DDNS Discrete Dynamics in Nature and Society 1607-887X 1026-0226 Hindawi 10.1155/2019/6943563 6943563 Research Article Poincaré Bifurcation of Limit Cycles from a Liénard System with a Homoclinic Loop Passing through a Nilpotent Saddle http://orcid.org/0000-0003-0972-047X Wei Minzhi 1 http://orcid.org/0000-0002-8438-7665 Cai Junning 1 Zhu Hongying 1 Anderson Douglas R. Department of Applied Mathematics Guangxi University of Finance and Economics Nanning Guangxi 530003 China gxufe.cn 2019 262019 2019 22 02 2019 14 05 2019 262019 2019 Copyright © 2019 Minzhi Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In present paper, the number of zeros of the Abelian integral is studied, which is for some perturbed Hamiltonian system of degree 6. We prove the generating elements of the Abelian integral from a Chebyshev system of accuracy of 3; therefore there are at most 6 zeros of the Abelian integral.

Natural Science Foundation of Guangxi Province 2016GXNSFDA380031 2018GXNSFAA138198 Program for Innovative Team of GUFE Project of Young Teacher’s Upgrading Program in Guangxi Province 2019KY1310
1. Introduction

In many branches of science, such as mechanics, electronics, fluid mechanics, biology, chemistry, and astrophysics, one often deals with families of special planar differential equations which can model different natural phenomena. The main open problem in the qualitative theory of planar polynomial differential systems is determining the maximum number of limit cycles, which is the well-known second part of Hilbert’s 16th problem.

Let H(n) denote the maximal number of limit cycles of polynomial systems of degree n of the form (1)x˙=Pnx,y,y˙=Qnx,y.The problem is still open even for n=2. As the introduction in , there are few studies on an upper bound of H(n). However, there have been many interesting results on the lower bound of it for n2; see . What is more, Chen  and Shi  proved that H(2)4 independently. In 1985, Li and Li  found H(3)11 by using the method of detection function, and then Han et al. [7, 8] also obtained H(3)11 with new different distributions of limit cycles by using the method of stability-changing of homoclinic orbits.

Recently, H(3)13 had been proved in  by Li, and then H(4)20, H(5)24, H(6)35 and H(11)121  H(7)53, H(9)80 had been obtained, respectively; see .

The intersection form of Smale’s problem and weak Hilbert’s 16th problem is studying the number of zeros of Abelian integral corresponding to the following generalised Liénard system: (2)x˙=y,y˙=gx+εfxy.It is called Liénard system of type (m,n) if degg(x)=m and degf(x)=n. There are abundant results for weak Hilberts 16th problem restricted to Liénard systems of type (m,n), especially for n=m-1, such as types (3,2) , (4,3) , (5,4) [18, 19], and (7,6) . More details of the relative researches can be seen in .

In present paper, we consider the following system: (3)x˙=y,y˙=x3x+34x-12+εa0+a1x+a2x2+x3y,with 0<ε1, and a0,a1,a2 are constants. Equation (3) holds the hyperelliptic Hamiltonian function (4)Hx,y=12y2-17x7+524x6+110x5-316x4=12y2+Ax.The level sets (i.e., H(x,y)=h) of Hamiltonian function (4) are sketched in Figure 1. (5)Ih,δ=Γha0+a1x+a2x2+x3dxa0I0h+a1I1h+a2I2h+I3h,for h(h,0), where δ=(a0,a1,a2,1),h=H(-3/4,0)-0.2690865654 and Ii(h)=Γhxiydx, i=0,1,2,3.

The portrait of system (3).

The outer boundary of Γh is a homoclinic loop Γ0 passing through a nilpotent saddles (0,0) defined by H(x,y)=0, and the inner boundary is an elementary center Γ-3/4 at the origin defined by H(x,y)=h.

2. Some Preliminaries

Some related definitions and useful results are introduced in this section. For more details, refer to .

Definition 1.

Assume that f0(x),f1(x),f2(x),,fn-1(x) are analytic functions on a real open interval J.

(i) The family of sets {f0,f1,f2,,fn-1} is called a Chebyshev system (T-system for short) provided that any nontrivial linear combination (6)k0f0x+k1f1x++kn-1fn-1xhas at most n-1 isolated zeros on J.

(ii) An ordered set of n functions {f0,f1,f2,,fn-1} is called a complete Chebyshev system (CT-system for short) provided any nontrivial linear combination k0f0(x)+k1f1(x)++kn-1fn-1(x) has at most i-1 zeros for all i=1,2,,n. Moreover, it is called an extended complete Chebyshev system (ECT-system for short) if the multiplicities of zeros are taken into account.

(iii) The continuous Wronskian of {f0,f1,f2,,fn-1} at xR is (7)Wf0,f1,f2,,fk-1=detfij0i,jk-1=f0xf1xfk-1xf0xf1xfk-1xf0k-1xf1k-1xfk-1k-1x,where f(x) is the first-order derivative of f(x) and fij(x) is the jth order derivative of fi(x), i2. The definitions imply that the function tuple {f0,f1,f2,,fn-1} is an ECT-system on J; therefore it is a ECT-system on J and then a T-system on J; however, the inverse implications are not true.

Let H(x,y)=Φ(x)+1/2y2 be an analytic function. Assume there exists a punctured neighborhood P of the origin foliated by ovals Γhx,yHx,y=h, which corresponds to clockwise periodic orbits of system (2) and forms a period annulus denoted by Γh. The set of ovals Γh inside the period annulus is parameterized by the energy levels h(h,0). The projection of P on the x-axis is an interval (xl,xr) with xl<0<xr. Under the above assumptions it is easy to verify that xΦ(x)>0 for all x(xl,xr)0; Φ(x) has a zero of even multiplicity at x=0 and has an analytic involution z(x) defined by (8)Φx=Φzx,xxl,xr.

For the number of isolated zeros of nontrivial linear combination of some integrals of special form, the algebraic criterion in  (Theorem A) can be stated as follows.

Lemma 2 (see [<xref ref-type="bibr" rid="B15">15</xref>]).

On (xr,xl), suppose that an analytic function fi(x) satisfies that (9)Iih=Γhfixy2s-1dx,fori=0,1,2,,n-1,where h(h1,h2), sN, and Ih is the oval surrounding the origin inside the level curve {A(x)+1/2y2m=h}. Setting that (10)lixfixAx-fizxAx.

If the following assumptions are satisfied

W[l0,l1,,li] is nonvanishing on (xl,xr) for i=0,1,,n-2,

W[l0,l1,,ln-1] has k zeros on (xl,xr) counting with multiplicities,

s>n+k-2.

Then for all nontrivial linear combination of {I0,I1,,In-1} has at most n+k-1 zeros on (h1,h2) counting the multiplicities. Meantime, {I0,I1,,In-1} is called a T-system with accuracy k on (h1,h2), where W[l0,l1,,li] is Wronskian of {l0,l1,,ln-1}.

However, the third condition above has not always been satisfied, so we usually apply the next lemma to increase the power of y in Ii.

Lemma 3 (see [<xref ref-type="bibr" rid="B34">34</xref>]).

Let Γh be an oval inside the level curve {A(x)+1/2y2m=h}, and let F(x) be a function which satisfies F(x)/A(x) is analytic at x=0. Hence, (11)ΓhFxyk-2dx=ΓhGxykdx,kN,where G(x)=1/k(F(x)/A(x))(x).

Proposition 4.

{ I 0 ~ ( h ) , I 1 ~ ( h ) , I 2 ~ ( h ) , I 3 ~ ( h ) } is an T-system with accuracy 3, and {I0(h),I1(h),I2(h),I3(h)} is the same. Therefore there are at most 6 zeros for I(h,δ) on h(h,0).

3. The Least Upper Bound of Number of Zeros of <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M116"><mml:mi>I</mml:mi><mml:mo mathvariant="bold">(</mml:mo><mml:mi>h</mml:mi><mml:mo mathvariant="bold">,</mml:mo><mml:mi>δ</mml:mi><mml:mo mathvariant="bold">)</mml:mo></mml:math></inline-formula>

Multiplying Ii(h) by 2A(x)+y2/2h=1, it is obtained (12)Iih=12hΓh2Ax+y2xiydx=12hΓh2Axydx+Γhxiy3dx,i=0,1,3Setting k=3 and F(x)=2xiA(x), quoting Lemma 3 to Γh2xiA(x)ydx yields (13)Γh2xiAxydx=ΓhGixy3dx,where Gi(x)=1/3(2xiA(x)/A(x))(x)=xigi(x)/630(4x+3)2(x-1)3, and gi(x)=960ix5+960x5-1440x4-1640ix4-1042ix3-458x3+2478ix2+1302x2+189ix+63x-945-945i. Substituting (13) into (12) and multiplying 2A(x)+y2/2h=1 again, it changes to (14)Iih=12hΓhGix+xiy3dx=14h2Γh2Ax+y2Gix+xiy5dϕ=14h2Γh2Axxi+Gixy3dx+14h2Γhxi+Gixy5dx.Quoting Lemma 3, setting k=5 and F(x)=2A(x)(xi+Gi(x)), it is obtained (15)Γh2Axxi+Gixy3dx=ΓhEixy5dx,where Ei(x)=1/5(2A(x)(xi+Gix)/A(x))(x)=xiri(x)/661500(4x+3)4(x-1)6, and (16)rix=6251175+7144200i-2024190x+13812876x3-43453368x6-41294736x5+46715382x4-23659209x2+57089920x7+83236160ix7+893025i2+8175520i2x7-6679196i2x6-7598472i2x5+8846208i2x4+2906064i2x3-4647699i2x2-357210i2x+11520000ix10-36768000ix9+7297280ix8+921600x10i2-3148800x9i2+688960x8i2+10598400x10-31795200x9+8429760x8-62137876ix6-69826512ix5+74212866ix4+25527852ix3-36991080ix2-3214890ix.

Substituting (15) into (14) and multiplying 2A(x)+y2/2h=1 again, it arrives at (17)Iih=14h2ΓhEix+Gix+xiy5dx=18h3Γh2Ax+y2Eix+Gix+xiy5d=18h3Γh2AxEix+Gix+xiy5dx+18h3ΓhEix+Gix+xiy7dx.Quoting Lemma 3 again, then (18)Γh2AxEix+Gix+xiy5dx=ΓhDixy7dx,where Di(x)=1/7(2A(x)(i+Gi(x)+Ei(x)/A(x))(x)=xigi-(x)/972405000(4x+3)6(x-1)9, and (19) g i - x = 816403507200 x 13 + 188227584000 x 15 - 847024128000 x 14 - 80171319375 i + 884736000 x 15 i 3 - 4534272000 x 14 i 3 + 4865126400 x 13 i 3 - 28166321280 x 11 i 3 + 12283379200 x 12 i 3 - 46262732796 i 3 x 7 + 31047818508 i 3 x 6 + 22339746702 i 3 x 5 - 20419766766 i 3 x 4 - 5440344021 i 3 x 3 + 6537478815 i 3 x 2 + 506345175 i 3 x - 4618335840 x 10 i 3 + 51278343992 x 9 i 3 - 19457293464 x 8 i 3 + 39101099625 x + 214769664000 i x 15 - 1005677568000 i x 14 + 968597760000 i x 13 + 27426816000 x 15 i 2 - 134295552000 x 14 i 2 + 136300646400 x 13 i 2 - 64980964125 - 352197950769 x 3 + 2130806569248 x 6 + 1490338869138 x 5 - 1259123313546 x 4 + 406865226285 x 2 - 3541922901216 x 7 - 3434948889600 x 11 + 1675062681600 x 12 - 4743445072640 i x 11 - 726053239680 x 11 i 2 + 2325343232000 i x 12 + 336369907200 x 12 i 2 - 5926171946688 i x 7 - 16034263875 i 2 - 1038141175428 i 2 x 7 + 639315670644 i 2 x 6 + 479698587018 i 2 x 5 - 403391228058 i 2 x 4 - 114429330099 i 2 x 3 + 125562351285 i 2 x 2 + 10745769825 i 2 x - 939130683520 i x 10 + 7435484615536 i x 9 - 2267138615952 i x 8 - 132907091040 x 10 i 2 + 1224971389992 x 9 i 2 - 415139258184 x 8 i 2 - 470755702400 x 10 + 4832826270720 x 9 - 1610067876480 x 8 - 843908625 i 3 + 3378434698296 i x 6 + 2614804657542 i x 5 - 2046199779918 i x 4 - 609719998671 i x 3 + 622215704565 i x 2 + 58004652825 i x . From the computation above, the following result easily can be obtained.

Lemma 5.

(20) 8 h 3 I i h = Γ h f i x y 7 d x I i ~ h , where fi(x)=xi+Gi(x)+Ei(x)+Di(x).

Therefore, {I0(h),I1(h),I2(h),I3h)} is a T-system with accuracy k if and only if {I0~(h),I1~(h),I3~(h)} is the same as well.

Taking the following function (21)lix=fiAx-fiAzx,where z(x) is an analytic involution, defined by A(x)=A(z(x)) on (-3/4,0). Factoring A(x)-A(z(x)) yields (22)-11680x-zqx,z,whereq(x,z)=240x6-350x5 + 240zx5-168x4-350zx4 + 240z2x4+315x3-168zx3-350z2x3 + 240x3z3+315zx2-168z2x2-350x2z3 + 240x2z4+315z2x-168xz3-350xz4 + 240xz5+315z3-168z4-350z5+240z6, which defined z(x) on (-1,0). Hence, (23)ddxlix=ddxfiAx-ddxfiAzxdzdx,with dz/dx=-qx,z/x/q(x,z)/z. Suppose that x(-3/4,0), and then z(x)(xr,-3/4), where xr is the projection of Γh0 on x-axis and xr-0.9073535571; in other words, (24)xr<z<-34<x<0.

Lemma 6.

The function tuple l0x,l1x,l2x,l3x is an T-system with accuracy 3 for x(-1,-1/3).

Proof.

Taking (23) into consideration, with the aid of Maple 16, we can obtain the 4 following Wronskians: (25)Wl1x=l1x=2x-zw1x,z165375z2x24x+35x-184z+35z-18,Wl1x,l2x=2x-z3w2x,z27348890625z-1164z+39x-1164x+39x4z4px,z,Wl1x,l2x,l0x=-4x-z6w3x,z4522822787109375z-1233z+112z9x-1233x+112x9p3x,z,Wl1x,l2x,l0x,l3x=32x-z10w4x,z831068687131347656254z+315z-1304x+315x-130x12z12p6x,z,where p(x,z) = 240x5-350x4 + 480x4z-168x3-700x3z + 720x3z2+315x2-336x2z-1050x2z2 + 960x2z3+630zx-504xz2-1400xz3 + 1200xz4+945z2-672z3-1750z4 + 1440z5, and w1(x,z), w2(x,z),w3(x,z), and w4(x,z) are polynomials in {x,z} of degrees 24, 50, 79, and 110, respectively. On the following, calculating the resultant with respect to z between q(x,z) and p(x,z) gives (26)Rq,p,z=104552985600000x630720x5-90880x4+97536x3-54864x2+27432x-10287x-12×240x4+370x3+222x2+111x+372240x3-350x2-168x+3153.From Sturm’s Theorem, we know that R(q,p,z) has two roots x1=x2=-0.6455780606(-3/4,0). Thus we will check if q(x) and w2(x,z) have any common roots on (-1,-1/3) by using the program with Maple 16 to find all the possible intervals:

>with(RegularChains);

>with(ChainTools);

>with(SemiAlgebraicSetTools);

>sys[p(x,z),q(x,z)];

>R2PolynomialRing([x,z]);

>decTriangularize(sys,R2);

[regular _ chain]

>Lmap(Equations,dec,R2); (27)x,z,240x3-350x2-168x+315,z,x-1,z-1,240x4+370x3+222x2+111x+37,z-1,30720x5-90880x4+97536x3-54864x2+27432x-10287,4z+3.

It is obvious that all the roots of the five regular chains do not satisfy (24), so we conclude that p(x,z) and q(x,z) have no common root on xr<z<-3/4<x<1.

(i) Calculating the resultant with respect to z between q(x,z) and w1(x,z), that is, eliminating from q(x,z)=0 and w1(x,z)=0 gives R(q,w1,z)=2097152x4(4x+3)4(x-1)14φ1(x), where φ1(x) is a polynomial of degree 122 in x. Applying Sturm’s theorem to φ1(x), there is a point, denoted by x0 such that φ1(x)=0, with x0-0.6831595756. Thus we will check if q(x) and w1(x,z) have any common roots on (-3/4,0) by using the program with Maple 16 to find all the possible intervals:

>with(RegularChains);

>with(ChainTools);

>with(SemiAlgebraicSetTools);

>sys[w1(x,z),q(x,z)];

>R2PolynomialRing([x,z]);

>decTriangularize(sys,R2);

[regular _ chain]

>Lmap(Equations,dec,R2); (28)[x,z,x-1,z-1,4x+3,4z+3,η1x,z,η2x,z]

where η1(x,z)=η11(z)x+η12(z), and η11, η12, and η2 are polynomials in z of degrees 108, 110, and 122, respectively. It is obvious that all the roots of the regular chains [x,z],[x-1,z-1] and [4x+3,4z+3] do not satisfy (24), and the regular chains [η1(x,z),η2(x,z)] is square-free and zero-dimensional (because the number of variables equals the number of polynomials). L and L represent φ1(x,z) and φ2(z) in Maple; we use the following program to check their common roots:

>CChain([L,L],Empty(R2),R2);

[regular _ chain]

>RLRealRootIsolate(C,R2,abserr=1/105);

[box,box]

>map(BoxValues,RL,R2); (29)x=7505565536,150111131072,z=-8660076460171029500504398346511267650600228229401496703205376,-433003823008551475025219917325633825300114114700748351602688,x=-1119316384,-89543131072,z=5107994732592040953184192754843493623737173144601490397061246283071436545296723011960832,10215989465184081906368385509686987247474346389202980794122492566142873090593446023921664.

It means that there are 2 pairs of common roots of w2(x,z) and q(x,z) in the listed intervals, respectively. However, there is not any pair of listed common root satisfing (24), so we conclude that W1[l1(x)]0 on (-3/4,0).

(ii) Calculating the resultant with respect to z between q(x,z) and w2(x,z), that is, eliminating from q(x,z)=0 and w2(x,z)=0, gives R(q,w2,z)=136853837364162723840000x12(4x+3)6(x-1)28φ2(x), where φ2(x) is a polynomial of degree 254 in x. Applying Sturm’s theorem to φ2(x), there are five points, denoted by x1 and x2, such that φ2(x)=0, in which x1-0.6362217374, and x2-0.6326476723. Thus we will check if q(x) and w2(x,z) have any common roots on (-3/4) by using the program with Maple 16 to find all the possible intervals:

>with(RegularChains);

>with(ChainTools);

>with(SemiAlgebraicSetTools);

>sys[w2(x,z),q(x,z)];

>R2PolynomialRing([x,z]);

>decTriangularize(sys,R2);

[regular _ chain]

>Lmap(Equations,dec,R2); (30)[x,z,x-1,z-1,4x+3,4z+3,φ1x,z,φ2x,z]

where φ1(x,z)=φ11(z)x+φ12(z), and φ11, φ12, and φ2 are polynomials in z of degrees 228, 229, and 254, respectively. It is obvious that all the roots of the regular chains [x,z],[x-1,z-1] and [4x+3,4z+3] do not satisfy (24); the regular chains [φ1(x,z),φ2(x,z)] are square-free and zero-dimensional (because the number of variables equals the number of polynomials). L and L represent φ1(x,z) and φ2(z) in Maple, we use the following program to check their common roots:

>CChain([L,L],Empty(R2),R2);

[regular _ chain]

>RLRealRootIsolate(C,R2,abserr=1/105);

[box,box,box,box,box,box,box,box]

>map(BoxValues,RL,R2); (31)x=-2729732768,-109187131072,z=-18492312177733628062823020497019494150223459275512923003274661805836407369665432566039311865085952,-1479384974218690245025841639761559532017876742040723384026197294446691258957323460528314494920687616,x=5766965536,115339131072,z=-17735273570380596931788539750094371487913392787593149816327892691964784081045188247552,-35470547140761193863577079500188742975826775575186299632655785383929568162090376495104,x=153921131072,7696165536,z=-50003316692032326563420860327001281205778687482541170559792388176582018229284824168619876730229402019930943462534319453394436096,-156260364662601020510690188521879003768058398382941157999351213205688069665150755269371147819668813122841983204197482918576128,x=3562132768,142485131072,z=-25829826454534583657276070060013025365226199509871273840633138550867693340381917894711603833208051177722232017256448,-51659652909069167314552140120026050730452399019742547681256277101735386680763835789423207666416102355444464034512896,x=-82923131072,-4146165536,z=-54830720393478399907489352613061393597232611465857291111161460616582018229284824168619876730229402019930943462534319453394436096,-13707680098369599976872338153265348399308152866464322777790365151645504557321206042154969182557350504982735865633579863348609024,x=-99575131072,-4978765536,z=7300257202083707792106826374829209495215637023192606911994400469363967779260271260032962165404551223330269422781018352605012557018849668464680057997111644937126566671941632,3650128601041853896053413187414604747607818511596303455997200234681983889630135630016531082702275611665134711390509176302506278509424834232340028998555822468563283335970816,x=-107871131072,-5393565536,z=135155975133267206773823547400634720703666289249903506522392637683797752303075845772421124330809102446660538845562036705210025114037699336929360115994223289874253133343883264,270311950266534413547647094801269441407332578499807013044785275367595504606151691544843248661618204893321077691124073410420050228075398673858720231988446579748506266687766528,x=-333565524288,-166781262144,z=741367729863243853116477867614961473411743117702864065072716925117842498333348457493583344221469363458551160763204392890034487820288,59309418389059508249318229409196917872939449416229125205817354009376739986666787659948666753771754907668409286105635143120275902562304.

It means that there are 8 pairs of common roots of w2(x,z) and q(x,z) in the listed intervals, respectively. It is obvious that the fifth pair of interval satisfies (24), and then w2(x,z) and q(x,z) have a common root, denoted by (x0,z0), on the fifth listed interval. Noted that W2(x,z(x))=W[l1(x),l2(x)]; it follows (32)dW2dx=W2x+W2z·dzdx=2x-z2w5x,z27348890625x-z9z-1164z+39x-1174x+310x5z4p2x,z,where w5(x,z) is a polynomial of degree 58. Furthermore, by using Sturm’s Theorem, there is no root inside the interval(33)x=-82923131072,-4146165536,z=-54830720393478399907489352613061393597232611465857291111161460616582018229284824168619876730229402019930943462534319453394436096,-13707680098369599976872338153265348399308152866464322777790365151645504557321206042154969182557350504982735865633579863348609024for R(q,w5,z)=0. Therefore, x0 is a simple root of W2(x,z(x)).

(iii) Similarly, we use the same program as (i) and (ii) to find all the possible intervals, which may hold the common roots of w3(x,z) and q(x,z) and then obtain the following regular chains (34)x,z,x-1,z-1,4x+3,4z+3,u1x,z,u2x,zwhere u1(x,z)=u11(z)x+u12(z), and u11, u12, and u2 are polynomials in z of degrees 355, 356, and 398, respectively. Isolating the last regular chain yields(35)x=104117131072,5205965536,z=-111466044818115533912177175496075352645970762329182687704666362864775460604089535377456991567872,-1393325560226444173902214693700941908074634529122835963083295358096932575511191922182123945984,x=125839131072,503359524288,z=-518350530247069932093764379100104309467418691903308988506881803469022129495137770981046170581301261101496891396417650688,-10367010604941398641875287582002086189348373838066179770137611606938044258990275541962092341162602522202993782792835301376,x=-102675131072,-5133765536,z=-2111559835917280439894835840299991194671842134543900777641211658976219210862187529642774844752946028434172162224104410437116074403984394101141506025761187823616,-1055779917958640219947417920149995597335921067271950388820605829488109605431093714821387422376473014217086081112052205218558037201992197050570753012880593911808,x=154007131072,1925116384,z=-5375484483043515759498119503476091096224184790521552523252627362934186127773268212244968146646834078002771671831749689734737838152978190216899892655911508785116799651230841339877765150252188079784691427704832,-2687742241521757879749059751738045548112092395260776261626313681467093063886634106122484073323417039001335835915874844867368919076489095108449946327955754392558399825615420669938882575126094039892345713852416,x=-1167116384,-93367131072,z=-97393815505800945325611199158748538576449415152622778709458752564592956991085918059907124330809102446660538845562036705210025114037699336929360115994223289874253133343883264,-4869690775290047266280559957937426928822470757631138935472937628229647849554295902995362165404551223330269422781018352605012557018849668464680057997111644937126566671941632,x=150763131072,603055524288,z=-362185356272529668611375873156871094801239634207606269872625924155478862647452312848583266388373324160190187140051835877600158453279131187530910662656,-181092678136264834305687936578435547400619817103803134936312962077739431323226156424291633194186662080095093570025917938800079226639565593765455331328,x=6775165536,542011524288,z=-1254050684711709807099188198381597949975593036839272079732945704661173425727457612915177100720513508366558296147058741458143803430094840009779784451085189728165691392,-4898635487155116433981203899928116992092160300153406561456819158832708694247881359285549689505892056868344324448208820874232148807968788202283012051522375647232,x=105089131072,5254565536,z=-14879549415043235026008970762082986308718342193805808637647097905226841091766847064778384329583297500742918515827483896875618958121606201292619776,-371988735376080875650224269052074657717958554845145215941177447630671027441711766194596082395824375185729628956870974218904739530401550323154944,x=-110383131072,-5519165536,z=1246055440087652294798999757908599996977470263257522210585044567657926236797330079896115541351137805832567355695254588151253139254712417116170014499277911234281641667985408,2492110880175304589597999515817199993954940526515044421170089135315852473594660159792331082702275611665134711390509176302506278509424834232340028998555822468563283335970816,x=-79973131072,-1999332768,z=376748219254335143997799742969614591943547941993129791307144488089186725253022769474284397516047136454946754595585670566993857190463750305618264096412179005177856,188374109627167571998899871484807295971773970996564895653572244044593362626511385237142198758023568227473377297792835283496928595231875152809132048206089502588928.

It means that there are fourteen pairs of common roots of w3(x,z) and q(x,z) in the listed intervals, respectively, and we know that the fifth pairs of interval satisfy (24), and then w3(x,z) and q(x,z) have a common root, denoted by (x#,z#), on the first listed interval. Noted that W3(x,z(x))=W[l1(x),l2(x),l0(x)]; it follows (36)dW3dx=W3x+W3z·dzdx=-4x-z5w6x,z4522822787109375z-1234x+313z9x-1244z+312x10p4x,z,where w6(x,z) is a polynomial of degree 87 in x. Furthermore,(37)Rq,w6,z=125516666719925656132877164868220165759187808157696×1017x364x+37x-144ψx,with ψ(x) being a polynomial in z of degree 435, and ψ(x)0on(38)x=-77037131072,-1925932768,z=-92575072482333894229188992679733785697931696898287454081973172991196020261297061888,-46287536241166947114594496339866892848965348449143727040986586495598010130648530944.Therefore, x# is a simple root of W3(x,z(x)).

(iv) Similarly, we use the same program as (i) and (ii) to find all the possible intervals, which may hold the common roots of w4(x,z) and q(x,z) and then obtain the following regular chains (39)x,z,x-1,z-1,4x+3,4z+3,v1x,z,v2x,zwhere v1(x,z)=v11(z)x+v12(z), and v11, v12, and v2 are polynomials in z of degrees 492, 492, and 552, respectively. Isolating the fourth regular chains yields the following 16 pairs of common roots of w4(x,z) and q(x,t) in the listed intervals, (40)x=92901131072,4645165536,z=-8527736783370307578941148342474772255746725420980011496577676626844588240573268701473812127674924007424,-5329835489606442236838217714046732659841703388112593536104789177786765035829293842113257979682750464,x=-2807932768,-112315131072,z=-62097811964485368974018846032164624263763104161396101637820261927217107839786668602559178668060348078522694548577690162289924414440996864,-248391247857941475896075384128658497055052416645584406551281047708867431359146674410236714672241392314090778194310760649159697657763987456,x=129907131072,3247732768,z=-598017798453319089682467176741126562956892774310466556363290822430262768537665926336713898529563388567880069503262826159877325124512315660672063305037119488,-23920711938132763587298687069645062518275710972418662254531632897210510741506593705346855594118253554271520278013051304639509300498049262642688253220148477952,x=132241131072,528967524288,z=-149506956041959422693109279692314028903728674040828851288804660177139154251063231584178474632390847141970017375815706539969331281128078915168015826259279872,-299013912083918845386218559384628057807457348081657702577609320354278308502125463168356949264781694283940034751631413079938662562256157830336031652518559744,x=7408165536,148163131072,z=-970920108972836127454018227738948097891023316537137303226285020612568108992114474011154664524427946373126085988481658748083205070504932198000989141204992,-75853133513502822457345174042105320147736196604463851814553517235356883515113078212145816597093331040047546785012958969400039613319782796882727665664,x=3849132768,153965131072,z=-7934069000259293230339900193595999462143913221474197483771010920406420034171829505932967566311591067993517960455041197510853084776057301352261178326384973520803911109862890320275011481043468288,-31736276001037172921359600774383997848575652885896789935084043681625680136687318023731870265246354271974071841820164790043412339104229205409044713305539894083215644439451561281100045924173873152,x=-1886932768,-75475131072,z=-491325446537020304627744682442542192028966769185746026660275055103311732197187093329245736369326316631281573374653997517877902705223825521735199141247292070280934397209846730719022121202017504638277531421638656,-78612071445923248740439149190806750724634683069719364265644008816529877151549934932679317819092210661004959173994463960286046443283581208347763186259956673124494950355357547691504353939232280074212440502746218496,x=90165131072,4508365536,z=-8788064464986802426857977386447097113426520111131128669827057830675844234346894153846159171018517988167243043134222844204689080525734196832968125318070224677190649881668353091698688,-35152257859947209707431909545788388453706080444524514679308231322703376937387576615384636674074071952668972172536891376818756322102936787331872501272280898708762599526673412366794752,x=721332768,28853131072,z=-18032702246771773005116595615827710116494253682796810994126423384054859133097138282620211989292945639146568621528992587283360401824603189390869761855907572637988050133502132224,-36065404493543546010233191231655420232988507365593621988252846768109718266194276565240413978585891278293137243057985174566720803649206378781739523711815145275976100267004264448,x=-113093131072,-2827332768,z=13050533785057456157295832511770523562505162740258073053842618568582459060074376291897137590064188545819787018382342682267975428761855001222473056385648716020711424,652526689252872807864791625588526178125258137012903652692130928429122953003718815948568795032094272909893509191171341133987714380927500611236528192824358010355712,x=-37134096,-118815131072,z=425782184818719608816274319342813113834066795298816,1703128739274878435265097377371252455336267181195264.

The seventh interval satisfies (13); it is said that there exists a common root of w4(x,z) and q(x,z), denoted (x,z). Noted that W4(x,z(x))=W[l1(x),l2(x),l0(x),l3(x)], it follows (41)dW4dx=W4x+W4z·dzdx=-32x-z9w7x,z83106868713134765625x13x-1314x+316z-1304z+315z12p7x,z,where w7(x,z) is a polynomial of degree 118 in x. Furthermore, (42)Rq,w7,z=A×1029x544x+37x-156ψ-x,with(43)A=33264629888493003881538379168484242740236178671706338400101606065709062155191451648,and ψ-(x) is a polynomial in z of degree 591, and ψ-(x)0  on(44)x=-1886932768,-75475131072,z=-491325446537020304627744682442542192028966769185746026660275055103311732197187093329245736369326316631281573374653997517877902705223825521735199141247292070280934397209846730719022121202017504638277531421638656,-78612071445923248740439149190806750724634683069719364265644008816529877151549934932679317819092210661004959173994463960286046443283581208347763186259956673124494950355357547691504353939232280074212440502746218496.Therefore, x is a simple root of W4(x,z(x)). It is said that w4(x,z)0.

Based on Lemmas 2 and 6, we obtain Proposition 4

4. Conclusion

In this work, we have studied the limit cycle bifurcation of the strongly nonlinear oscillator. The main tool is the first approximation of the Poincaré map with some classical and new methods in bifurcation theory of dynamical systems. Some results on the possible maximal number of limit cycles are obtained by an algebraic analysis on the corresponding period annulus.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Acknowledgments

This work is supported by Natural Science Foundation of Guangxi Province (2016GXNSFDA380031, 2018GXNSFAA138198), Program for Innovative Team of GUFE, and The Project of Young Teacher’s Upgrading Program in Guangxi Province (2019KY1310).

Li J. Hilbert's 16th problem and bifurcations of planar polynomial vector fields International Journal of Bifurcation and Chaos 2003 13 1 47 106 10.1142/S0218127403006352 MR1965270 Zbl1063.34026 Ilyashenko Y. Centennial history of Hilbert's 16th problem Bulletin of the American Mathematical Society 2002 39 3 301 354 10.1090/S0273-0979-02-00946-1 MR1898209 Zbl1004.34017 Schlomiuk D. Schlomiuk D. Algebraic and geometric aspects of the theory of polynomial vector fields Bifurcations and Periodic Orbits of Vector Fields 1993 408 London, UK Kluwer Academic 429 467 NATO ASI Series C MR1258526 Chen L. S. Wang M. S. The relative position, and the number, of limit cycles of a quadratic differential system Acta Mathematica Sinica 1979 22 6 751 758 MR559742 Shi S. L. A concrete example of the existence of four limit cycles for plane quadratic systems Scientia Sinica 1980 23 2 153 158 MR574405 Li J. B. Li C. F. Planar cubic Hamiltonian systems and distribution of limit cycles of (E3) Acta Mathematica Sinica 1985 28 4 509 521 MR808035 Han M. Wu Y. Bi P. A new cubic system having eleven limit cycles Discrete and Continuous Dynamical Systems - Series A 2005 12 4 675 686 10.3934/dcds.2005.12.675 MR2129366 Zbl1085.34027 Maoan H. Tonghua Z. Hong Z. On the number and distribution of limit cycles in a cubic system International Journal of Bifurcation and Chaos 2004 14 12 4285 4292 10.1142/S0218127404011934 MR2118650 Zbl1090.34025 2-s2.0-14844304659 Li C. Liu C. Yang J. A cubic system with thirteen limit cycles Journal of Differential Equations 2009 246 9 3609 3619 10.1016/j.jde.2009.01.038 MR2515170 Zbl1176.34037 2-s2.0-63149147133 Han M. Shang D. Zheng W. Yu P. Bifurcation of limit cycles in a fourth-order near-Hamiltonian system International Journal of Bifurcation and Chaos 2007 17 11 4117 4144 10.1142/S0218127407019895 MR2384401 Zbl1159.34029 Li J. Chan H. S. Chung K. W. Bifurcations of limit cycles in a Z6-equivariant planar vector field of degree 5 Science China Mathematics 2002 45 7 817 826 MR1925181 Wang S. Yu P. Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation Chaos, Solitons & Fractals 2005 26 5 1317 1335 10.1016/j.chaos.2005.03.010 MR2149317 Wang S. Yu P. Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11 Chaos, Solitons & Fractals 2006 30 3 606 621 10.1016/j.chaos.2005.12.016 MR2238692 Johnson T. Tucker W. An improved lower bound on the number of limit cycles bifurcating from a Hamiltonian planar vector field of degree 7 International Journal of Bifurcation and Chaos 2010 20 5 1451 1458 10.1142/S0218127410026599 MR2669548 Wang S. Yu P. Li J. Bifurcation of limit cycles in Z10-equivariant vector fields of degree 9 International Journal of Bifurcation and Chaos 2006 16 8 2309 2324 10.1142/S0218127406016070 MR2266016 Dumortier F. Li C. Perturbation from an elliptic Hamiltonian of degree four. (IV). Figure eight-loop Journal of Differential Equations 2003 188 2 512 554 10.1016/S0022-0396(02)00111-0 MR1954292 Zhu H. Qin B. Yang S. Wei M. Poincare' bifurcation of some nonlinear oscillator of generalized lie'nard type using symbolic computation method International Journal of Bifurcation and Chaos 2018 28 8 1850096 10.1142/S0218127418500967 MR3841274 Sun X. Yang J. Sharp bounds of the number of zeros of Abelian integrals with parameters Electronic Journal of Differential Equations 2014 40 1 12 MR3177549 Zhao L. Q. Li D. P. Bifurcations of limit cycles from a quintic Hamiltonian system with a heteroclinic cycle Acta Mathematica Sinica 2014 30 3 411 422 10.1007/s10114-014-2615-8 MR3160693 Sun X. Perturbation of a period annulus bounded by a heteroclinic loop connecting two hyperbolic saddles Qualitative Theory of Dynamical Systems 2017 16 1 187 203 10.1007/s12346-015-0186-4 MR3635501 Zbl1385.37077 2-s2.0-85017516311 Asheghi R. Zangeneh H. R. Bifurcations of limit cycles from quintic Hamiltonian systems with an eye-figure loop (II) Nonlinear Analysis 2008 69 11 4143 4162 10.1016/j.na.2007.10.054 MR2463361 Wang J. Xiao D. On the number of limit cycles in small perturbations of a class of hyper-elliptic Hamiltonian systems with one nilpotent saddle Journal of Differential Equations 2011 250 4 2227 2243 10.1016/j.jde.2010.11.004 MR2763571 Zbl1217.34051 2-s2.0-78650990167 Sun X. Xi H. Zangeneh H. R. Kazemi R. Bifurcation of limit cycles in small perturbation of a class of Lie'nard systems International Journal of Bifurcation and Chaos 2014 24 1 1450004 10.1142/S0218127414500047 MR3187141 Zhang T. Tade' M. O. Tian Y.-C. On the zeros of the Abelian integrals for a class of Liénard systems Physics Letters A 2006 358 4 262 274 10.1016/j.physleta.2006.05.031 MR2253504 Dumortier F. Li C. Perturbations from an elliptic Hamiltonian of degree four. I. Saddle loop and two saddle cycle Journal of Differential Equations 2001 176 1 114 157 10.1006/jdeq.2000.3977 MR1861185 2-s2.0-0035841053 Dumortier F. Li C. Perturbations from an elliptic Hamiltonian of degree four. (II). Cuspidal loop Journal of Differential Equations 2001 175 2 209 243 10.1006/jdeq.2000.3978 MR1855970 Dumortier F. Li C. Perturbation from an elliptic Hamiltonian of degree four. (III). Global centre Journal of Differential Equations 2003 188 2 473 511 10.1016/S0022-0396(02)00110-9 MR1954291 Zhao L. The perturbations of a class of hyper-elliptic Hamilton systems with a double homoclinic loop through a nilpotent saddle Nonlinear Analysis 2014 95 374 387 10.1016/j.na.2013.09.020 MR3130530 Sun X. Huang W. Bounding the number of limit cycles for a polynomial Liénard system by using regular chains Journal of Symbolic Computation 2017 79 part 2 197 210 10.1016/j.jsc.2016.02.004 MR3550906 Sun X. Zhao L. Perturbations of a class of hyper-elliptic Hamiltonian systems of degree seven with nilpotent singular points Applied Mathematics and Computation 2016 289 194 203 10.1016/j.amc.2016.04.018 MR3515847 2-s2.0-84971321408 Sun X. B. Han M. A. On the number of limit cycles of a Z4-equivariant quintic near-Hamiltonian system Acta Mathematica Sinica 2015 31 11 1805 1824 10.1007/s10114-015-2117-3 MR3406678 Sun X. Yu P. Qin B. lobal existence and uniqueness of periodic waves in a population model with density-dependent migrations and Allee effect International Journal of Bifurcation and Chaos 2017 27 12 1750192 10.1142/S0218127417501929 MR3738042 Grau M. Maosas F. Villadelprat J. A Chebyshev criterion for Abelian integrals Transactions of the American Mathematical Society 2011 363 109 129 10.1090/S0002-9947-2010-05007-X Zbl1217.34052 Maosas F. Villadelprat J. Bounding the number of zeros of certain Abelian integrals Journal of Differential Equations 2011 251 1656 1669 10.1016/j.jde.2011.05.026 Maza M. On triangular decompositions of algebraic varieties Proceedings of the Mega-2000 Conference 2000 Bath, UK