Research Article
Pricing of European Currency Options with Uncertain Exchange Rate and Stochastic Interest Rates

Xiao Wang 1,2

1 School of Economics and Management, Beijing Institute of Petrochemical Technology, Beijing 102617, China
2 Beijing Academy of Safety Engineering and Technology, Beijing 102617, China

Correspondence should be addressed to Xiao Wang; wangxiao19871125@163.com

Received 30 March 2018; Accepted 13 December 2018; Published 4 February 2019

Academic Editor: Gian I. Bischi

Copyright © 2019 Xiao Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Suppose that the interest rates obey stochastic differential equations, while the exchange rate follows an uncertain differential equation; this paper proposes a new currency model. Under the proposed currency model, the pricing formula of European currency options is then derived. Some numerical examples recorded illustrate the quality of pricing formulas. Meanwhile, this paper analyzes the relationship between the pricing formula and some parameters.

1. Introduction

Nowadays, the currency option is one of the best investment tools for companies and individuals to hedge against adverse movements in exchange rates. It can be divided into European currency option, American currency option, Asian currency option, and so forth, where European currency option is a contract giving the owner the right to buy or sell one unit of foreign currency with a specified price at a maturity date [1]. Theoretical models of currency option pricing have been a hot issue in mathematical finance, and the key point of this topic is how to get an appropriate pricing formula.

For European currency option, Garman and Kohlhagen [2] first proposed G-K model, where both domestic and foreign interest rates are assumed to be constant and the exchange rate is governed by a geometric Brownian motion. However, it is unrealistic for the exchange rate to obey the geometric Brownian motion in the subsequent literatures. By modifying the G-K model, more and more methodologies for the currency option pricing have been proposed, such as Bollen and Rasielan [3], Carr and Wu [4], Sun [5], Swishchuk et al. [6], Xiao et al. [7], and Wang, Zhou, and Yang [8].

In the above-mentioned literature, the exchange rate follows a stochastic differential equation under the framework of probability theory. When we use probability theory, the available probability distribution needs to be close to the true frequency. However, some emergencies coming from wars, political policies, or natural disasters may affect the exchange rate. In this case, it is difficult to obtain available statistical data about exchange rate, and the assumption that the exchange rate follows a stochastic differential equation may be out of work. At this time, belief degrees given by some domain experts are used to estimate values or distributions. To model the belief degree, uncertainty theory was established by Liu [9]. In addition, to describe the evolution of an uncertain phenomenon, uncertain process [10] and a Liu process [11] were subsequently proposed. To further express uncertain dynamic systems, uncertain differential equation was proposed [10] and has been widely applied to control and financial market.

Back to the foreign exchange market, assume that the exchange rate follows an uncertain differential equation; Liu, Chen, and Ralescu [1] proposed Liu–Chen–Ralescu currency model. In addition, Shen and Yao [12] proposed a mean-reverting currency model under uncertain environment. Recently, Ji and Wu [13] provided an uncertain currency model with jumps. Besides that, Sheng and Shi [14] proposed the mean-reverting currency model under Asian currency option. In these currency models listed above, the exchange rate is governed by an uncertain process instead of stochastic process, and the interest rates are taken as constant.
However, considering the fluctuation of interest rate market from time to time, it is unreasonable to regard the interest rates as constant. Up to now, interest rate is mainly studied under the framework of uncertainty theory or probability theory. When the sample size of interest rate is too small (even no-sample) to estimate a probability distribution, interest rate is usually described by an uncertain process under the framework of uncertainty theory. Chen and Gao [15] started from an assumption that the short interest rate follows uncertain process and proposed three equilibrium models. Sun, Yao, and Fu [16] proposed another interest rate model on the basis of exponential Ornstein-Uhlenbeck equation under the uncertain environment. Suppose that both domestic and foreign interest rates follow uncertain differential equations, Wang and Ning [17] proposed an uncertain currency model, where the exchange rate also follows an uncertain differential equation.

While there is a large amount of historical data about interest rate, the short interest rate is usually described by a stochastic process. Under the framework of probability theory, Morton [18] proposed the first interest rate model and Ho and Lee [19] then extended it. In addition, many other economists have built other models, such as Hull and White [20] and Vasicek [21]. Taking into account two factors, randomness and uncertainty, we propose a new currency model in this paper. In detail, both domestic and foreign interest rates follow stochastic differential equations, while the exchange rate follows an uncertain differential equation.

The paper is organized as follows. In Section 2, we mainly introduce uncertain differential equation, Liu-Chen-Ralescu model, Vasicek model, and moment generating function. In Section 3, we propose a new currency model with uncertain exchange rate and stochastic. The pricing formula of European currency option under the proposed model is derived in Section 4. Some numerical examples are carried out in Section 5. Finally, Section 6 makes a brief conclusion. For convenience, some notations and parameters employed in the later sections are shown in Table 1.

2. Preliminaries

In this section, we first introduce uncertain differential equation. Then, an uncertain currency model and Vasicek model are recalled. Finally, we introduce the moment generating function.

2.1. Uncertain Differential Equation

Definition 1 (see Liu [10]). Suppose that C_t is a Liu process, and f and g are two functions. Given an initial value X_0,

$$dX_t = f(t, X_t) \, dt + g(t, X_t) \, dC_t$$

is called an uncertain differential equation with an initial value X_0.

Definition 2 (see Yao and Chen [22]). Let α be a number with $0 < \alpha < 1$. Uncertain differential equation (1) is said to have an α-path X^α_t if it solves the corresponding ordinary differential equation

$$dX^\alpha_t = f(t, X^\alpha_t) \, dt + g(t, X^\alpha_t) \, \Phi^{-1}(\alpha) \, dC_t$$

where

$$\Phi^{-1}(\alpha) = (\sqrt{3}/\pi) \ln(\alpha/(1-\alpha))$$

Example 3. Uncertain differential equation $dX_t = X_t \, dt + X_t \, dC_t$ with $X_0 = 1$ has an α-path

$$X^\alpha_t = \exp\left(t + \Phi^{-1}(\alpha) \, t\right)$$

and its spectrum is shown in Figure 1.

Theorem 4 (see Liu [23]). Let η and τ be an uncertain variable and a random variable, respectively. Then

$$E[\eta \, \tau] = E[\eta] \, E[\tau]$$

Table 1: Some notations and parameters.

r_t: domestic interest rate at t	K: strike price
f_t: foreign interest rate at t	T: maturity date
Z_t: spot domestic currency price of a unit of foreign exchange at t	C_t: a Liu process
μ: log-drift of the spot currency price Z_t	W_t: a Wiener process
σ: log-diffusion of the spot currency price Z_t	\mathcal{M}: uncertain measure
C_{Call}: European call currency option price	$E[\xi]$: expected value of ξ
P_{Put}: European put currency option price	$\text{var}[\xi]$: variance of ξ
$\Phi^{-1}(\alpha) = \frac{\sqrt{3}}{\pi} \ln\frac{\alpha}{1-\alpha}$	$N(\mu, \sigma^2)$: normal distribution

![Figure 1: A spectrum of α-paths of $dX_t = X_t \, dt + X_t \, dC_t$.](image)
Theorem 5 (see Yao and Chen [22]). Let \(X_t\) and \(X^n_t\) be the solution and \(\alpha\)-path of uncertain differential equation (1), respectively. Then, for any monotone function \(f\), we have

\[
E[f(X_t)] = \int_0^1 f(X^n_s) \, ds. \tag{5}
\]

2.2. Uncertain Currency Model with Fixed Interest Rates. Assume that the exchange rate \(Z_t\) follows an uncertain differential equation and the domestic and foreign interest rates are constant; Liu, Chen, and Ralescu [1] proposed Liu-Chen-Ralescu model:

\[
\begin{align*}
\text{d}X_t &= rX_t \, dt \\
\text{d}Y_t &= fY_t \, dt \\
\text{d}Z_t &= \mu Z_t \, dt + \sigma Z_t \, dC_t
\end{align*} \tag{6}
\]

where \(X_t\) represents the riskless domestic currency with the fixed domestic interest rate and \(Y_t\) represents the riskless foreign currency with the fixed foreign interest rate \(f\). The meaning of remaining parameters in model (6) can be seen in Table 1.

2.3. Vasicek Model. Vasicek model [21] is a classical stochastic interest rate model and is defined by a stochastic differential equation of the form

\[
\begin{align*}
\text{d}r_t &= a(b - r_t) \, dt + \sigma \text{d}W_t \tag{7}
\end{align*}
\]

describing the interest rate process \(r_t\), where \(\sigma\) determines the volatility of the interest rate, \(a\) represents the rate of adjustment, and \(b\) is the long run average value.

By solving stochastic differential equation (7), we have

\[
\begin{align*}
r_t &= r_0 \exp(-at) + b(1 - \exp(-at)) + \sigma \exp(-at) \int_0^t \exp(as) \, \text{d}W_s, \tag{8}
\end{align*}
\]

and

\[
\begin{align*}
r_t &\sim N \left(r_0 \exp(-at) + b(1 - \exp(-at)) \right.+ \\
&\left.+ \frac{\sigma^2}{2a} \left(1 - \exp(-2at)\right) \right). \tag{9}
\end{align*}
\]

2.4. Moment Generating Function

Definition 6 (see Shaked and Shanthikumar [24]). The moment generating function of a random variable \(\xi\) is

\(M_\xi[t] = E[\exp(t\xi)], \ t \in \Re\) where this expectation exists.

Remark 7. If \(\xi \sim N(\mu, \sigma^2)\), then

\[E[\exp(t\xi)] = \exp(\mu t + (1/2)\sigma^2 t^2), \ t \in \Re.\]

3. Model Establishment

In this part, we generalize the Liu-Chen-Ralescu model through the use of stochastic interest rates. We employ Vasicek model for the domestic and foreign interest rates. Besides, assume that the exchange rate follows an uncertain differential equation; a new currency model is then proposed as follows:

\[
\begin{align*}
\text{d}r_t &= a_1(b_1 - r_t) \, dt + \sigma_1 \text{d}W_{1t} \\
\text{d}f_t &= a_2(b_2 - f_t) \, dt + \sigma_2 \text{d}W_{2t} \tag{10}
\end{align*}
\]

where \(\sigma_1\) is the diffusion of \(r_t\); \(\sigma_2\) is the diffusion of \(f_t\); \(a_1, a_2, b_1, b_2\), and \(b\) are the constant parameters; \(W_{1t}\) and \(W_{2t}\) are independent Wiener processes and \(C_t\) are independent for \(i = 1, 2\).

By using formula (9), we have

\[
\begin{align*}
r_t &\sim N \left(r_0 \exp(-at) \\
&+ b_1(1 - \exp(-at)) + \frac{\sigma_1^2}{2a_1} \left(1 - \exp(-2at)\right) \right) \tag{11}
\end{align*}
\]

and

\[
\begin{align*}
f_t &\sim N \left(f_0 \exp(-at) \\
&+ b_2(1 - \exp(-at)) + \frac{\sigma_2^2}{2a_2} \left(1 - \exp(-2at)\right) \right). \tag{12}
\end{align*}
\]

By Definition 2, we obtain that the \(\alpha\)-path of the exchange rate \(Z_t\) is

\[
Z^n_t = Z_0 \cdot \exp \left(\mu t + \sigma t \Phi^{-1}(\alpha)\right). \tag{13}
\]

Remark 8. When uncertain differential equation has no analytic solution, the solution can be calculated by some numerical methods. Interested readers can refer to [22, 25, 26].

4. European Currency Option Pricing

In this section, we study the European currency option pricing problem and provide the pricing formula of European currency option under model (10). For your convenience, the current time is set to 0.

4.1. Pricing Formula of European Call Currency Option. In [1], we can see that European call currency option is a contract endowing the holder the right to buy one unit of foreign currency at a maturity date \(T\) for \(K\) units of domestic currency, where \(K\) is commonly called a strike price.

Let \(C_E\) represent this contract price in domestic currency. The investor needs to pay \(C_E\) to buy this contract at time 0. The payoff of the investor is \((Z_T - K)^+\) in domestic currency at the maturity date \(T\). So the expected profit of the investor at time 0 is

\[
-C_E + E \left[(Z_T - K)^+ \exp \left(- \int_0^T r_s \, ds \right) \right]. \tag{14}
\]
Due to selling the contract, the bank can receive C_E at time 0. At the maturity date T, the bank also pays $(1 - K/Z_T)^+$ in foreign currency. The expected profit of the bank at time 0 is

$$C_E - Z_0E\left[\left(1 - \frac{K}{Z_T}\right)^+ \exp\left(-\int_0^T f_s \, ds\right)\right]. \quad (15)$$

To ensure the fairness of the contract, we have

$$-C_E + E\left[(Z_T - K)^+ \exp\left(-\int_0^T r_s \, ds\right)\right] = C_E - Z_0E\left[\left(1 - \frac{K}{Z_T}\right)^+ \exp\left(-\int_0^T f_s \, ds\right)\right]. \quad (16)$$

In this way, the investor and the bank have an identical expected profit.

Definition 9. Under model (10), given a strike price K and a maturity date T, the European currency call option price C_E is

$$C_E = \frac{1}{2} E\left[(Z_T - K)^+ \exp\left(-\int_0^T r_s \, ds\right)\right] + \frac{Z_0}{2}\left[\left(1 - \frac{K}{Z_T}\right)^+ \exp\left(-\int_0^T f_s \, ds\right)\right]. \quad (17)$$

Theorem 10. Under model (10), given a strike price K and a maturity date T, the European currency call option price is

$$C_E = \frac{1}{2} \int_0^1 \left(\frac{Z_T^\alpha - K}{Z_T}\right)^+ \, d\alpha \exp\left(-b_1 T\right)$$

$$- \left(1 - \exp(-a_1 T)\right) \left(r_0 - b_1\right) + \frac{\sigma_1^2}{2a_1^2} \left(T\right)$$

$$- \left[2 \left(1 - \exp(-a_1 T)\right) + \frac{1 - \exp(-2a_1 T)}{2a_1}\right] + \frac{Z_0}{2}\left(1 - \frac{K}{Z_T}\right)^+ \exp\left(-\int_0^T f_s \, ds\right)$$

$$\cdot \left[\int_0^1 \left(\frac{1 - K}{Z_T}\right)^+ \, d\alpha \exp\left(-b_1 T\right)$$

$$- \left(1 - \exp(-a_2 T)\right) \left(f_0 - b_2\right) + \frac{\sigma_2^2}{2a_2^2} \left(T\right)$$

$$- \left[2 \left(1 - \exp(-a_2 T)\right) + \frac{1 - \exp(-2a_2 T)}{2a_2}\right]\right)\right]$$

where

$$\left(Z_T^\alpha - K\right)^+ = \left(Z_0 \exp\left(\mu T + \sigma T \Phi^{-1} (\alpha)\right) - K\right)^+ \quad (19)$$

and

$$\left(1 - \frac{K}{Z_T}\right)^+ = \left(1 - \frac{K}{Z_0 \exp\left(\mu T + \sigma T \Phi^{-1} (\alpha)\right)}\right)^+. \quad (20)$$

Proof. By Theorem 4, we have

$$E\left[(Z_T - K)^+ \exp\left(-\int_0^T r_s \, ds\right)\right] = E\left[(Z_T - K)^+ \exp\left(-\int_0^T r_s \, ds\right)\right]. \quad (21)$$

By Theorem 5 and formula (13), we have

$$E\left[(Z_T - K)^+ \right] = \int_0^1 (Z_T^\alpha - K)^+ \, d\alpha,$$

where

$$\left(Z_T^\alpha - K\right)^+ \quad (22)$$

According to formula (8), we get

$$\int_0^T r_s \, ds = \int_0^T r_0 \exp(-a_1 t) \, dt$$

$$+ b_1 \int_0^T (1 - \exp(-a_1 t)) \, dt$$

$$+ \int_0^T \left(\sigma_1 \exp(-a_1 t) \int_0^t \exp(a_1 s) \, dW_s\right) \, dt$$

$$= b_1 T + (1 - \exp(-a_1 T)) \left(r_0 - b_1\right)$$

$$+ \sigma_1 \int_0^T \int_0^t \exp(a(s - t)) \, dW_s \, dt.$$

Since the expectation of the stochastic integral is zero, the expected value of $\int_0^T r_s \, ds$ is provided by

$$E\left[\int_0^T r_s \, ds\right] = b_1 T + \frac{(1 - \exp(-a_1 T))(r_0 - b_1)}{a_1}. \quad (25)$$

Since the variance is determined from the diffusion term, namely, the stochastic integral, the two deterministic drift terms in $\int_0^T r_s \, ds$ make no contribution to the variance. This gives

$$\var\left[\int_0^T r_s \, ds\right] = \var\left[\sigma_1 \int_0^T \int_0^t \exp(a(s - t)) \, dW_s \, dt\right]. \quad (26)$$

Since $\var[\xi] = E[\xi^2] - (E[\xi])^2$, we have

$$\var\left[\int_0^T r_s \, ds\right] = E\left[\left(\sigma_1 \int_0^T \int_0^t \exp(a(s - t)) \, dW_s \, dt\right)^2\right]$$

$$- \left(E\left[\sigma_1 \int_0^T \int_0^t \exp(a(s - t)) \, dW_s \, dt\right]\right)^2. \quad (27)$$
Observe that $E[\sigma_1 \int_0^T \int_0^t \exp(a_i(s-t)) \, dW_i \, dt] = 0$, and this implies that

$$\text{var} \left[\int_0^T r_i \, dt \right] = E \left[\left(\sigma_1 \int_0^T \int_0^t \exp(a_i(s-t)) \, dW_i \, dt \right)^2 \right].$$

(28)

By use of Fubini theorem as well as that for the stochastic integral, we have

$$E \left[\left(\sigma_1 \int_0^T \int_0^t \exp(a_i(s-t)) \, dW_i \, dt \right)^2 \right] = E \left(\sigma_1 \int_0^T \left(\int_0^t \exp(a_i(s-t)) \, dt \right) \, ds \right)^2.$$

(29)

Since $(dW_i)^2 = ds$, the square term eliminates the source of randomness, and

$$E \left[\sigma^2_1 \int_0^T \left(\int_0^t \exp(a_i(s-t)) \, dt \right)^2 \, ds \right] = \sigma^2_1 \int_0^T \left(\int_0^t \exp(a_i(s-t)) \, dt \right)^2 \, ds.$$

(30)

Continuing with simple integration leads to

$$\text{var} \left[\int_0^T r_i \, dt \right] = \sigma^2_1 \int_0^T \left(1 - \exp(a_i(s-T)) \right)^2 \, ds$$

$$= \sigma^2_1 \left(T - 2 \left(1 - \exp(-a_iT) \right) \right) + \frac{1 - \exp(-2a_iT)}{2a_i},$$

(31)

and

$$- \int_0^T r_i \, dt \sim N \left(-b_i T - \left(1 - \exp(-a_iT) \right) (r_0 - b_i), \right.$$

$$\frac{\sigma^2_1}{a_i} \left(T - 2 \left(1 - \exp(-a_iT) \right) \right) + \frac{1 - \exp(-2a_iT)}{2a_i} \right).$$

(32)

According to Remark 7, we have

$$E \left[\exp \left(- \int_0^T r_i \, dt \right) \right] = \exp \left(-b_i T \right)$$

$$- \left(1 - \exp(-a_iT) \right) (r_0 - b_i) + \frac{\sigma^2_1}{a_i} \left(T \right)$$

$$- 2 \left(1 - \exp(-a_iT) \right) + \frac{1 - \exp(-2a_iT)}{2a_i}. $$

(33)

Thus

$$E \left[\left(Z_T - K \right)^+ \exp \left(- \int_0^T r_i \, ds \right) \right] = \int_0^T \left(Z_T^a - K \right)^+ \, d\alpha$$

$$+ \exp \left(-b_i T - \left(1 - \exp(-a_iT) \right) (r_0 - b_i) \right)$$

$$+ \frac{\sigma^2_1}{2a_i} \left(\frac{\alpha}{T} - 2 \left(1 - \exp(-a_iT) \right) \right)$$

$$+ 1 - \exp(-2a_iT) \right) \right).$$

(34)

By the same way, we get

$$E \left[\exp \left(- \int_0^T f_i \, ds \right) \right] = \exp \left(-b_2 T \right)$$

$$- \left(1 - \exp(-a_2T) \right) (f_0 - b_2) + \frac{\sigma^2_2}{a_2} \left(T \right)$$

$$- 2 \left(1 - \exp(-a_2T) \right) + \frac{1 - \exp(-2a_2T)}{2a_2}.$$

(35)

By Theorem 5 and formula (13), we have

$$E \left[\left(1 - \frac{K}{Z_T^a} \right)^+ \right] = \int_0^1 \left(1 - \frac{K}{Z_T^a} \right)^+ \, d\alpha,$$

(36)

where

$$\left(1 - \frac{K}{Z_T^a} \right)^+ = \left(1 - \frac{K}{Z_0 \exp(\mu T + \sigma T \Phi^{-1}(\alpha))} \right)^+.$$

(37)

Hence,

$$E \left[\left(1 - \frac{K}{Z_T^a} \right)^+ \exp \left(- \int_0^T f_i \, ds \right) \right] = \int_0^1 \left(1 - \frac{K}{Z_T^a} \right)^+ \, d\alpha \exp \left(-b_2 T \right)$$

$$- \left(1 - \exp(-a_2T) \right) (f_0 - b_2) + \frac{\sigma^2_2}{a_2} \left(T \right)$$

$$- 2 \left(1 - \exp(-a_2T) \right) + \frac{1 - \exp(-2a_2T)}{2a_2}.$$

(38)
Immediately obtained.

Let C_E be the European call currency option price under model (10). Then

1. C_E is a decreasing function of b_1, b_2, r_0, f_0, and K.
2. C_E is an increasing function of μ and Z_0.

Proof. Theorem 10 tells us that C_E can be expressed as

$$\text{C}_E = \frac{1}{2} \int_0^1 \left(Z_0 \exp \left(\mu T + \sigma T \Phi^{-1}(\alpha) \right) - K \right)^+ \, d\alpha$$

Since

$$Z_0 \exp \left(\mu T + \sigma T \Phi^{-1}(\alpha) \right) - K$$

and

$$Z_0 - \frac{K}{\exp \left(\mu T + \sigma T \Phi^{-1}(\alpha) \right)}$$

are decreasing with K, C_E is decreasing with K.

(2) Since

$$Z_0 \exp \left(\mu T + \sigma T \Phi^{-1}(\alpha) \right) - K$$

and

$$Z_0 - \frac{K}{\exp \left(\mu T + \sigma T \Phi^{-1}(\alpha) \right)} (K, Z_0, T > 0)$$

are increasing with μ and Z_0, C_E is increasing with μ and Z_0.

4.2. Pricing Formula of European Put Currency Option. Similarity to European call currency option, the definition, formula and property of European put currency option pricing with a strike price K, and a maturity date T are handy to get and are shown as below.

Definition 12. Under model (10), given a strike price K and a maturity date T, the European put currency option price P_E is

$$P_E = \frac{1}{2} E \left[(K - Z_T)^+ \exp \left(- \int_0^T r_s \, ds \right) \right]$$

$$+ \frac{Z_0}{2} E \left[\frac{K}{Z_T} - 1 \right]^+ \exp \left(- \int_0^T f_s \, ds \right)$$.

Theorem 13. Under model (10), given a strike price K and a maturity date T, the European put currency option price is

$$P_E = \frac{1}{2} \int_0^1 \left(K - Z_T^2 \right)^+ \, d\alpha \exp \left(-b_1 T \right)$$

$$- \left(1 - \exp \left(-a_1 T \right) \right) \left(r_0 - b_1 \right) \frac{\sigma_1^2}{2a_1^2} \left(T \right)$$

$$+ \frac{Z_0}{2} \int_0^1 \left(K \frac{Z_T^2}{Z_T} - 1 \right)^+ \, d\alpha \exp \left(-b_2 T \right)$$

$$- \left(1 - \exp \left(-a_2 T \right) \right) \left(f_0 - b_2 \right) \frac{\sigma_2^2}{2a_2^2} \left(T \right)$$

$$- 2 \left(1 - \exp \left(-a_2 T \right) \right) \frac{1}{a_2} \left(1 - \exp \left(-2a_2 T \right) \right)$$

is decreasing with b_1 and C_E is decreasing with b_1.

Since $a_1 T + \exp(-a_1 T) - 1 > 0 (a_1, T > 0)$,

$$\exp \left(-b_1 T - \frac{b_1}{a_1} \left(\exp \left(-a_1 T \right) - 1 \right) \right)$$

is decreasing with b_1 and C_E is decreasing with b_1.

Since $a_2 T + \exp(-a_2 T) - 1 > 0 (a_2, T > 0)$,

$$\exp \left(-b_2 T - \frac{b_2}{a_2} \left(\exp \left(-a_2 T \right) - 1 \right) \right)$$

is decreasing with b_2 and C_E is decreasing with b_2.

Since exp(r_0) is decreasing with r_0, C_E is decreasing with r_0.

Since exp($-f_0$) is decreasing with f_0, C_E is decreasing with f_0.
Proof. By Theorem 5 and formula (13), we have

\[
\left(\frac{K}{Z_T} - 1 \right)^+ = \left(\frac{K}{Z_0 \exp(\mu T + \sigma T \Phi^{-1}(\alpha)) - 1} \right)^+.
\]

(49)

Proof. By Theorem 13, \(P_E \) can be written as

\[
P_E = \frac{1}{2} \int_0^1 \left(K - Z_0 \exp(\mu T + \sigma T \Phi^{-1}(\alpha)) \right)^+ \, d\alpha
\cdot \exp \left(-b_1 T - \frac{1}{a_1} \left(1 - \exp(-a_1 T)\right) \left(r_0 - b_1\right) \right)
\cdot \exp \left(-b_2 T - \frac{1}{a_2} \left(1 - \exp(-a_2 T)\right) \left(f_0 - b_2\right) \right)
\cdot \frac{\sigma_1^2}{2a_1^2} \left(T - 2 \left(1 - \exp(-a_1 T)\right) \right)
\cdot \frac{\sigma_2^2}{2a_2^2} \left(T - 2 \left(1 - \exp(-a_2 T)\right) \right)
\cdot \left(1 - \exp(-2a_2 T)\right) \right).
\]

(56)

(1) Since \(a_1 T + \exp(-a_1 T) - 1 > 0 \) (\(a_1, T > 0 \)),

\[
\exp \left(-b_1 T - \frac{b_1}{a_1} \left(\exp(-a_1 T) - 1\right) \right) = \exp \left(-\frac{b_1}{a_1} (a_1 T + \exp(-a_1 T) - 1) \right)
\]

(57)

is decreasing with \(b_1 \) and \(P_E \) is decreasing with \(b_1 \).

Since \(a_2 T + \exp(-a_2 T) - 1 > 0 \) (\(a_2, T > 0 \)),

\[
\exp \left(-b_2 T - \frac{b_2}{a_2} \left(\exp(-a_2 T) - 1\right) \right) = \exp \left(-\frac{b_2}{a_2} \left(a_2 T + \exp(-a_2 T) - 1\right) \right)
\]

(58)

is decreasing with \(b_2 \) and \(P_E \) is decreasing with \(b_2 \).

Since

\[
K - Z_0 \exp(\mu T + \sigma T \Phi^{-1}(\alpha))
\]

(59)

and

\[
\frac{K}{\exp(\mu T + \sigma T \Phi^{-1}(\alpha)) - Z_0 (K, Z_0, T > 0)}
\]

(60)

are decreasing with \(\mu \) and \(Z_0 \). \(P_E \) is decreasing with \(\mu \) and \(Z_0 \).

Since \(\exp(-r_0) \) is decreasing with \(r_0 \), \(P_E \) is decreasing with \(r_0 \).

Since \(\exp(-f_0) \) is decreasing with \(f_0 \), \(P_E \) is decreasing with \(f_0 \).

(2) Since

\[
K - Z_0 \exp(\mu T + \sigma T \Phi^{-1}(\alpha))
\]

(61)

From Definition 12 and formulas (33), (35), (54), and (55), the pricing formula of the European put currency option is immediately obtained. \(\square \)

Theorem 14. Let \(P_E \) be the European put currency option price under model (10). Then

(1) \(P_E \) is a decreasing function of \(b_1, b_2, \mu, r_0, f_0, \) and \(Z_0 \).

(2) \(P_E \) is an increasing function of \(K \).
Table 2: Parameters setting in model (10).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>0.1</td>
</tr>
<tr>
<td>a_2</td>
<td>0.15</td>
</tr>
<tr>
<td>b_1 (%)</td>
<td>1.1</td>
</tr>
<tr>
<td>b_2 (%)</td>
<td>0.35</td>
</tr>
<tr>
<td>σ_1</td>
<td>0.0002</td>
</tr>
<tr>
<td>σ_2</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

\[
C_E = \frac{K}{\exp(\mu T + \sigma T \Phi^{-1}(\alpha))} - Z_0
\]

are increasing with K, P_E is decreasing with K.

Figure 2 shows that the European call currency option price under model (10) is increasing with σ_1, σ_2, and σ. From Figure 4, we can obtain the following conclusion: the European call currency option price is increasing with a_1 while it is decreasing with respect to a_2.

5. Numerical Examples

In this section, some numerical examples are included to illustrate the pricing formulas under model (10). In addition, we mine the influence of other parameters ($T, a_1, a_2, \sigma_1, \sigma_2, \sigma$) on the pricing formulas. For the sake of simplicity, this part just considers the case of European call currency option.

Table 2 presents the required parameters. Under model (10), we calculate the European call currency option prices and depict them in Figure 2, where T is the maturity date.

According to common sense, the European call currency option price is increasing with the maturity date. From Figure 2, we can see that the price computed by model (10) suits this principle. If the maturity date T is taken as 100, the European call currency option price is $C_E = 2.1782$.

In what follows, we discuss the influence of the parameters ($a_1, a_2, \sigma_1, \sigma_2, \sigma$) on C_E and show the results by a series of experiments. Consider the first case, where the parameters a_1, a_2, T are fixed and the other parameters ($\sigma_1, \sigma_2, \sigma$) are changing. The second case is considering C_E under different parameters a_1 and a_2, where the other parameters are not changing. Figures 3 and 4 show C_E versus its parameters $\sigma_1, \sigma_2, \sigma, a_1$, and a_2. The default parameters can be referred to Table 2 and the maturity date $T = 100$.

6. Conclusion

This paper proposed a new currency model, in which the exchange rate follows an uncertain differential equation, while the domestic and foreign interest rates follow stochastic differential equations. Subsequently, we provided the pricing formulas of European currency option under this currency model. Meanwhile, we find that the European call currency option price under the proposed model is increasing with the initial exchange rate, the log-drift, the diffusion, the log-diffusion, the parameter a_1, and the maturity date, while it is decreasing with the initial domestic interest rate, the initial foreign interest rate, the strike price, and the parameters a_2, b_1, b_2. At last, some numerical examples were included to illustrate that the pricing formulas under the proposed currency model are reasonable.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest related to this work.
Acknowledgments

This study was funded by the National Natural Science Foundation of China (11701338) and a Project of Shandong Province Higher Educational Science and Technology Program (J17KB124). The author would like to thank Professor Zhen Peng for helpful comments.

References
