Existence Results for Impulsive Fractional Differential Inclusions with Two Different Caputo Fractional Derivatives

Dongdong Gao and Jianli Li

Key Laboratory of High Performance Computing and Stochastic Information Processing (HPCSIP), Ministry of Education of China, School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, China

Correspondence should be addressed to Jianli Li; ljianli18@163.com

Received 22 October 2018; Accepted 10 January 2019; Published 18 February 2019

Academic Editor: Marek Galewski

Copyright © 2019 Dongdong Gao and Jianli Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we study the impulsive fractional differential inclusions with two different Caputo fractional derivatives and nonlinear integral boundary value conditions. Under certain assumptions, new criteria to guarantee the impulsive fractional impulsive fractional differential inclusion has at least one solution are established by using Bohnenblust-Karlin's fixed point theorem. Also, some previous results will be significantly improved.

1. Introduction

In this paper, we consider the following fractional differential inclusions with impulsive effects:

\[
\begin{align*}
\alpha D_{0+}^{\alpha} \left(\beta D_{0+}^{\beta} u(t) \right) + \lambda u(t) & \in F(t, u(t)), \\
\Delta u(t_k) &= u(t_k^+) - u(t_k^-) = I_k(u(t_k)), \\
a u(0) + b u(1) &= \int_0^1 g(s, u) ds,
\end{align*}
\]

where \(0 < \alpha, \beta < 1\), \(\alpha D_{0+}^{\alpha}\), and \(\beta D_{0+}^{\beta}\) represent the different Caputo fractional derivatives of orders \(\alpha\) and \(\beta\), respectively. \(F: J \times \mathbb{R} \to 2^\mathbb{R}\) is a multivalued map, \(2^\mathbb{R}\) is the family of all nonempty subsets of \(\mathbb{R}\), and \(g : J \times \mathbb{R} \to \mathbb{R}\) is a given continuous function. \(0 = t_0 < t_1 < \cdots < t_m = 1, a > 0, b \geq 0, 0 \leq c_k \leq c, k = 0, 1, \ldots, n\) are real constants and \(\lambda\) is a given positive parameter. \(u(t_k^+) = \lim_{h \to 0^+} u(t_k + h)\) and \(u(t_k^-) = \lim_{h \to 0^-} u(t_k + h)\) represent the right and left limits of \(u(t)\) at \(t = t_k, k = 1, 2, \ldots, n\).

As an extension of integer-order differential equations, fractional-order differential equations have been of great interest since the equations involving fractional derivatives always have better effects in applications than the traditional differential equations of integer order. Due to these significant applications in various sciences, such as physics, engineering, chemistry, and biology, fractional differential equations have received much attention by researchers during the past two decades. Up to now, fractional boundary value problems are still heated research topics. That is why, more and more considerations by many people have been paid to study the existence of solutions for fractional boundary value problems; we refer readers to [1–12].

However, the articles of fractional boundary value problems with two different Caputo fractional derivatives are not many. More precisely, in [10], the authors have studied the following impulsive fractional Langevin equations with two different Caputo fractional derivatives:

\[
\begin{align*}
\alpha D_{0+}^{\alpha} \left(\beta D_{0+}^{\beta} + \lambda \right) x(t) &= f(t, x(t)), \\
\Delta u(t_k) &= u(t_k^+) - u(t_k^-) = I_k, \quad I_k \in \mathbb{R}, \\
x(0) &= 0,
\end{align*}
\]

where \(F: J \times \mathbb{R} \to 2^\mathbb{R}\) is a multivalued map, \(2^\mathbb{R}\) is the family of the real numbers, \(\alpha, \beta > 0\), and \(\alpha, \beta \neq 1\). \(\alpha D_{0+}^{\alpha}\) and \(\beta D_{0+}^{\beta}\) are the Caputo fractional derivatives of orders \(\alpha\) and \(\beta\), respectively. \(f: J \times \mathbb{R} \to \mathbb{R}\) is a given continuous function. \(0 = t_0 < t_1 < \cdots < t_m = 1, a > 0, b \geq 0, 0 \leq c_k \leq c, k = 0, 1, \ldots, n\) are real constants and \(\lambda\) is a given positive parameter. \(u(t_k^+) = \lim_{h \to 0^+} u(t_k + h)\) and \(u(t_k^-) = \lim_{h \to 0^-} u(t_k + h)\) represent the right and left limits of \(u(t)\) at \(t = t_k, k = 1, 2, \ldots, n\).
where $f : J \times R \rightarrow R$ is a given function, $0 < \alpha, \beta < 1$ and $0 < \alpha + \beta < 1$, $0 = t_0 < t_1 < \cdots < t_{m+1} = 1$, $\lambda > 0$, $u(t_k) = \lim_{t \rightarrow t_k^-} u(t_k + h)$, and $u(t_k) = \lim_{t \rightarrow t_k^+} u(t_k + h)$ represent the right and left limits of $u(t)$ at $t = t_k$, $k = 1, 2, \ldots, m$.

Then, in [11], the authors considered the following nonlinear Langevin inclusions with two different Caputo fractional derivatives:

\[\mathcal{C}D^{\alpha} \left(\mathcal{C}D^{\beta} x(t) \right) + \lambda x(t) = f(t, u(t)), \quad 0 < t < 1, \]
\[x(0) = \sum_{i=1}^{n} \beta_i \left(I^\alpha x(\zeta) \right), \]
\[x(1) = \sum_{i=1}^{n} \alpha_i \left(I^\beta x(\eta) \right), \quad 0 < \zeta < \eta < 1, \]

where $0 < p, q < 1$, λ is a real number, I^λ is the Riemann-Liouville fractional integral of order $k > 0$ ($k = \nu, \mu; i = 1, 2, \ldots, n$), and α, β are constants.

In [12], the author investigates the following impulsive fractional differential equations with two different Caputo fractional derivatives with coefficients:

\[\mathcal{C}D^{\alpha}_{a+} \left(\mathcal{C}D^{\beta}_{a+} u(t) \right) + \lambda u(t) = f(t, u(t)), \quad t \in J \setminus \{t_1, \ldots, t_m\}, \]
\[\Delta u(t_k) = u(t_k^+) - u(t_k^-) = y_k, \quad k = 1, 2, \ldots, m, \]
\[au(0) + bu(1) = c, \]

where $J = [0, 1], f \in C(J \times R, R), 0 < \alpha, \beta < 1, y_k \in R, \lambda > 0, a > 0, b \geq 0, c \geq 0, d_k \geq 0$ are real constants.

To the best of our knowledge, integral boundary conditions appear in population dynamics and cellular systems; it has constituted a very interesting and important class of problems. However, fractional boundary value problems with integral boundary conditions have not received so much attention as periodic boundary conditions, so the main aim in this paper is intended as an attempt to establish some criteria of existence of solutions for (1). It is worth pointing out that there was no paper considering the impulsive fractional differential inclusions with two different Caputo fractional derivatives and nonlinear integral conditions by using Bohnenblust-Karlin’s fixed point theorem up to now, so our results are new. Also, we improve some previous results.

The arrangement of the rest paper is as follows. In Section 2, some preliminaries and results which are applied in the later paper are presented. In Section 3, the main proof of theorems will be vividly shown. In Section 4, a corresponding example is given to illustrate the obtained results in Section 3.

2. Preliminaries

In this section, we recall some basic knowledge of definitions and lemmas that we shall use in the rest of the paper.

Let $C(J, R)$ denote a Banach space of continuous functions from J into R with the norm

\[\|u\| = \sup_{t \in J} |u(t)| \]

for $u \in C(J, R)$. Also, we denote the function space by

\[PC(J, R) = \{ u : u \in C((t_k, t_{k+1}], R) : u(t_k^+) = u(t_k) \}, \]

with the norm $\|u\|_{PC} = \sup_{t \in J} |u(t)|$. Clearly, $PC(J, R)$ is Banach spaces.

Let $L^1(J, R)$ be a Banach space of measurable functions $y : J \rightarrow R$ which are Lebesgue integrable and normed by

\[\|y\|_{L^1} = \int_0^1 |y(t)| \, dt. \]

Let $(X, |\cdot|)$ be a Banach space. We give following notations for convenience: let

\[\mathcal{P}_d(X) = \{ Y \in \mathcal{P}(X) : Y \text{ is closed} \}, \]
\[\mathcal{P}_b(X) = \{ Y \in \mathcal{P}(X) : Y \text{ is bounded} \}, \]
\[\mathcal{P}_c(X) = \{ Y \in \mathcal{P}(X) : Y \text{ is compact} \}, \]
\[\mathcal{P}_{cP}(X) = \{ Y \in \mathcal{P}(X) : Y \text{ is convex} \}, \]

and $BCC(X)$ denote the set of all nonempty bounded, closed, and convex subset of X.

A multivalued map $G : X \rightarrow 2^X$ is:

(i) convex (closed) valued if $G(x)$ is convex (closed) for all $x \in X$;

(ii) bounded on bounded sets if $G(B) = \bigcup_{x \in B} G(x)$ is bounded in X for any bounded set B of X (i.e. $\sup_{x \in B} |G(x)| < \infty$);

(iii) called upper semicontinuous (u.s.c.) on X if, for each $x_0 \in X$, the set $G(x_0)$ is nonempty closed subset of X, and if, for each open set N of X containing $G(x_0)$, there exists an open neighborhood N_0 of x_0 such that $G(N_0) \subseteq N$;

(iv) is said to be completely continuous if $G(B)$ is relatively compact for every bounded subset B of X;

(v) is completely continuous with nonempty compact values, then G is u.s.c. if and only if G has a closed graph, i.e., $x_0 \rightarrow x_\ast, y_\ast \rightarrow y_\ast \in G(x_0)$ imply $y_\ast \in G(x_\ast)$.

(vi) has a fixed point if there is $x \in X$ such that $x \in G(x)$.

Definition 1. A multivalued map $F : J \times R \rightarrow \mathcal{P}(R)$ is Carathéodory if
Lemma 2 (see [13]). Let X be a Banach space. Let $F : J \times R \to \mathcal{P}_{cp,c}(X)$ be an $L^1 - Carathéodory$ multivalued map, and let Θ be a linear continuous mapping from $L^1(J, X)$ to $C(J, X)$. Then the operator

$$\Theta \circ S_F : C(J, X) \to \mathcal{P}_{cp,c}(X) (C(J, X))$$

and

$$x \mapsto (\Theta \circ S_F)(x) = \Theta(S_{F,c,x})$$

is a closed graph operator in $C(J, X) \times C(J, X)$.

For more details, please refer to [13-15].

Definition 3. A function $u(t) \in PC(J, R)$ is called a solution of (1) if there exists a function $f \in L^1(J, R)$ with $f(t) \in F(t, u(t))$, a.e. $t \in J$ such that

$$\frac{d^\alpha}{dt^\alpha}(\frac{d^\beta}{dt^\beta}u(t)) + Au(t) = f(t, u(t)), \ a.e. \ t \in J, \Delta u(t_k) = u(t_k^+)-u(t_k^-) = I_k(u(t_k)), \ t = t_k, \ k = 1, 2, \ldots, n,$$

where $n-1 < \alpha \leq n$, provided that the right-hand side is pointwise defined on $[0, +\infty)$.

Definition 6 (see [4]). The Caputo fractional derivative of order $\alpha > 0$ of a function $f : [0, +\infty) \to R$ is given by

$$^cD_t^\alpha f(t) = \frac{1}{\Gamma(n-\alpha)} \int_{t-n}^t (t-s)^{n-\alpha-1} f(s) ds,$$

provided that the right-hand side is pointwise defined on $[0, +\infty)$, where $n-1 < \alpha \leq n$.

Definition 7 (see [10]). Functions $E_\alpha(z)$ and $E_{\alpha,\beta}(z)$ are called classical and generalized Mittag-Leffler functions, respectively, given by

$$E_\alpha(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + 1)},$$

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}.$$

Lemma 8 (see [10]). Let $0 < \alpha, \beta < 1$, and then functions $E_\alpha(z), E_{\alpha,\beta}(z)$, and $E_{\alpha,\alpha+\beta}$ are nonnegative and have the following properties.

(i) For any $\lambda > 0$ and $t \in J$,

$$E_\alpha(-\alpha^\lambda) \leq 1,$$

$$E_{\alpha,\alpha}(-\alpha^\lambda) \leq \frac{1}{\Gamma(\alpha)}$$

Moreover,

(ii) For any $\lambda > 0$ and $t_1, t_2 \in J$, when $t_2 \to t_1$, we have

$$E_\alpha(-\alpha^\lambda) \to E_\alpha(-\alpha^\lambda_1),$$

$$E_{\alpha,\alpha}(-\alpha^\lambda) \to E_{\alpha,\alpha}(-\alpha^\lambda_1),$$

$$E_{\alpha,\alpha+\beta}(-\alpha^\lambda) \to E_{\alpha,\alpha+\beta}(-\alpha^\lambda_1).$$

(iii) For any $\lambda > 0$ and $t_1, t_2 \in J$ and $t_1 \leq t_2$, we have

$$E_\alpha(-\alpha^\lambda) \geq E_\alpha(-\alpha^\lambda_1),$$

$$E_{\alpha,\alpha}(-\alpha^\lambda) \geq E_{\alpha,\alpha}(-\alpha^\lambda_1),$$

$$E_{\alpha,\alpha+\beta}(-\alpha^\lambda) \geq E_{\alpha,\alpha+\beta}(-\alpha^\lambda_1).$$
Lemma 9 (see [16]). Let $a + b E_{\alpha, \beta}(-\lambda) \neq 0$. For a given $f \in L^1(J, R)$ with $f(t) \in F(t, u(t))$, a.e. $t \in J$, then the boundary value problem (1) has a unique solution $u(t) \in PC(J, R)$ which is defined by the following form:

$$u(t) = \frac{E_{\alpha, \beta}(-\lambda) \left[\sum_{i=1}^{n} I_j - t_j^\beta E_{\alpha, \beta, \beta+1}(-\lambda t_j^\alpha \beta) (c_j - c_{j-1}) \right]}{a + b E_{\alpha, \beta}(-\lambda)} - b \int_0^1 (1-s)^{\alpha+\beta-1}E_{\alpha, \beta, \alpha \beta}(\lambda (1-s)^{\alpha \beta})f(s)ds - bc \sum_{j=k}^{n-1} E_{\alpha, \beta, \beta+1}(-\lambda) \left[\sum_{i=1}^{n} I_j - t_j^\beta E_{\alpha, \beta, \beta+1}(-\lambda t_j^\alpha \beta) (c_j - c_{j-1}) \right]$$

$$+ \alpha (\sum_{i=1}^{n} I_j - t_j^\beta E_{\alpha, \beta, \beta+1}(-\lambda t_j^\alpha \beta) (c_j - c_{j-1})$$

$$+ \sum_{j=k}^{n-1} E_{\alpha, \beta, \beta+1}(-\lambda) \left[\sum_{i=1}^{n} I_j - t_j^\beta E_{\alpha, \beta, \beta+1}(-\lambda t_j^\alpha \beta) (c_j - c_{j-1}) \right]$$

Finally, we give the following lemma which is greatly important in the proof of our main results.

Lemma 10 (see [17, Bohnenblust–Karlin]). Let X be a Banach space, D a nonempty subset of X, which is bounded, closed, and convex. Suppose $G : D \rightarrow 2^X \setminus \{0\}$ is u.s.c. with closed, convex values, and such that $G(D) \subset D$ and $G(D)$ are compact. Then G has a fixed point.

3. Main Results

In order to begin our main results, we also need the following conditions:

(H1) There exists $0 < q < \alpha + \beta < 1$, and a real function $m_r(t) \in L^{1/(\alpha \beta)}(J, R_+)$ such that

$$\| F(t, u) \| = \sup \{|f| : f(t) \in F(t, u)\} \leq m_r(t), \quad \forall \| u \| \leq r \text{ for a.e. } t \in J, \quad (22)$$

for each $r > 0$.

(H2) $g(t, u) = 0$ and there exists $L > 0$ such that

$$|g(t, u) - g(t, v)| \leq L |u - v| \quad (23)$$

for $u, v \in R$ and $t \in [0, 1]$, where L satisfies $L < a$ in which a is defined in (1).

For convenience, we denote

$$\Omega = \sum_{i=1}^{n} I_j + \frac{t_j^\beta E_{\alpha, \beta, \beta+1}(-\lambda t_j^\alpha \beta) (c_j - c_{j-1})}{E_{\alpha, \beta}(-\lambda t_j^\alpha \beta)} \quad (24)$$

Theorem 11. Suppose that (H1) and (H2) hold; then system (1) has at least one solution on J.

Proof. We transform problem (1) into a fixed point problem. Consider the operator $N : C(J, R) \rightarrow PC(J, R)$ defined by

$$N(u) = \left\{ h(t) \in PC(J, R) : h(t) = E_{\alpha, \beta}(-\lambda) \left[\sum_{i=1}^{n} I_j - t_j^\beta E_{\alpha, \beta, \beta+1}(-\lambda t_j^\alpha \beta) (c_j - c_{j-1}) \right]$$

$$+ \sum_{j=k}^{n-1} E_{\alpha, \beta, \beta+1}(-\lambda) \left[\sum_{i=1}^{n} I_j - t_j^\beta E_{\alpha, \beta, \beta+1}(-\lambda t_j^\alpha \beta) (c_j - c_{j-1}) \right]$$

$$+ \alpha (\sum_{i=1}^{n} I_j - t_j^\beta E_{\alpha, \beta, \beta+1}(-\lambda t_j^\alpha \beta) (c_j - c_{j-1})$$

for $f \in S_{F, u}$.

Next we shall show that N satisfies all the assumptions of Lemma 10; that is to say, N has a fixed point which is a solution of problem (1). For the sake of convenience, we subdivide the proof into several steps.

Step 1 ($N(u)$ is convex for each $u \in PC(J, R)$). In fact, assume $h_1, h_2 \in N(u)$, then there exist $f_1, f_2 \in S_{F, u}$ such that, for each $t \in J$, we have

$$h_i(t) = E_{\alpha, \beta}(-\lambda) \left[\sum_{i=1}^{n} I_j - t_j^\beta E_{\alpha, \beta, \beta+1}(-\lambda t_j^\alpha \beta) (c_j - c_{j-1}) \right]$$

$$+ \sum_{j=k}^{n-1} E_{\alpha, \beta, \beta+1}(-\lambda) \left[\sum_{i=1}^{n} I_j - t_j^\beta E_{\alpha, \beta, \beta+1}(-\lambda t_j^\alpha \beta) (c_j - c_{j-1}) \right]$$

$$+ \alpha (\sum_{i=1}^{n} I_j - t_j^\beta E_{\alpha, \beta, \beta+1}(-\lambda t_j^\alpha \beta) (c_j - c_{j-1})$$

Let $0 \leq \chi \leq 1$. Then, for each $t \in J$, we have

$$[\chi h_1 + (1-\chi) h_2](t) = E_{\alpha, \beta}(-\lambda) \left[\sum_{i=1}^{n} I_j - t_j^\beta E_{\alpha, \beta, \beta+1}(-\lambda t_j^\alpha \beta) (c_j - c_{j-1}) \right]$$

$$+ \sum_{j=k}^{n-1} E_{\alpha, \beta, \beta+1}(-\lambda) \left[\sum_{i=1}^{n} I_j - t_j^\beta E_{\alpha, \beta, \beta+1}(-\lambda t_j^\alpha \beta) (c_j - c_{j-1}) \right]$$

$$+ \alpha (\sum_{i=1}^{n} I_j - t_j^\beta E_{\alpha, \beta, \beta+1}(-\lambda t_j^\alpha \beta) (c_j - c_{j-1})$$

This completes the proof.
\[\begin{align*}
\{x_1(s) + (1 - \chi) x_2(s)\} \, ds - b\gamma \xi_{\alpha+\beta+1}(-\lambda) \\
+ \int_0^1 g(s, u(s)) \, ds & \quad - E_{\alpha+\beta}(\lambda^{\alpha+\beta}) \\
\times \sum_{j=1}^n I_j - t_j^\beta E_{\alpha+\beta+1}(-\lambda t_j^{\alpha+\beta}) (c_j - c_{j-1}) & + t_j^\beta (t_j^\beta E_{\alpha+\beta+1}(-\lambda t_j^{\alpha+\beta}) (c_j - c_{j-1}) \\
- s^{\alpha+\beta-1} E_{\alpha+\beta+1}(-\lambda (t - s)^{\alpha+\beta}) [x_1(s) + (1 - \chi)] & \cdot f_2(s) \, ds + c_t t^\beta E_{\alpha+\beta+1}(-\lambda^{\alpha+\beta}).
\end{align*}\]

(27)

Since \(S_{E_\alpha}\) is convex (\(F\) has convex values), so it follows that \(\chi h_1 + (1 - \chi) h_2 \in N(u)\).

Step 2. Let \(B_\alpha = \{u \in PC(J, R) : \|u\| \leq r\}\), where

\[\begin{align*}
\frac{a}{a - L} \left(\frac{(a + b) \Omega}{a} + \frac{bc}{a\Gamma(1+\beta)} + \frac{c}{\Gamma(1+\beta)} \right) & + \frac{(a + b) \|m_r\|_{L^1_a}}{a\Gamma(1+\beta)} \left(\frac{1 - q}{a + \beta - q} \right) ^{1-q} \leq r.
\end{align*}\]

(28)

Then \(B_\alpha\) is a bounded closed convex set in \(PC(J, R)\). Thus we need to verify \(N(B_\alpha) \subseteq B_\alpha\). In fact, from Lemma 8, (H1), and (H2), for each \(u \in B_\alpha\), \(t \in I_k\), \(k = 0, 1, \ldots, n\), we have

\[|N(u)| \leq \left| E_{\alpha+\beta}(\lambda^{\alpha+\beta}) \right| \]

\[\begin{align*}
\left| \frac{1}{a + b E_{\alpha+\beta}(-\lambda)} \left[\sum_{i=1}^n \left| I_j - t_j^\beta E_{\alpha+\beta+1}(-\lambda t_j^{\alpha+\beta}) (c_j - c_{j-1}) \right| \right] \\
- b \int_0^1 (1 - s)^{\alpha+\beta-1} E_{\alpha+\beta+1}(-\lambda (1 - s)^{\alpha+\beta}) f(s) \, ds \\
- b c_t E_{\alpha+\beta+1}(-\lambda) + \int_0^1 g(s, u(s)) \, ds \\
\right| \\
\times \sum_{j=1}^n I_j - t_j^\beta E_{\alpha+\beta+1}(-\lambda t_j^{\alpha+\beta}) (c_j - c_{j-1}) & + t_j^\beta (t_j^\beta E_{\alpha+\beta+1}(-\lambda t_j^{\alpha+\beta}) (c_j - c_{j-1}) \\
- s^{\alpha+\beta-1} E_{\alpha+\beta+1}(-\lambda (t - s)^{\alpha+\beta}) [x_1(s) + (1 - \chi)] & \cdot f_2(s) \, ds + c_t t^\beta E_{\alpha+\beta+1}(-\lambda^{\alpha+\beta}).
\end{align*}\]

Then, \(N(B_\alpha) \subseteq B_\alpha\).
\[
\begin{align*}
\Phi &= \frac{1}{a + bE_{\alpha+\beta}} \left[\frac{a}{\Gamma(\alpha + \beta)} E_{\alpha+\beta} \left(-\lambda t^\alpha \right) \right] + \frac{bc}{a\Gamma(1+\beta)} + \frac{cE_{\alpha+\beta}}{\Gamma(1+\beta)} + \frac{Lr}{a} + \frac{b}{a\Gamma(\alpha + \beta)} \left(1 - q \right) \left(\frac{1}{\alpha + \beta - q} \right) \\
\Psi &= \sum_{j=1}^I \frac{I^j}{E_{\alpha+\beta}} E_{\alpha+\beta+1} \left(-\lambda t^\alpha \right) \left(\sigma_j - \sigma_{j-1} \right),
\end{align*}
\]
and from Lemma 8, we clearly see the right hand side of the above inequality tends to zero as $\delta_1 \to \delta_2$. This implies that N is equicontinuous on J. As a consequence of Steps 1-3 together with the Ascoli-Arzela theorem, we can conclude that N is a compact valued map.

Step 4 (N has a closed graph). Let $u_n \to u_\ast, h_n \in N(u_n)$ and $h_n \to h_\ast$. Then we need to verify $h_\ast \in N(u_\ast)$. $h_n \in N(u_n)$ implies that there exists $f_n \in S_{F_n,u_n}$ such that for each $t \in J$ we have

\begin{align*}
h_n(t) &= \frac{-E_{\alpha+\beta}((-\lambda)^{\alpha+\beta})}{a + bE_{\alpha+\beta}(-\lambda)} - \frac{\sum_{k=1}^{n} L_t \cdot E_{\alpha+\beta+1}((-\lambda)^{\alpha+\beta})(c_j - c_j-1)}{a + bE_{\alpha+\beta}(-\lambda)} E_{\alpha+\beta}((-\lambda)^{\alpha+\beta}) \\
&\quad - b \int_0^1 (1-s)^{\alpha+\beta-1} E_{\alpha+\beta+1}((-\lambda)(1-s)^{\alpha+\beta}) f_n(s) \, ds \\
&\quad - b c_n E_{\alpha+\beta+1}((-\lambda) + \int_0^t g(s, u(s)) \, ds) - E_{\alpha+\beta}((-\lambda)^{\alpha+\beta}) \\
&\quad \times \sum_{j=1}^{n} \int_0^1 (t-s)^{\alpha+\beta-1} E_{\alpha+\beta+1}((-\lambda)(t-s)^{\alpha+\beta}) f_n(s) \, ds \\
&\quad + \int_0^1 (t-s)^{\alpha+\beta-1} E_{\alpha+\beta+1}((-\lambda)(1-s)^{\alpha+\beta}) f_n(s) \, ds \\
&\quad + c_t \theta E_{\alpha+\beta+1}((-\lambda)^{\alpha+\beta}),
\end{align*}

for some $f_n \in S_{F_n,u_n}$ such that for each $t \in J$ we have

\begin{align*}
h_\ast(t) &= \frac{-E_{\alpha+\beta}((-\lambda)^{\alpha+\beta})}{a + bE_{\alpha+\beta}(-\lambda)} - \frac{\sum_{k=1}^{n} L_t \cdot E_{\alpha+\beta+1}((-\lambda)^{\alpha+\beta})(c_j - c_j-1)}{a + bE_{\alpha+\beta}(-\lambda)} E_{\alpha+\beta}((-\lambda)^{\alpha+\beta}) \\
&\quad - b \int_0^1 (1-s)^{\alpha+\beta-1} E_{\alpha+\beta+1}((-\lambda)(1-s)^{\alpha+\beta}) f_\ast(s) \, ds \\
&\quad - b c_n E_{\alpha+\beta+1}((-\lambda) + \int_0^t g(s, u(s)) \, ds) - E_{\alpha+\beta}((-\lambda)^{\alpha+\beta}) \\
&\quad \times \sum_{j=1}^{n} \int_0^1 (t-s)^{\alpha+\beta-1} E_{\alpha+\beta+1}((-\lambda)(t-s)^{\alpha+\beta}) f_\ast(s) \, ds \\
&\quad + \int_0^1 (t-s)^{\alpha+\beta-1} E_{\alpha+\beta+1}((-\lambda)(1-s)^{\alpha+\beta}) f_\ast(s) \, ds \\
&\quad + c_t \theta E_{\alpha+\beta+1}((-\lambda)^{\alpha+\beta})
\end{align*}

Consider the continuous linear operator

\begin{equation}
\Theta : L^1(J, R) \to C(J, R),
\end{equation}

\begin{align*}
f &\mapsto \Theta(f)(t) = \int_0^t (t-s)^{\alpha+\beta-1} E_{\alpha+\beta+1}((-\lambda)(t-s)^{\alpha+\beta}) f(s) \, ds \\
&\quad - \frac{-bE_{\alpha+\beta}((-\lambda)^{\alpha+\beta})}{a + bE_{\alpha+\beta}(-\lambda)} \int_0^1 (1-s)^{\alpha+\beta-1} E_{\alpha+\beta+1}((-\lambda)(1-s)^{\alpha+\beta}) f(s) \, ds \\
&\quad + c_t \theta E_{\alpha+\beta+1}((-\lambda)^{\alpha+\beta})
\end{align*}

then,

\begin{equation}
\left\| h_n(t) - \left[E_{\alpha+\beta}((-\lambda)^{\alpha+\beta}) (\Phi - \Psi) \right] - c_t \theta E_{\alpha+\beta+1}((-\lambda)^{\alpha+\beta}) \right\| \to 0 \quad \text{as } n \to \infty.
\end{equation}

By Lemma 2, we know $\Theta + S_\ast$ is a closed graph operator. Also from the definition of Θ we have

\begin{align*}
h_n(t) - \left[E_{\alpha+\beta}((-\lambda)^{\alpha+\beta}) (\Phi - \Psi) \right] &\in \Theta(S_{F_n,u_n}).
\end{align*}

Since $u_n \to u_\ast$, Lemma 2 implies that

\begin{align*}
h_\ast(t) - \left[E_{\alpha+\beta}((-\lambda)^{\alpha+\beta}) (\Phi - \Psi) \right] \\
&\quad - c_t \theta E_{\alpha+\beta+1}((-\lambda)^{\alpha+\beta}) \in \Theta(S_{F_n,u_n}).
\end{align*}

Therefore, N is a compact multivalued map, u.s.c. with convex closed values. By Lemma 10, we have that N has a fixed point $u(t)$ which is a solution of problem (1).
Corollary 12. Assume that (H2) and (H3) hold.

(H3) There exist continuous and bounded functions \(\tau_1(t), \tau_2(t) \in L^1(J, R_+), \sigma \in [0, 1] \) such that

\[
|F(t, u)| \leq \tau_1(t) + \tau_2(t) |u|^{\sigma};
\]

then problem (1) has at least a solution on \(J \).

Proof. The proof is the same as Theorem 11 which we can take as \(m(t) = \tau_1(t) + \tau_2(t) |u|^\sigma \).

Remark 13. If we let \(f(t, u) \in \{F(t, u)\} \) and \(g(t, u) \) be a constant function, then the above Corollary 12 improves Theorem 3.1 in [12].

Remark 14. Note that if \(\gamma = 0 \) and \(\nu = 1 \), we have \(\frac{c_0}{0}D_0^\nu u(t) = u(t) \) and \(\frac{\gamma}{0}D_0^\nu u(t) = u'(t) \), respectively. Thus, in this paper, let \(\alpha = 1, \beta = 0, \lambda = 0, \alpha_0 = 0; \) our system (1) reduces to [16] and our system (1) gives generalization of [18].

Remark 15. If \(\beta = 0, \lambda = 0 \), the boundary value condition becomes \(u(0) = u_0 \), and our system (1) reduces to [16, 19]. Thus, our problem (1) gives generalizations of [16, 19, 20].

4. An Example

In this part, we will give corresponding example to illustrate the main results in our paper.

Example 1. Consider the following system:

\[
\begin{align*}
\frac{c_0}{0}D_0^\alpha \left(\frac{c_0}{0}D_0^\beta u(t) \right) + \lambda u(t) & \in F(t, u(t)), \\
& \text{a.e. } t \in J = [0, 1] \setminus \left\{ \frac{1}{2} \right\} \\
\Delta u \left(\frac{1}{2} \right) & = I_1 \left(u \left(\frac{1}{2} \right) \right) \\
a u(0) + b u(1) & = \int_0^1 g(s, u) ds,
\end{align*}
\]

(41)

where \(0 < \alpha + \beta < 1, \lambda > 0, a = 4, b = 1, \) and let \(F(t, u(t)) = (\sin(t/\epsilon)^2 \cos(a(t + 1)), ((\sin(t/\epsilon)^2 \cos(a(t + 3)) \) and \(g(t, u(t)) = (\cos(t/\epsilon)u(t)/(1 + u(t)), (t, u) \in [0, 1] \times [0, +\infty). \) Then we let \(m_1(t) = 4 \sin(t/\epsilon^2 \) and \(L = 1, \) and we have

\[
|g(t, u) - g(t, v)| \leq |u - v|;
\]

then (H1) and (H2) of Theorem 11 all hold. Hence, system (41) has at least one solution on \(J \).

