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Abstract. 
In this paper, the edge-based and node-based adaptive algorithms are established, respectively, to solve the distribution convex optimization problem. The algorithms are based on multiagent systems with general linear dynamics; each agent uses only local information and cooperatively reaches the minimizer. Compared with existing results, a damping term in the adaptive law is introduced for the adaptive algorithms, which makes the algorithms more robust. Under some sufficient conditions, all agents asymptotically converge to the consensus value which minimizes the cost function. An example is provided for the effectiveness of the proposed algorithms.

1. Introduction
Recently, the consensus problems of multiagent systems have been extensively investigated on account of its widespread application, such as cooperative reconnaissance and unmanned aerial vehicles formation. Many meaningful results about consensus algorithms [1–7] have been established. Specially, the consensus problems can solve the distributed optimization, when the consensus value minimizes the global cost function, which is a sum of local objective functions each of which is known by one agent.
Meanwhile, with the development of various network systems, various distributed optimization problems have emerged. Extensive efforts to design the efficient algorithm have been put into the distributed optimization problems. Because of the advantages of decentralized and distributed structure, the distributed algorithms based on multiagent systems are more efficient than the centralized algorithm. A large number of consensus-based optimization algorithms have been presented over the past two decades. For instance, in [8, 9], the subgradient algorithms upon multiagent systems have been presented. In [10], the algorithms with fixed step size have been proposed. In [11], edge-based fixed-time consensus algorithms have been established. More results can be found in [12–15].
In the above works, the proposed optimization algorithms depend on the selection of constant control gains. In fact, the lower bound of the gains is determined by the smallest nonzero eigenvalue of Laplacian matrix for the communication graph, i.e., algebraic connectivity which is global information. These consensus algorithms are not fully distributed. To face this challenge, some well-performing adaptive algorithms have been proposed, where the adaptive gain updating laws rely on local information of the agents. For example, in [16, 17], the adaptive algorithms of the finite time convergence have been established upon integrator multiagent systems. In [18], the adaptive algorithms have been proposed upon general linear multiagent systems from the edge-based and node-based design.
Note that more agent networks in practical applications are described by generalized linear systems. Moreover, from the results in [19], the control gains in [17, 18] monotonically increase very quickly when the value of the initial states is large. Overlarge control gains will magnify the control input and will lead to unstable algorithms. Based on the above considerations, from the edge-based and node-based standpoint two distributed adaptive algorithms for solving the distributed convex optimization problems are proposed upon general linear multiagent systems in this paper. Compared with the existing algorithms, the proposed algorithms based on generalized linear dynamical systems are more practical and its theoretical analysis is more difficult than that based on integrator systems. The algorithm does not require global information, which makes it fully distributed and easier to implement. The proposed algorithms introduce a damping term in the update law, which makes the algorithm robust under input disturbance and the high-gain update law.
The article is organized as follows. In next section, some preliminaries and lemmas are introduced. In Section 3, the edge-based and node-based consensus protocols are designed for solving the distributed convex optimization; the asymptotic convergence is guaranteed for the adaptive algorithms. In Section 4, the effectiveness of the performance for the algorithm to solve the distributed convex optimization problems is presented by a typical example. In Section 5, a brief conclusion is given.
2. Notations and Preliminaries
In this paper,  is the set of all -dimensional real vectors.  is the set of  real matrices.  means the vector that all the elements are one.  is the -dimensional identity matrix. For a real matrix ,  means  is positive definite (semidefinite).  represents the transpose. , , and  denote the 1-norm, 2-norm and infinite norm, respectively. Given ,  represents the gradient of the function . The function  is , if  and  if for any element  for , 
An undirected graph  consists of a node set  and an edge set , the edge  if and only if , and the self-edge  is not allowed. The incidence matrix  corresponds to a graph  with an arbitrary orientation, namely, whose edges have a terminal node and initial node. For th edge, if the node  is initial, , if the node  is terminal, ; otherwise, . The graph Laplacian of  is defined as . A path in the graph G from  to  is a sequence of distinct nodes starting with  and ending with . The graph G is connected, if there is a path between any two nodes.
Assumption 1.  The undirected graph  is connected.
Lemma 2 (see [20]).  Under Assumption 1,  is positive semidefinite,  is a simple eigenvalue for , and  is the associated eigenvector; its smallest nonzero eigenvalue .
Lemma 3 (see [21]).  Let  be a continuously differentiable convex function; then  is minimized if and only if .
Lemma 4 (see [22]).  If , and , then .
3. Problem Formulation
Consider the following multiagent system; each agent satisfies the dynamics:where  is the protocol,  is the state for th agent, and  and  are the constant matrices.
Our aim is to design  for (1) by using only local information, such that all agents cooperatively arrive the consensus value  which minimizes the convex problemwhere  is a local cost function, which is known only to agent .
We give the following hypothesis.
Assumption 5.  The local cost function  is convex and differentiable; its gradient satisfieswhere  are defined in (1), ,  is some negative define matrix,  is continuous, and there exists  such that , , for all .
The equivalent characterization for (2) is that the agents achieve consensus value which minimizes the function , namely,
Assumption 6.  Each set  is nonempty; that is to say, there exists  such that  is minimum.
4. Edge-Based Adaptive Designs
To solve problem (3), the edge-based adaptive algorithm for (1) is presented as follows:where  are adaptive coupling strengths,  is a feedback matrix, the initial states satisfy , and .
From (5), system (1) can be written as follows:Denote  and . Thus, (9) can be represented by the compact formwhere  is the incidence matrix, , and . The solution of the system (10) is understood by the sense of Filippov [23].
Note that ; multiplying both sides of (10) by , we get the error systemwhere , . Obviously,  if and only if .
Theorem 7.  Under Assumptions 1–6 and Lemma 3, problem (4) can be solved by algorithm (5), if there exists the feedback matrix , such thatwhere  is the positive-definite matrix. Meanwhile, as , we have  and  will converge to the same positive number.
Proof.  Choose the Lyapunov function candidatewhere  and  are the positive constants;  is the positive-definite matrix.
Take ; we haveFrom the third term in (14) and , we getAccording to the fourth term in (14), we obtain Note thatby the fourth term in (14), we obtain From (15), (16), and (19), we getand choose , , due to (12),i.e.,  is nonincreasing. Moreover, from (13), we have . Meanwhile, integrating both sides of (21), one has . Thus, . From Lemma 4, ; that is, 
Let consensus value ; then According to Assumption 5, we havethus,From Assumption 1,  is bounded below; that is, . Thus, we obtain . From Lemma 2, when ,  minimizes the cost function .
Let , thenTo solve (25), one hasBy , we have . From , we obtain . By (26), . Now, let us prove . Consider the following two cases.
   is bounded. Then,    Then, Based on  and  is monotonically increasing, when , we acquire that  will converge to some positive constant. From , we have  and  will converge to the same positive number. For  and , we have the same results.
Remark 8.  Here, damping terms  are designed for the gain adaption law of the adaptive algorithm (5).  increases monotonically and converges to a finite positive constant. Choosing , by (26), , and , we have that  will increase from zero and then decrease to zero. In other words,  will increase at first and then decrease for some time upon the select of  and . For , we have similar results. Compared with the adaptive law in [14, 15], the advantage of the adaptive law introducing the damping term is that the adaptive control gains and the amplitude of the control inputs are smaller; this makes our algorithm more robust.
5. Node-Based Adaptive Designs
To solve problem (3), the node-based protocol for (1) is proposed as follows:where  are adaptive coupling strengths,  is a feedback matrix, and the initial states satisfy .
From (1) and (29), the closed-loop system can be represented as follows:where the first and third terms take the role to minimize the function , and the second term makes the agents achieve consensus.
Denote , , and ; by (32) we obtainNote that ; multiply both sides of (33) by ; the following error system is obtained:where , .
Theorem 9.  Under Assumptions 1–6 and Lemma 3, problem (29) can be solved by the nosed-based algorithm (5) if , where  satisfiesMeanwhile, as , we have  and  will converge to the same positive number.
Proof.  Choose the Lyapunov function candidatewhere ;  is a positive constant.
Calculate the derivative of  along system (34) and choose ; we haveFrom the third term in (37) and , we haveBy the resultswe obtainFrom (37), (38), and (40), we have Choose , we getThus, similar to the proof of Theorem 7, the nosed-based algorithm (29) can solve the problem (29).
Remark 10.  It is easy to see that the node-based algorithm is very different from the edge-based algorithm. The advantage is that the nosed-based algorithm has a less computation and more concise form than the edge-based algorithm. The disadvantage is that the nosed-based algorithm converges more slowly than the edge-based algorithm.
Remark 11.  Based on the edge and node standpoints, two adaptive algorithms have been established for solving the distributed convex optimization problems; the algorithms are fully distributed without depending on any global information; that is, the adaptive algorithms can get the optimal solution via local information. Moreover, the connectivity of the networks takes a key role in the rate of convergence of the algorithms during the calculation process.
6. Simulations
Consider the following distributed optimization: where ,  Figure 1 is the communication topology. ChooseSimulation results employing edge-based algorithm (5) and node-based algorithm (29) are presented in Figures 2–4 and Figures 5–7, respectively. In Figures 2 and 5, it can be observed that the states of consensus are achieved. In Figures 3 and 6, the adaptive control gains first increase, then decrease, and finally converge to some constants, which is consistent with our theoretical analysis in Remark 8. In Figures 4 and 7, the evolution of  is presented, which reaches the optimal value .




	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
					
			
		
	


Figure 1: The communication topology for the distributed optimization.






	
	
		
			
				
				
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
					
				
					
			
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
			
				
		
		
			
				
				
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
					
				
					
			
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
			
				
		
		
			
		
			
		


Figure 2: The state variables  under the edge-based algorithm.






	
	
		
			
				
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
					
				
					
			
			
				
					
				
					
				
					
				
					
				
					
				
					
				
				
				
				
				
				
				
				
				
					
				
					
				
					
				
				
					
				
					
				
				
				
				
				
				
				
				
				
					
				
					
				
					
				
					
				
				
					
				
				
				
				
				
				
				
				
				
					
				
					
				
					
				
					
				
					
				
				
					
				
				
				
				
				
				
				
				
					
				
					
				
					
				
					
				
					
				
				
				
				
				
				
				
				
				
				
					
				
					
				
				
				
				
				
				
				
				
				
				
				
				
				
			
			
				
				
					
		
		
			
				
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
					
				
					
			
			
				
					
				
				
					
				
				
					
				
				
				
				
				
				
				
				
				
				
					
				
					
				
					
				
					
				
					
				
				
				
				
				
				
				
				
				
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
				
				
				
				
				
				
				
				
					
				
					
				
				
					
				
					
				
					
				
				
				
				
				
				
				
				
				
				
					
				
					
				
				
					
				
				
				
				
				
				
				
				
				
				
					
				
				
					
				
				
				
				
				
				
				
				
				
				
				
				
			
			
				
		
		
			
	


Figure 3: The adaptive law under the edge-based algorithm.






	
	
		
			
				
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
					
				
					
			
			
				
					
				
					
				
					
				
					
				
				
				
					
				
				
				
				
				
				
				
				
			
			
				
		
	


Figure 4: The global cost function under the edge-based algorithm.






	
	
		
			
				
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
					
				
					
			
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
			
				
		
		
			
				
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
					
				
					
			
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
			
				
		
		
			
		
			
	


Figure 5: The state variables  under the node-based algorithm.






	
	
		
			
				
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
					
				
					
			
			
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
				
				
				
				
				
				
				
				
					
				
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
				
				
				
				
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
				
				
				
				
					
				
					
				
					
				
					
				
					
				
					
				
				
					
				
					
				
					
				
				
				
				
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
				
				
				
				
				
					
				
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
				
				
				
				
			
			
				
		
		
			
	


Figure 6: The adaptive law under the node-based algorithm.






	
	
		
			
				
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
					
				
					
			
			
				
					
				
					
				
					
				
					
				
				
					
				
					
				
				
				
				
				
				
				
				
			
			
				
		
	


Figure 7: The global cost function under the node-based algorithm.


7. Conclusion
In this paper, two distributed adaptive algorithms to solve the distributed convex optimization problems are designed based on general linear multiagent systems from the edge-based and node-based standpoint. Compared with the existing algorithms, through introducing a damping term in the update law, the algorithms are robust in the face of input disturbances. In this paper, the multiagent networks are undirected graph. Next, we will focus on the case that the multiagent networks are directed graph.
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