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Abstract. 
In present paper, the number of zeros of the Abelian integral is studied, which is for some perturbed Hamiltonian system of degree 6. We prove the generating elements of the Abelian integral from a Chebyshev system of accuracy of 3; therefore there are at most 6 zeros of the Abelian integral.

1. Introduction
In many branches of science, such as mechanics, electronics, fluid mechanics, biology, chemistry, and astrophysics, one often deals with families of special planar differential equations which can model different natural phenomena. The main open problem in the qualitative theory of planar polynomial differential systems is determining the maximum number of limit cycles, which is the well-known second part of Hilbert’s 16th problem.
Let  denote the maximal number of limit cycles of polynomial systems of degree n of the form The problem is still open even for . As the introduction in [1], there are few studies on an upper bound of . However, there have been many interesting results on the lower bound of it for ; see [1–3]. What is more, Chen [4] and Shi [5] proved that  independently. In 1985, Li and Li [6] found  by using the method of detection function, and then Han et al. [7, 8] also obtained  with new different distributions of limit cycles by using the method of stability-changing of homoclinic orbits.
Recently,  had been proved in [9] by Li, and then , ,  and   ,  had been obtained, respectively; see [10–15].
The intersection form of Smale’s problem and weak Hilbert’s 16th problem is studying the number of zeros of Abelian integral corresponding to the following generalised Liénard system: It is called Liénard system of type  if  and . There are abundant results for weak Hilberts 16th problem restricted to Liénard systems of type , especially for , such as types  [16],  [17],  [18, 19], and  [20]. More details of the relative researches can be seen in [21–32].
In present paper, we consider the following system: with , and  are constants. Equation (3) holds the hyperelliptic Hamiltonian function The level sets (i.e., ) of Hamiltonian function (4) are sketched in Figure 1. for , where  and , .




	
	
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
			
				
			
				
			
				
		
		
			
		
			
		
			
	


Figure 1: The portrait of system (3).


The outer boundary of  is a homoclinic loop  passing through a nilpotent saddles  defined by , and the inner boundary is an elementary center  at the origin defined by .
2. Some Preliminaries
Some related definitions and useful results are introduced in this section. For more details, refer to [33–35].
Definition 1.  Assume that  are analytic functions on a real open interval J.
(i) The family of sets  is called a Chebyshev system (T-system for short) provided that any nontrivial linear combination has at most  isolated zeros on .
(ii) An ordered set of  functions  is called a complete Chebyshev system (CT-system for short) provided any nontrivial linear combination  has at most  zeros for all . Moreover, it is called an extended complete Chebyshev system (ECT-system for short) if the multiplicities of zeros are taken into account.
(iii) The continuous Wronskian of  at  is where  is the first-order derivative of  and  is the th order derivative of , . The definitions imply that the function tuple  is an ECT-system on ; therefore it is a ECT-system on  and then a T-system on ; however, the inverse implications are not true.
Let  be an analytic function. Assume there exists a punctured neighborhood  of the origin foliated by ovals , which corresponds to clockwise periodic orbits of system (2) and forms a period annulus denoted by . The set of ovals  inside the period annulus is parameterized by the energy levels . The projection of  on the x-axis is an interval  with . Under the above assumptions it is easy to verify that  for all ;  has a zero of even multiplicity at  and has an analytic involution  defined by 
For the number of isolated zeros of nontrivial linear combination of some integrals of special form, the algebraic criterion in [34] (Theorem A) can be stated as follows.
Lemma 2 (see [15]).  On , suppose that an analytic function  satisfies that where , , and  is the oval surrounding the origin inside the level curve . Setting that 
If the following assumptions are satisfied(i) is nonvanishing on  for ,(ii) has  zeros on  counting with multiplicities,(iii).
Then for all nontrivial linear combination of  has at most  zeros on  counting the multiplicities. Meantime,  is called a T-system with accuracy  on , where  is Wronskian of 
However, the third condition above has not always been satisfied, so we usually apply the next lemma to increase the power of  in .
Lemma 3 (see [34]).  Let  be an oval inside the level curve , and let  be a function which satisfies  is analytic at . Hence, where .
Proposition 4.   is an T-system with accuracy 3, and  is the same. Therefore there are at most 6 zeros for  on .
3. The Least Upper Bound of Number of Zeros of 
Multiplying  by , it is obtained Setting  and , quoting Lemma 3 to  yields where , and  Substituting (13) into (12) and multiplying  again, it changes to Quoting Lemma 3, setting  and , it is obtained where , and 
Substituting (15) into (14) and multiplying  again, it arrives at Quoting Lemma 3 again, then where , and From the computation above, the following result easily can be obtained.
Lemma 5.  where 
Therefore,  is a T-system with accuracy  if and only if  is the same as well.
Taking the following function where  is an analytic involution, defined by  on . Factoring  yields where +  +  +  +  + , which defined  on . Hence, with  Suppose that , and then , where  is the projection of  on -axis and ; in other words, 
Lemma 6.  The function tuple  is an T-system with accuracy 3 for .
Proof.  Taking (23) into consideration, with the aid of Maple 16, we can obtain the 4 following Wronskians: where  =  +  +  +  +  + , and , ,, and  are polynomials in  of degrees 24, 50, 79, and 110, respectively. On the following, calculating the resultant with respect to  between  and  gives From Sturm’s Theorem, we know that  has two roots . Thus we will check if  and  have any common roots on  by using the program with Maple 16 to find all the possible intervals: ; ; ; ; ; ;  [regular _ chain] ; It is obvious that all the roots of the five regular chains do not satisfy (24), so we conclude that  and  have no common root on .
(i) Calculating the resultant with respect to  between  and , that is, eliminating from  and  gives , where  is a polynomial of degree 122 in . Applying Sturm’s theorem to , there is a point, denoted by  such that , with . Thus we will check if  and  have any common roots on  by using the program with Maple 16 to find all the possible intervals: ; ; ; ; ; ;  [regular _ chain] ; where , and , , and  are polynomials in  of degrees 108, 110, and 122, respectively. It is obvious that all the roots of the regular chains  and  do not satisfy (24), and the regular chains  is square-free and zero-dimensional (because the number of variables equals the number of polynomials).  and  represent  and  in Maple; we use the following program to check their common roots: ;  [regular _ chain] ;  ; It means that there are 2 pairs of common roots of  and  in the listed intervals, respectively. However, there is not any pair of listed common root satisfing (24), so we conclude that  on .
(ii) Calculating the resultant with respect to  between  and , that is, eliminating from  and , gives , where  is a polynomial of degree 254 in . Applying Sturm’s theorem to , there are five points, denoted by  and , such that , in which , and  Thus we will check if  and  have any common roots on  by using the program with Maple 16 to find all the possible intervals: ; ; ; ; ; ;  [regular _ chain] ; where , and , , and  are polynomials in  of degrees 228, 229, and 254, respectively. It is obvious that all the roots of the regular chains  and  do not satisfy (24); the regular chains  are square-free and zero-dimensional (because the number of variables equals the number of polynomials).  and  represent  and  in Maple, we use the following program to check their common roots: ;  [regular _ chain] ;  ; It means that there are 8 pairs of common roots of  and  in the listed intervals, respectively. It is obvious that the fifth pair of interval satisfies (24), and then  and  have a common root, denoted by , on the fifth listed interval. Noted that ; it follows where  is a polynomial of degree 58. Furthermore, by using Sturm’s Theorem, there is no root inside the intervalfor . Therefore,  is a simple root of .
(iii) Similarly, we use the same program as (i) and (ii) to find all the possible intervals, which may hold the common roots of  and  and then obtain the following regular chains where , and , , and  are polynomials in  of degrees 355, 356, and 398, respectively. Isolating the last regular chain yieldsIt means that there are fourteen pairs of common roots of  and  in the listed intervals, respectively, and we know that the fifth pairs of interval satisfy (24), and then  and  have a common root, denoted by , on the first listed interval. Noted that ; it follows where  is a polynomial of degree 87 in . Furthermore,with  being a polynomial in  of degree 435, and onTherefore,  is a simple root of .
(iv) Similarly, we use the same program as (i) and (ii) to find all the possible intervals, which may hold the common roots of  and  and then obtain the following regular chains where , and , , and  are polynomials in  of degrees 492, 492, and 552, respectively. Isolating the fourth regular chains yields the following 16 pairs of common roots of  and  in the listed intervals, The seventh interval satisfies (13); it is said that there exists a common root of  and , denoted . Noted that , it follows where  is a polynomial of degree 118 in . Furthermore, withand  is a polynomial in  of degree 591, and   onTherefore,  is a simple root of  It is said that 
Based on Lemmas 2 and 6, we obtain Proposition 4
4. Conclusion
In this work, we have studied the limit cycle bifurcation of the strongly nonlinear oscillator. The main tool is the first approximation of the Poincaré map with some classical and new methods in bifurcation theory of dynamical systems. Some results on the possible maximal number of limit cycles are obtained by an algebraic analysis on the corresponding period annulus.
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