patterns of LRVDmodel and LVDmodel, from
which we realize the leading car’ perturbation propagates
backward after it stops at 100 s. From Figure 6, we know the

LRVD model recovers its stable state much earlier than LVD
model.The distance between the 50th car and the leading car
in LVD model recovers the distance in stable state at about
145 s; but the distance between the 50th car and the leading
car in LRVD model recovers its stable distances at 141 s. In
fact, the traffic flow will recover its stable state with different
time, just because of the different stability of the different
model. The LVD model needs more time, but LRVD model
needs less time.This simulation results mean, under the same
traffic situation in real life, the LRVD ismore stable than LVD
model.

Results of the simulation shown in Figure 6 are described
below (reaction time 𝜏 is 0.1 s).(1) When 𝑡 = 100 s, the first car stops; then all the
distances between the first car and each car that follows start
decreasing. At that time, the driver of the second car cannot
react from the first car’s stopping. So all the following cars,
from the second car to the last one, go on running at the
uniform linear motion on the main lane with the speed of
2m/s.(2)When 𝑡 = 100.1 s, the second car reacts to the first car
stopping and starts to decelerate. Because of the time delay𝜏, the second driver decides its acceleration value according
to the acceleration formula with the relative speed, relative
distance, and the second car’s speed information and so on
at the last time. Here the second driver gets its deceleration
value from the relative speed, its own speed, and relative
distance with the leading car at 𝑡 = 100 s. Then, based on
the acceleration value, the second driver moves according to
the V100.1 s = V100 s + 𝑎𝑡, 𝑥100.1 s = 𝑥100 s + V100 s𝑡 + (1/2)𝑎𝑡2
from 𝑡 = 100 s to 𝑡 = 100.1 s, by which we get all the relevant
parameters value at 𝑡 = 100.1 s. At 𝑡 = 100.1 s, V1 = 0, V2 < V3,
V3 = 2m/s, andΔ𝑥(2) < Δ𝑥(3) < 4m. (Δ𝑥(𝑖) = 𝑥(𝑖)−𝑥(𝑖−1)).
The remaining cars, from the third car to the last one, go
on running at the uniform linear motion with a speed of
2m/s.
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Figure 6: (Color online) distance-time profile of the LRVD model (a) and LVD model (b). The first car stops from 100 s to 103 s with (a)
LRVD model 𝜆1 = 𝜆2 = 𝜆3 = 0.2 (b) 𝜆3 = 0, 𝜆1 = 𝜆2 = 0.2. The red line shows the end of the distance change. The LRVD needs 141 s, and
LVD model needs 145 s.

(3)When 𝑡 = 100.2 s, the third car realizes the second car
has decelerated, so it starts to decelerate. At this time,Δ𝑥(2) <Δ𝑥(3) < Δ𝑥(4) < 4m, Δ𝑥(𝑖) = 𝑥(𝑖) − 𝑥(𝑖 − 1), 𝑎1 = 0, 𝑎2 <𝑎3 < 0.The remaining cars, from the fourth car to the last one,
go on running at the uniform linear motion with a speed of
2m/s.(4)The following 𝑖th car decelerates according to the (𝑖 −1)th car ahead deceleration so that Δ𝑥(2) < Δ𝑥(3) < ⋅ ⋅ ⋅ <Δ𝑥(𝑖 + 1) < 4m, and 𝑎1 = 0, 𝑎2 < 𝑎3 < ⋅ ⋅ ⋅ < 𝑎𝑖 < 0, 𝑎𝑖+1 = 0,
V1 = 0, V2 < V3 < ⋅ ⋅ ⋅ < V𝑖 < 2m/s, V𝑖+1 = 2m/s. During the
time interval from 100 s to 103 s, we may expect 30 cars to be
affected by this disturbance. However, the disturbance does
not spread so fast: in fact, the cars in front, from the second
one to the fifth car, are affected every 𝜏 until 100.4 s because
of |𝑎𝑖| > 0. But the speed of the cars, which are behind 𝑗th
car (𝑗 > 𝑖, here 𝑗 = 6 in our simulation), will change much
less every 𝜏 time, because |𝑎𝑗| ≈ 0, |𝑎𝑗𝑡| ≈ 0, V𝑗 = V𝑗,0 + 𝑎𝑗𝑡.
In this case, the successive distance after 𝑗th car even seems
to be not changed. But as time passes by, during the 100 s to
103 s, the cars in front keep decelerating, so the following cars
will repeat the same decelerating process above; in fact, the
decelerating wave spreads backward.(5) At 𝑡 = 103 s, only 11 cars in front decelerate, while all
the following cars keep with the same speed of 2m/s and the
successive space of 4m in the stable state. All the distances
between the first car and each following car must decrease
during thewhole three seconds so thatΔ𝑥(2) < Δ𝑥(3) < ⋅ ⋅ ⋅ <Δ𝑥(12) < 4m, and Δ𝑥(13) = ⋅ ⋅ ⋅ = Δ𝑥(50) = 4m. At 𝑡 =103 s, we assume that the first car instantaneously recovers its
stable speed of 2m/s; soon before this instant, all the distances
between the first car and each following car have reached their
minimum value.(6) After the first car has recovered the stable speed
(2m/s), the second car reacts and begins to accelerate at
the 103.1 s, but its speed being lower than 2m/s, Δ𝑥(2)
keeps increasing until ΔV(2) = 0. After this time, Δ𝑥(2)

recovers the stable value of 4m with some fluctuation in the
end.(7) Later, at 𝑡 = 103.2 s, the third one realizes the second
car begins to increase its speed, but according to the adopted
numerical values of the parameters, the simulation shows
initially that V(2) < V(3), despite the fact that the third car
keeps decelerating while the second car is accelerating until
V(2) = V(3). At that time, the 3rd car acceleration is zero,
which has reached its minimum value; then, the third car
begins to accelerate because of V(2) > V(3), and ΔV(3) keeps
increasing until the third car recovers its stable speed of 2m/s.
Then, after some fluctuation, Δ𝑥(3) will recover the stable
distance of 4m, but this phenomenonwill happen afterΔ𝑥(2)
finishes recovering the same stable distance. From 103 s, the
distance between the first car and third car keeps increasing
from the minimum value up to reach the stable state with
some fluctuation in the end.(8)The11 cars in front, which have already decreased their
speed, will repeat similar process as shown in part 7. Take the𝑖th car as an example; the 𝑖th car decelerates firstly because of
V(𝑖 − 1) < V(𝑖) until V(𝑖 − 1) = V(𝑖). At this time, 𝑎𝑖 = 0, the
successive space Δ𝑥(𝑖) decreases at the lowest distance.Then,
with the (𝑖 − 1)th car accelerating, 𝑖th car keeps accelerating,
V(𝑖 − 1) > V(𝑖). Finally Δ𝑥(𝑖) keeps increasing up to the stable
value of 4m, which occurs after the (𝑖−1)th car has recovered
the same distance with respect to the (𝑖 − 2)th car.(9) Other following cars behind the 11th car have not
decelerated yet. So, each car has to repeat the same process as
11 cars ahead, in the deceleration phase firstly during 100 s to
103 s, and after 103 s keeps decelerating at first till the relative
speed increases to zero and begins to accelerate later until
reaching the stable state, as parts 7 and 8 have described
above. For each following car the same process occurs, so the
following car indeed needsmore time to react to the behavior
of the car ahead, which is in compliance with the kinematic
wave theory.
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(10) After 103 s, when each following car begins to decel-
erate, the distance between the first car and this following car
starts to increase at once up to reach the stable state distance
with some fluctuation in the end. So the recovery wave in
Figure 6 propagates obliquely up and back until the last car
recovers the stable state.

6. Conclusions

In this paper, we presented a new LRVD model through
considering the relative speed in front on the three-lane
road. The original OV model has been developed into RV,
LVD, and especially LRVD model in this paper, which can
portray more complex realistic traffic phenomenon of the
cars driving behavior on the middle lane of the three-
lane road. The linear analysis is studied to get the neutral
stability curve. The nonlinear analysis is studied to obtain
the mKdV equation and the coexisting curve, by which the
area is divided into three regions of stable, metastable, and
unstable. The simulation results about distance-time profile
are accordant with the analysis. The stability of traffic flow of
LRVD model has been proved to be improved compared to
the LVD model on two lanes. The LRVD model shows if the
drivers on themiddle lane paymore attention tomore cars on
the two adjacent lanes in real life, the middle lane traffic flow
is certain to be more stable. All the methods, including the
linear, nonlinear analyses, and simulation prove that LRVD
model with three lanes indeed stabilize traffic flows much
better and capture traffic flow characteristic on the three-lane
road in real life more effectively. On the complex three-lane
road, if intelligent traffic management system based on the
huge traffic data for drivers is applied in the real life, it is
very helpful to ensure traffic safety, which is also the trend
of transportation development in future.
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