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In the multilabel learning framework, each instance is no longer associated with a single semantic, but rather with concept
ambiguity. Specifically, the ambiguity of an instance in the input space means that there are multiple corresponding labels in the
output space. In most of the existing multilabel classification methods, a binary annotation vector is used to denote the multiple
semantic concepts. +at is, +1 denotes that the instance has a relevant label, while −1 means the opposite. However, the label
representation contains too little semantic information to truly express the differences among multiple different labels. +erefore,
we propose a new approach to transform binary label into a real-valued label. We adopt the low-rank decomposition to get latent
label information and then incorporate the information and original features to generate new features. +en, using the sparse
representation to reconstruct the new instance, the reconstruction error can also be applied in the label space. In this way, we
finally achieve the purpose of label conversion. Extensive experiments validate that the proposed method can achieve comparable
to or even better results than other state-of-the-art algorithms.

1. Introduction

Classification is a high-frequency vocabulary in machine
learning. We often say that classification generally refers to
single-label classification, that is, an object is given a cate-
gory. In multilabel learning, the meaning of classification is
multilabel classification. Specifically, an instance is associ-
ated with more than one class label simultaneously. Mul-
tilabel learning has many application fields, such as web
mining [1–3], text categorization [4–6], multimedia contents
annotation [7–11], and bioinformatics [12–14].

In recent years, the field of multilabel learning has
gradually attracted significant attention. A variety of algo-
rithms have been proposed, which can be basically divided
into two categories [15]: algorithm adaptation and problem
transformation. +e core idea of the former is to transform
the previous supervised learning algorithm so that it can be
used to solve multilabel learning problems, such as ML-kNN
[16], while the latter is to convert the multilabel learning

problem into other known problems to solve, such as BR
[17]. Some multilabel algorithms solve the multilabel
learning problem without using the correlation among
different labels, such as LIFT [18]. +e main idea of the LIFT
is to obtain the identifying characteristics of each label and
build a new feature space. It first obtains the positive and
negative examples corresponding to each label and then
performs cluster analysis on the corresponding set of ex-
amples to obtain the cluster centers and finally uses the
cluster centers to construct the label-specific features. In the
process of solving the multilabel learning problem, LIFT
does not consider label correlations; hence, it can be
regarded as a new feature conversion method. Some algo-
rithms consider the label correlation [19–25] for solving the
multilabel learning problem. For example, the basic idea in
[20] is to model the correlation among labels based on the
Bayesian network and to achieve efficient learning by using
the approximate strategy. Indeed, the rational use of the
correlation among labels can effectively boost the
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performance of multilabel classification. For example, if an
image has labels “football” and “rainforest,” it is likely to be
labeled “Brazil”. It has a low probability of being labeled
“river” if a document is annotated with “desert”. +erefore,
how to effectively explore and make full use of label cor-
relations is a crucial problem for multilabel learning.

In fact, for an object with multiple labels, the importance
of the related labels is still different. Although the impor-
tance of each label is not given directly, we can judge the
importance of each label through external observation.
Generally speaking, the larger the proportion in the original
object, the more important the corresponding label. Ac-
cordingly, how to accurately express the importance of the
label is also a challenge.

+e method in [26] decomposes the original output
space in order to obtain potential label semantic informa-
tion, which can effectively increase the ability of the sub-
sequent feature selection. Motivated by the decomposition
of the label space in [26], in the paper, we propose a method
named label low-rank decomposition (LLRD) for multilabel
classification. +e LLRD algorithm first performs low-rank
decomposition on the label matrix, then combines the
decomposed results with the original features to form new
features, and mines the structural information of the feature
through sparse reconstruction. +ird, it transforms the bi-
nary label into the real-valued and finally converts the
classification problem into a regression problem.

+e contribution of this paper is as follows:

(1) Utilize low-rank decomposition to reveal the global
label correlations and achieve good classification
results

(2) Combine the low-rank decomposition results with
the original features reducing the information loss in
the subsequent label transformation process

(3) Carry out extensive experiments on different field
datasets to verify the effectiveness of different
algorithms

2. Materials and Methods

2.1. Datasets. In this experiment, a total of 13 datasets were
used covering four fields: audio, text, image, and biology. All
these data resources can be collected from Mulan (http://
mulan.sourceforge.net/datasets.html) and Meka (http://
meka.sourceforge.net/#datasetsru). Table 1 gives the spe-
cific details of the datasets. +e number of instances, label
space, and the dimension of features are denoted by |S|, L(S),
andD(S), respectively. LDen (S) is the density of label, which
is the result of the normalization of label cardinality
LCard(S).

2.2. Notations. Formally, suppose X � Rd be the d-di-
mensional input space and Y � l1, l2, . . . , lq  denote the
output domain of q class labels. LetD � (xi, yi)|1≤ i≤p  be
the multilabel training dataset with p examples, where
xi ∈ X is a d-dimensional instance vector and yi ⊆Y is the
label vector corresponding to xi. Let

X � [x1, x2, . . . , xp] ∈ Rd×p represent the input data matrix,
and Xi � [x1, x2, . . . , xi−1, xi+1, . . . , xp] denote the matrix
from which xi is removed from X. Let Y �

[y1, y2, · · · , yp] ∈ −1, 1{ }q×p is a matrix composed of label
vector.

2.3. 3e Process of LLRD. First, LLRD decomposes the label
matrix with low-rank method. In the framework of multi-
label learning, label matrix is often considered to be low rank
[27, 28] due to the existence of label correlations. Low-rank
structure is also a way to explore the global relationship
between labels. +erefore, we can perform low-rank de-
composition on the label matrix. Assuming that the rank of
Y is r< q, Y can be written as follows:

Y≃AB, (1)

where A ∈ Rq×r represents the dependency of B ∈ Rr×p on
the original label space and B is a mapping of the original
label and also contains label correlation information.

Second, we combine B with X to form a new feature
space N � [X; B][n1, n2, . . . , np] � ∈ R(r+d)×p. In order to
reveal the inner structure of the feature space, we use sparse
reconstruction [29] method to model the relationship be-
tween the training instances. Specifically, we use W[sij]�p×p

to represent the training object relationship matrix, where sij

is a measure of the relationship between ni and nj. Let Si �

[s1i, . . . , si− 1,i, si+1,i, . . . , spi]
T denote the corresponding

sparse reconstruction coefficient related to ni. According to
the sparse representation theory, Si can be calculated as
follows:

min
Si

NiSi − ni

����
����
2
2+η Si

����
����1, (2)

where Ni � [n1, n2, . . . , ni−1, ni+1, . . . , np] represent a com-
bination of all training instances except ni. We can solve the
above problem using alternating direction method of
multiplier [30].

+ird, we transform the original binary label set yi �

(li1, li2, . . . , liq)T associated with any xi in the training set
into a real-valued label vector ci � (ci1, ci2, . . . , ciq)T, where
lij ∈ −1, 1{ } and cij ∈ R. Because the real value contains
more information, and through the size of the value, we can
also infer the importance of the label. Since the input space

Table 1: Properties of the experimental datasets.

Datasets |S| D(S) L(S) LCard(S) LDen(S) Domain
cal500 502 68 174 26.044 0.150 Audio
Emotions 593 72 6 1.868 0.311 Audio
Medical 978 1449 45 1.245 0.028 Text
Llog 1460 1004 75 1.180 0.016 Text
Image 2000 294 5 1.236 0.247 Image
Scene 2407 294 5 1.074 0.179 Image
Yeast 2417 103 14 4.237 0.303 Biology
Slashdot 3782 1079 22 1.181 0.054 Text
rcv1subset1 6000 500 101 2.880 0.029 Text
rcv1subset2 6000 500 101 2.634 0.026 Text
rcv1subset3 6000 500 101 2.614 0.026 Text
rcv1subset4 6000 500 101 2.484 0.025 Text
rcv1subset5 6000 500 101 2.642 0.026 Text
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and the label space are often interrelated, it is assumed that
the relationship between ni and nj in the input space also
exists between ci and cj in the label space. Accordingly, the
representation errors of different elements in the label space
can be written as follows:

min
C



p

i�1
ci − 

p

j�1
sijcj

����������

����������

2

2

s.t. k1 ≤ lijcij ≤ k2 (1≤ i≤p, 1≤ j≤ q),

(3)

where c � [c1, c2, . . . , cp]. +e above quadratic program-
ming problem can be solved by mature tools related to
quadratic programming. +e original multilabel classifica-
tion problem can be transferred into a multioutput re-
gression problem. +ere are many solutions [31] to solve it.
+e learning of LLRD method contains three phases: low-
rank decomposition, sparse reconstruction, and multioutput
regression. +e time complexity of low-rank decomposition
and sparse reconstruction is O(d2p + d3). If we choose
multioutput support vector regression to realize the clas-
sification, the time complexity is O(qp3). +us, the total
complexity of LLRD is O(d2p + d3 + qp3).

3. Results and Discussion

3.1. Experiment Setup. In this subsection, we investigate
comparisons between our LLRD and other six multilabel
learning methods on six multilabel evaluation criteria,
which include two categories: example-based and label-
based metrics [32]. +e example-based metric is to first
obtain the performance of the learning system on each test
example and finally returns the average of the entire test set.
Unlike the above example-based metric, the label-based
metric first returns the performance of the system on each
label and finally gets the macro/microaveraged F1 value on
all labels.

In this paper, one-error, coverage, ranking loss, and av-
erage precision are employed for example-based

performance evaluation. And macroaveraging and micro-
averaging F1 are label-based metrics. For example-based
metrics except average precision, as their values increase, it
means that the performance of the algorithm is worse. For
the remaining metrics, their values are proportional to the
performance of the algorithm.

Let T � (xi, yi) 
m
i�1 ⊂ R

d × +1, −1{ }q be the multilabel
test set and f(x, l) can be seen as the confidence of l being
the corresponding label associating with x. In addition,
f(x, l) can be converted into a ranking function rankf(x, l).
If f(x, l1)>f(x, l2) holds, then the corresponding ranking
function has rankf(x, l1)< rankf(x, l2).

+e six evaluation criteria for the algorithm used in the
paper are defined as follows:

(1) One-error:

one-error(f) �
1
m



m

i�1
argmaxl∈Yf xi, l(   ∉ yi . (4)

(2) Coverage:

coverage(f) �
1
m



m

i�1
maxl∈yi

rankf xi, l(  − 1. (5)

(3) Ranking loss:

rloss(f) �
1
m



m

i�1

1
yi


 yi




l′, l′′( |f xi, l′( ≤f xi, l′′( ,


· l′, l′′(  ∈ yi × yi
.

(6)

(4) Average precision:

avgprec(f) �
1
m



m

i�1

1
yi





l∈yi

l′|rankf x, l′( ≤ rankf xi, l( , l′ ∈ yi 




rankf xi, l( 
. (7)

(5) Macroaveraging F1:

F1macro(h) �
1
q



q

j�1

2TPj

2TPj + FNj + FPj

. (8)

(6) Microaveraging F1:

F1micro(h) �
2

q

i�1 TPj

2
q
i�1 TPj + 

q
i�1 FNj + 

q
i�1 FPj

, (9)

where FNj, TNj, FPj, and TPj indicate the number of false-
negative, true-negative, false-positive, and true-positive in-
stances with regard to lj.

In order to test the effectiveness of LLRD, we chose six
multilabel learning algorithms MLFE [33], RAKEL [34], ML2
[35], CLR [36], LIFT [18], and RELIAB [37] for performance
comparison. MLFE makes full use of the intrinsic information
in feature space, making the semantics of the label space more
abundant. +e specific parameters of MLFE are set as follows:
ρ � 1, c1 � 1, c2 � 2, and β1, β2, and β3 searched from {1, 2,
. . .,10}, {1, 10, 15}, and {1, 10}. RAKEL is a high-order approach.
+e basic idea of the algorithm is to transform the multilabel
learning problem into integration of multiclass classification
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problem.We use the default settings recommended by RAKEL
algorithm, namely, k � 3, ensemble size n � 2q. For ML2,
respective parameter values are recorded as follows: λ � 1, K �

l + 1 and C1 and C2 selected from {1, 2, . . ., 10}. ML2 is the first
multilabel learning algorithm to attempt to explore manifolds
at the label level. CLR is a second-order problem transfor-
mation method. It solves the problem of multilabel classifi-
cation by using label ranking, in which ranking among labels is
implemented by pairwise comparison.+e associated parameter

ensemble size is set to (
q
2). LIFT uses different feature sets to

distinguish different labels by clustering positive and negative
examples. +e value of ratio parameter r is 0.1, as suggested in
[18]. RELIAB utilizes the implicit relative information of label to
achieve the task of multilabel learning. +e parameters τ and β
take values from {0.1, 0.15, . . ., 0.5} and {0.001, 0.01, . . ., 10},
respectively. For LLRD, η � 1, r can be selected from {1, 2, . . .,
q−1}. In a word, the parameter settings of the comparison al-
gorithm are as recommended in the related papers.

Table 2: Performance of each multilabel algorithm (mean± std. deviation) on the regular-scale datasets.

Comparing algorithms cal500 Emotions Medical Llog Image Scene Yeast
One-error ↓
LLRD 0.136± 0.041 0.248 ± 0.048 0.125 ± 0.031 0.657 ± 0.038 0.244 ± 0.018 0.116 ± 0.019 0.217 ± 0.013
MLFE 0.168± 0.049 0.259± 0.050 0.131± 0.030 0.672± 0.041 0.257± 0.031 0.127± 0.022 0.233± 0.026
LIFT 0.125± 0.049 0.251± 0.027 0.156± 0.041 0.664± 0.034 0.276± 0.026 0.132± 0.012 0.226± 0.021
RELIAB 0.116 ± 0.030 0.255± 0.041 0.163± 0.028 0.754± 0.035 0.342± 0.032 0.258± 0.011 0.255± 0.016
ML2 0.201± 0.090 0.261± 0.045 0.135± 0.032 0.674± 0.051 0.260± 0.027 0.144± 0.019 0.246± 0.034
CLR 0.243± 0.058 0.310± 0.019 0.362± 0.009 0.841± 0.036 0.449± 0.013 0.331± 0.031 0.234± 0.022
RAKEL 0.622± 0.065 0.289± 0.032 0.237± 0.032 0.871± 0.028 0.397± 0.019 0.314± 0.030 0.291± 0.031
Coverage ↓
LLRD 0.774± 0.021 0.282± 0.034 0.029 ± 0.009 0.194± 0.025 0.157 ± 0.010 0.008 ± 0.009 0.447 ± 0.010
MLFE 0.769± 0.024 0.283± 0.030 0.033± 0.010 0.200± 0.027 0.162± 0.018 0.012± 0.008 0.449± 0.011
LIFT 0.753± 0.015 0.271 ± 0.023 0.040± 0.014 0.164± 0.007 0.172± 0.013 0.026± 0.007 0.454± 0.017
RELIAB 0.746 ± 0.019 0.306± 0.020 0.044± 0.013 0.155 ± 0.013 0.185± 0.007 0.114± 0.004 0.457± 0.015
ML2 0.814± 0.033 0.292± 0.044 0.035± 0.013 0.201± 0.026 0.164± 0.009 0.010± 0.007 0.461± 0.016
CLR 0.789± 0.010 0.330± 0.011 0.073± 0.041 0.182± 0.050 0.233± 0.017 0.122± 0.011 0.484± 0.020
RAKEL 0.958± 0.011 0.335± 0.031 0.077± 0.014 0.332± 0.021 0.249± 0.006 0.161± 0.007 0.553± 0.016
Ranking loss ↓
LLRD 0.185± 0.011 0.144 ± 0.028 0.018± 0.007 0.185± 0.022 0.129 ± 0.010 0.042 ± 0.008 0.163 ± 0.008
MLFE 0.188± 0.010 0.146± 0.030 0.014± 0.007 0.191± 0.025 0.134± 0.017 0.046± 0.010 0.167± 0.011
LIFT 0.178 ± 0.008 0.144 ± 0.026 0.029± 0.009 0.148± 0.014 0.148± 0.012 0.054± 0.015 0.164± 0.013
RELIAB 0.182± 0.007 0.165± 0.021 0.026± 0.008 0.134 ± 0.011 0.176± 0.008 0.076± 0.007 0.185± 0.021
ML2 0.205± 0.021 0.153± 0.033 0.011 ± 0.009 0.194± 0.027 0.136± 0.012 0.050± 0.007 0.175± 0.015
CLR 0.231± 0.020 0.181± 0.020 0.072± 0.051 0.137± 0.028 0.241± 0.015 0.098± 0.021 0.196± 0.009
RAKEL 0.359± 0.012 0.213± 0.019 0.066± 0.019 0.281± 0.034 0.244± 0.016 0.155± 0.023 0.243± 0.010
Average precision ↑
LLRD 0.506 ± 0.018 0.819± 0.031 0.905 ± 0.020 0.421 ± 0.033 0.841 ± 0.009 0.934 ± 0.010 0.775 ± 0.008
MLFE 0.490± 0.017 0.812± 0.032 0.901± 0.021 0.410± 0.029 0.835± 0.019 0.928± 0.013 0.766± 0.016
LIFT 0.502± 0.021 0.824 ± 0.024 0.880± 0.030 0.416± 0.031 0.820± 0.018 0.922± 0.008 0.768± 0.018
RELIAB 0.497± 0.016 0.801± 0.021 0.869± 0.020 0.405± 0.041 0.781± 0.009 0.851± 0.008 0.751± 0.010
ML2 0.481± 0.030 0.816± 0.031 0.898± 0.022 0.404± 0.031 0.832± 0.014 0.930± 0.009 0.759± 0.020
CLR 0.425± 0.034 0.770± 0.019 0.695± 0.032 0.312± 0.059 0.722± 0.015 0.801± 0.012 0.755± 0.006
RAKEL 0.343± 0.009 0.772± 0.037 0.798± 0.018 0.228± 0.020 0.731± 0.017 0.777± 0.023 0.717± 0.007
Macroaveraging F1 ↑
LLRD 0.231± 0.026 0.676 ± 0.051 0.736 ± 0.050 0.408± 0.028 0.666 ± 0.024 0.800 ± 0.016 0.420± 0.030
MLFE 0.239± 0.025 0.668± 0.050 0.702± 0.056 0.415 ± 0.041 0.655± 0.021 0.787± 0.015 0.430± 0.024
LIFT 0.179± 0.014 0.651± 0.035 0.694± 0.052 0.392± 0.045 0.624± 0.033 0.788± 0.018 0.377± 0.019
RELIAB 0.288 ± 0.015 0.639± 0.038 0.686± 0.058 0.394± 0.031 0.568± 0.030 0.671± 0.021 0.409± 0.023
ML2 0.226± 0.024 0.656± 0.045 0.686± 0.058 0.382± 0.035 0.652± 0.018 0.783± 0.015 0.438± 0.017
CLR 0.220± 0.017 0.604± 0.032 0.616± 0.118 0.402± 0.056 0.523± 0.027 0.635± 0.013 0.386± 0.016
RAKEL 0.195± 0.010 0.615± 0.030 0.679± 0.037 0.377± 0.054 0.545± 0.018 0.654± 0.012 0.441 ± 0.011
Microaveraging F1 ↑
LLRD 0.325± 0.011 0.692 ± 0.048 0.814 ± 0.030 0.126± 0.027 0.665 ± 0.024 0.792 ± 0.017 0.656 ± 0.011
MLFE 0.384± 0.017 0.683± 0.047 0.785± 0.031 0.137± 0.032 0.653± 0.024 0.781± 0.015 0.643± 0.013
LIFT 0.313± 0.013 0.664± 0.015 0.763± 0.031 0.168± 0.034 0.625± 0.031 0.779± 0.022 0.650± 0.016
RELIAB 0.454 ± 0.011 0.647± 0.038 0.748± 0.024 0.188 ± 0.028 0.562± 0.021 0.639± 0.013 0.631± 0.015
ML2 0.366± 0.013 0.674± 0.042 0.780± 0.021 0.074± 0.031 0.650± 0.019 0.776± 0.018 0.635± 0.018
CLR 0.330± 0.012 0.626± 0.029 0.606± 0.143 0.165± 0.050 0.531± 0.008 0.634± 0.017 0.623± 0.010
RAKEL 0.356± 0.025 0.648± 0.024 0.669± 0.016 0.155± 0.019 0.533± 0.005 0.645± 0.009 0.637± 0.011
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3.2. Experimental Results. For each dataset in our experi-
ment, we adopt the tenfold cross-validation strategy. Our
experimental results are mainly distributed in Tables 2 and 3,
where we record the performance of different algorithms in
different multilabel datasets. Specifically, the average and
standard deviation of the corresponding evaluation criteria
are recorded in the tables. For each evaluation metric, “↓”
indicates “the smaller the better” and “↑” indicates “the
larger the better”. +e best results are shown in bold form.

Table 3: Performance of each multilabel algorithm (mean± std. deviation) on the large-scale datasets.

Comparing algorithms Slashdot rcv1subset1 rcv1subset2 rcv1subset3 rcv1subset4 rcv1subset5
One-error ↓
LLRD 0.363 ± 0.026 0.414± 0.013 0.411± 0.017 0.416± 0.029 0.317 ± 0.015 0.401± 0.018
MLFE 0.374± 0.027 0.406± 0.018 0.399± 0.013 0.402± 0.025 0.328± 0.013 0.392± 0.008
LIFT 0.393± 0.033 0.427± 0.011 0.434± 0.017 0.441± 0.020 0.363± 0.019 0.430± 0.019
RELIAB 0.508± 0.022 0.449± 0.015 0.458± 0.028 0.454± 0.012 0.433± 0.024 0.423± 0.009
ML2 0.370± 0.025 0.404 ± 0.017 0.395 ± 0.018 0.398 ± 0.021 0.323± 0.021 0.388 ± 0.010
CLR 0.965± 0.013 0.513± 0.022 0.515± 0.009 0.518± 0.028 0.472± 0.031 0.521± 0.021
RAKEL 0.602± 0.009 0.605± 0.013 0.574± 0.012 0.585± 0.022 0.561± 0.022 0.614± 0.009
Coverage ↓
LLRD 0.107± 0.010 0.125 ± 0.008 0.121 ± 0.009 0.123 ± 0.006 0.092± 0.004 0.116 ± 0.009
MLFE 0.126± 0.013 0.136± 0.005 0.130± 0.010 0.129± 0.007 0.094± 0.007 0.124± 0.007
LIFT 0.112± 0.008 0.144± 0.020 0.135± 0.008 0.156± 0.008 0.113± 0.012 0.148± 0.013
RELIAB 0.131± 0.007 0.152± 0.012 0.128± 0.014 0.144± 0.011 0.105± 0.020 0.131± 0.014
ML2 0.103 ± 0.011 0.138± 0.008 0.132± 0.010 0.126± 0.006 0.078 ± 0.006 0.129± 0.009
CLR 0.254± 0.003 0.146± 0.018 0.141± 0.007 0.137± 0.010 0.109± 0.018 0.136± 0.011
RAKEL 0.226± 0.020 0.426± 0.023 0.372± 0.016 0.381± 0.014 0.365± 0.009 0.388± 0.020
Ranking loss ↓
LLRD 0.090 ± 0.010 0.049 ± 0.004 0.050 ± 0.004 0.052 ± 0.002 0.038± 0.002 0.047 ± 0.003
MLFE 0.107± 0.013 0.052± 0.002 0.055± 0.007 0.055± 0.002 0.040± 0.004 0.050± 0.003
LIFT 0.098± 0.016 0.058± 0.007 0.057± 0.009 0.068± 0.004 0.059± 0.010 0.055± 0.007
RELIAB 0.124± 0.003 0.066± 0.010 0.063± 0.008 0.062± 0.004 0.052± 0.006 0.063± 0.005
ML2 0.103± 0.012 0.056± 0.004 0.057± 0.004 0.056± 0.003 0.031 ± 0.003 0.050± 0.004
CLR 0.237± 0.008 0.062± 0.011 0.066± 0.008 0.065± 0.012 0.047± 0.006 0.071± 0.005
RAKEL 0.211± 0.019 0.226± 0.019 0.215± 0.017 0.230± 0.015 0.235± 0.014 0.214± 0.016
Average precision ↑
LLRD 0.725 ± 0.019 0.611± 0.010 0.638± 0.011 0.634± 0.017 0.717 ± 0.008 0.643± 0.011
MLFE 0.712± 0.021 0.618± 0.016 0.645± 0.009 0.639± 0.014 0.708± 0.012 0.647± 0.012
LIFT 0.703± 0.010 0.586± 0.009 0.598± 0.012 0.595± 0.011 0.674± 0.013 0.598± 0.011
RELIAB 0.624± 0.014 0.578± 0.021 0.611± 0.011 0.614± 0.018 0.655± 0.018 0.604± 0.009
ML2 0.715± 0.022 0.621 ± 0.012 0.647 ± 0.013 0.643 ± 0.016 0.717 ± 0.013 0.650 ± 0.010
CLR 0.269± 0.002 0.575± 0.013 0.584± 0.021 0.571± 0.032 0.614± 0.020 0.588± 0.013
RAKEL 0.522± 0.020 0.395± 0.012 0.445± 0.018 0.431± 0.014 0.450± 0.012 0.437± 0.016
Macroaveraging F1 ↑
LLRD 0.427± 0.035 0.235± 0.020 0.259± 0.019 0.213± 0.031 0.300± 0.019 0.211± 0.020
MLFE 0.466± 0.035 0.198± 0.017 0.195± 0.056 0.202± 0.030 0.249± 0.021 0.204± 0.021
LIFT 0.429± 0.037 0.223± 0.025 0.186± 0.024 0.200± 0.031 0.238± 0.013 0.196± 0.031
RELIAB 0.425± 0.029 0.342 ± 0.022 0.338 ± 0.016 0.348 ± 0.014 0.342 ± 0.028 0.352 ± 0.014
ML2 0.472 ± 0.029 0.216± 0.020 0.206± 0.024 0.195± 0.030 0.244± 0.023 0.208± 0.011
CLR 0.174± 0.032 0.285± 0.032 0.264± 0.021 0.272± 0.022 0.311± 0.031 0.305± 0.017
RAKEL 0.354± 0.037 0.269± 0.030 0.251± 0.014 0.255± 0.014 0.263± 0.014 0.274± 0.018
Microaveraging F1 ↑
LLRD 0.496± 0.021 0.393± 0.013 0.381± 0.017 0.406± 0.027 0.470± 0.013 0.402± 0.018
MLFE 0.545± 0.019 0.373± 0.014 0.375± 0.031 0.392± 0.024 0.403± 0.020 0.381± 0.017
LIFT 0.510± 0.030 0.320± 0.017 0.353± 0.014 0.347± 0.018 0.342± 0.024 0.363± 0.008
RELIAB 0.453± 0.011 0.408 ± 0.010 0.449 ± 0.008 0.451 ± 0.021 0.478 ± 0.016 0.454 ± 0.012
ML2 0.556 ± 0.022 0.371± 0.014 0.391± 0.010 0.383± 0.026 0.393± 0.022 0.410± 0.015
CLR 0.104± 0.005 0.367± 0.011 0.368± 0.024 0.320± 0.024 0.381± 0.015 0.372± 0.008
RAKEL 0.365± 0.020 0.359± 0.023 0.348± 0.016 0.341± 0.016 0.371± 0.015 0.342± 0.006

Table 4: +e Friedman statistics FF and the critical value.

Evaluation metric FF Critical value
One-error 34.0909

2.2274

Coverage 20.3765
Ranking loss 21.1642
Average precision 39.8409
Macroaveraging F1 2.6520
Microaveraging F1 7.6088
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We use Friedman test [38] based on the average ranks for
verifying whether the difference between algorithms is
statistically significant. If the assumption that “all algorithms
have equal performance” is rejected, it means that the
performance of each algorithm is significantly different. As
can be seen from the data presented in Table 4, the
hypothesis that there is no significant difference among
the algorithms is not valid under the condition of 0.05
significance level. +erefore, we need to conduct a post
hoc test to further distinguish the various algorithms.
Usually, there are two options for post hoc test, one is the
Nemenyi test [38] and the other is the Bonferroni–Dunn
test [39]. For k algorithms, the former needs to compare
k(k − 1)/2 times, while the latter only needs k − 1 times in
some cases. +us, we choose the latter. +e Bonferro-
ni–Dunn test is used to test whether LLRD is more
competitive than the comparative algorithm, in which
LLRD plays a role of control algorithm. When the dif-
ference of average rank between two algorithms is more
than one critical difference CD, the performance of two
algorithms is obviously different. +e CD value mentioned
here can be calculated from CD � qα

�����������
k(k + 1)/6N


, where

k� 7 and N � 13, when the significance level is 0.05, the
corresponding qα � 2.638.

+e CD diagram associated with LLRD and its com-
parison algorithm is shown in Figure 1. +e numbers on the
horizontal axis of the coordinate indicate the average rank
value of each algorithm under different evaluation criteria.
+ere is no significant difference in performance among the
various algorithms connected by solid lines.

+rough the analysis of the above experimental results,
we can draw the following conclusions:

(1) In terms of the four evaluation criteria of one-error,
coverage, ranking loss, and average precision, LLRD is
obviously superior to RELIAB, RAKEL, and CLR.

(2) +e smaller the average rank value, the better the
performance of the corresponding. For LLRD, five of
the average rank value in the six CD subdiagrams are
optimal, which shows LLRD outperforms other
algorithms.

(3) For regular-size datasets, LLRD ranks first in 69% of
the cases under different evaluation criteria, while for
large-scale datasets, it ranks first in 36.1%.

4. Conclusions

In this work, we propose a novel multilabel classification
algorithm named LLRD, which adopts the low-rank de-
composition to gain the internal information of label and
further reduce the information loss of the label transfor-
mation via the new feature space. Experimental results show
that the performance of the proposed LLRD is better than
many state-of-the-art multilabel classification techniques. In
the future, we will explore alternative models combining the
low-rank decomposition and classification into a joint op-
timization problem for considering more complex corre-
lation of labels.

Data Availability

+e datasets used in our manuscript are all public datasets,
which can be downloaded from “http://mulan.sourceforge.
net/datasets.html” and “http://meka.sourceforge.net/
#datasetsru”.
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Figure 1: Comparison of LLRD (control algorithm) against other related approaches with the Bonferroni–Dunn test. Approaches that are
not connected to LLRD are significantly different in performance from LLRD. (a) One-error. (b) Coverage. (c) Ranking loss. (d) Average
precision. (e) Macroaveraging F1. (f ) Microaveraging F2.
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