Research Article

On a Partial Boundary Value Condition of a Porous Medium Equation with Exponent Variable

Huashui Zhan

1School of Applied Mathematics, Xiamen University of Technology, Xiamen 361024, China
2Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen 361024, China

Correspondence should be addressed to Huashui Zhan; huashuizhan@163.com

Received 9 August 2019; Accepted 11 February 2020; Published 14 March 2020

Academic Editor: Genni Fragnelli

Copyright © 2020 Huashui Zhan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The initial-boundary value problem of a porous medium equation with a variable exponent is considered. Both the diffusion coefficient $a(x,t)$ and the variable exponent $p(x,t)$ depend on the time variable t, and this makes the partial boundary value condition not be expressed as the usual Dirichlet boundary value condition. In other words, the partial boundary value condition matching up with the equation is based on a submanifold of $\partial \Omega \times (0,T)$. By this innovation, the stability of weak solutions is proved.

1. Introduction

The porous medium equation with a constant exponent is widely used to model several real-life problems, and it has been extensively studied, one can refer to the survey books [1–6] and the references therein. The dynamics system of a partially nonlocal and inhomogeneous nonlinear medium has been considered in [7–9]. The case where the exponent of nonlinearity is not constant was proposed by Antontsev and Shmarev in [10], where the existence, uniqueness, and some properties of the solution in a bounded fixed domain were researched. By using the Galerkin finite element method, Duque et al. [11] proved the convergence of a fully discrete solution for this problem in a fixed domain. Based on one of the properties proved in [11] that the solution is with the finite speed of propagation, Duque et al. [12] considered the free boundary problem by using the moving mesh method to the porous medium. However, the moving mesh method was first introduced by Huang and Russell in [13].

In this paper, we consider the initial-boundary value problem of a generalized porous medium equation with a variable exponent:

\begin{equation}
\frac{\partial u}{\partial t} = \text{div}(a(x,t)|u|^{m(x,t)}\nabla u) + \sum_{i=1}^{N} \frac{\partial b_i(u^{m(x,t)+1})}{\partial x_i}, \quad (x,t) \in Q_T = \Omega \times (0,T),
\end{equation}

where $m(x,t) > 0$ is a $C^1(Q_T)$ function, $a(x,t) \geq 0$ is a $C^1(Q_T)$ function, $b_i(s) \in C^1(\mathbb{R})$, and $\Omega \subset \mathbb{R}^N$ is a bounded domain with a smooth boundary $\partial \Omega$.

Equation (1) is a special case of the reaction-diffusion equation:

\begin{equation}
\frac{\partial u}{\partial t} = \text{div}(a(u,x,t)\nabla u) + \text{div}(b(u,x,t)).
\end{equation}

Because $a(\cdot,x,t)$ may degenerate on the boundary, how to impose a suitable boundary value condition to study the well posedness of weak solutions to equation (2) has attracted extensive attention and has been widely studied for a long time. In some details, though the initial value

\begin{equation}
u(x,0) = u_0(x), \quad x \in \Omega,
\end{equation}

is always imposed, the Dirichlet boundary condition

\begin{equation}u(x,t) = 0, \quad (x,t) \in \partial \Omega \times (0,T),
\end{equation}

is
may not be imposed or be imposed in a weaker sense than the traditional trace. One can refer to the references [14–19] for the details.

Naturally, besides the porous medium equation with variable exponents, the so-called electrorheological fluid equations with the form

\[u_t = \text{div}(|\nabla u|^{p(x)-2}\nabla u) + f(x, t, u, \nabla u), \tag{5} \]

have been brought to the forefront by many more scholars. Since the beginning of this century, there are a great deal of papers devoting to the well-posedness problem, the intrinsic Harnack inequalities, the long-time behavior, and the Hölder regularity of weak solutions, one can refer to the literatures [20–31] and the references therein.

If \(m(x) = m(x) \), then \(a(x, t) = a(x) \) satisfies

\[a(x) > 0, \quad x \in \Omega, \quad a(x) = 0, \quad x \in \partial \Omega, \tag{6} \]

\[0 \leq u_0 \in L^\infty(\Omega), \]

\[\sqrt{a(x)|\nabla u|^m(x)} \in L^2(\Omega). \tag{7} \]

The existence and the stability of weak solutions to equation

\[\frac{\partial}{\partial t}u_t = \text{div}(a(x)|u|^m(x)\nabla u) + \sum_{i=1}^N \frac{\partial b_i(u^{m(x)+1})}{\partial x_i}, \tag{8} \]

\[(x, t) \in \Omega \times (0, T), \]

has been studied in [32]. It is found that the degeneracy of \(a(x) \) on boundary (6) may replace the usual boundary value condition (4). In other words, if \(a(x) \) satisfies (6), the stability of weak solutions may be proved without the usual boundary value condition (4).

In this paper, we will use some ideas of [32] to study the well posedness of weak solutions to equation (1). Because both \(a(x, t) \) and \(p(x, t) \) are dependent on the time variable \(t \), the problem becomes more difficult and the question of existence of such solutions is still open for equation (8), as well as for evolution \(p \)-Laplace equation with the exponent \(p \) depending on \(t \) [22]. Instead of condition (6), we only assume that \(a(x, t) \geq 0 \). By this assumption, we find out a partial boundary value condition matching up with the equation. Moreover, because both \(a(x, t) \) and \(p(x, t) \) are dependent on the time variable \(t \), the partial boundary value condition cannot be expressed as the usual Dirichlet boundary value condition. In other words, the partial boundary value condition is based on a submanifold of \(\partial \Omega \times (0, T) \). By this innovation, the stability of weak solutions is proved.

2. The Partial Boundary Value Condition and the Main Results

For any given \(t \in [0, T] \) and small enough \(\lambda > 0 \), we set

\[\Omega_{\lambda t} = \{ x \in \Omega : a(x, t) > \lambda \}, \]

\[\Omega_{\lambda \mu t} = \{ x \in \Omega \setminus \Omega_{\lambda t}, a_{\mu} < 0 \}, \]

\[\Sigma_{i \lambda t} = \lim_{\lambda \to 0} \Omega_{i \lambda \mu t}, \quad i = 1, 2, \ldots, N, \]

\[\Omega_{\lambda 2t} = \{ x \in \Omega \setminus \Omega_{\lambda t}, a_{\mu} \geq 0 \}, \]

\[\Sigma_{2 \lambda t} = \lim_{\lambda \to 0} \Omega_{2 \lambda 2t}, \quad i = 1, 2, \ldots, N. \tag{10} \]

The most important and essential improvement is that instead of the usual boundary value condition (4), the stability of weak solutions is proved based on a partial boundary value condition:

\[u(x, t) = 0, \quad (x, t) \in \Sigma_1 \cup \Sigma_2, \tag{11} \]

where

\[\Sigma_2 = \{ x \in \partial \Omega : a(x, t) \neq 0 \}, \tag{12} \]

and for any given \(i \in \{1, 2, \ldots, N\} \), if \(b_i(s) \geq 0 \),

\[\Sigma_1 = \left\{ \bigcup_{i=1}^N \Sigma_{1 \lambda t} \times (0, T) \right\}, \tag{13} \]

and if \(b_i(s) \leq 0 \),

\[\Sigma_1 = \left\{ \bigcup_{i=1}^N \Sigma_{2 \lambda t} \times (0, T) \right\}. \tag{14} \]

Thus, if for every \(i \in \{1, 2, \ldots, N\} \), either \(b_i(s) \geq 0 \) or \(b_i(s) \leq 0 \), then one can deduce an expression \(\Sigma_1 \) from the above discussion. For example, if \(b_i(s) \geq 0 \) when \(1 \leq i \leq k \) and \(b_i(s) \leq 0 \) when \(k + 1 \leq i \leq N \); then,

\[\Sigma_1 = \left\{ \bigcup_{i=1}^k \Sigma_{1 \lambda t} \times (0, T) \right\} \cup \left\{ \bigcup_{i=k+1}^N \Sigma_{2 \lambda t} \times (0, T) \right\}. \tag{15} \]

The most characteristic out of the ordinary is that \(\Sigma_1 \) or \(\Sigma_2 \) is just a submanifold of \(\partial \Omega \times (0, T) \), and it cannot be expressed as a cylinder with the form \(\Gamma \times (0, T) \) and \(\Gamma \subset \partial \Omega \).

Definition 1. If \(u(x, t) \geq 0 \) and satisfies

\[u \in L^\infty(Q_T), \]

\[\sqrt{a(x, 0)|u|^m(x, 0)}|\nabla u| \in L^\infty(0, T; L^2(\Omega)), \tag{16} \]

and for \(\forall \varphi \in C_0^1(Q_T), \)

\[\iint_{Q_T} \left(\frac{\partial \varphi}{\partial t} u + a(x, t)|u|^{m(x)+1} \nabla u \nabla \varphi \right) \, dx \, dt \]

\[+ \sum_{i=1}^N \iint_{Q_T} b_i(u^{m(x)+1}) \varphi_{x_i}(x, t) \, dx \, dt = 0, \tag{17} \]

and then \(u(x, t) \) is said to be a weak solution of equation (1) with the initial value (3) in the sense.
\[\lim_{t \to 0} \int_{\Omega} |u(x, t) - u_0(x)| \, dx = 0. \]

Moreover, if \(u(x, t) \) satisfies (4) or (3) in the sense of the trace in addition, then it is said to be a weak solution of the initial-boundary value problem of equation (1).

Theorem 1. If \(m(x, t) > 0 \) is a \(C^1(\Omega_T) \) function, \(b_i(s) \) satisfies
\[
|b_i(s_1) - b_i(s_2)| \leq c|s_1 - s_2|, \quad i = 1, 2, \ldots, N. \tag{19}
\]

If \(u_0(x) \geq 0 \) satisfies (16), then equation (1) with initial value (3) has a nonnegative solution.

Theorem 2. Let \(m(x, t) > 0 \) be a \(C^1(\Omega_T) \) function, then \(b_i(s) \in C^1(\mathbb{R}) \) satisfy (19):
\[
\int_{\Omega} a^{-1}(x) \, dx \leq c(T). \tag{20}
\]

Then, the initial-boundary value problem (1), (3), and (4) has a uniqueness solution.

Theorem 3. Let \(u(x, t) \) and \(v(x, t) \) be two solutions of equation (1) with the initial values \(u_0(x) \) and \(v_0(x) \), respectively, and with a partial boundary condition
\[
u(x, t) = v(x, t) = 0, \quad (x, t) \in \Sigma_1 \cup \Sigma_2. \tag{21}
\]

It is supposed that, for every \(i \in \{1, 2, \ldots, N\} \), either \(b'_i(s) \geq 0 \) or \(b'_i(s) \leq 0 \), \(a(x, t) \) satisfies
\[
\frac{1}{\lambda} \left(\int_{\Omega} |a(x, t)| \, dx \right)^{1/2} \leq c(T), \tag{22}
\]
and \(u(x, t) \) and \(v(x, t) \) satisfy
\[
\int_{\Omega} a(x, t)|1 + (m(x, t) + 1) \log u|^2 \, dx \leq c(T), \tag{23}
\]
\[
\int_{\Omega} a(x, t)|1 + (m(x, t) + 1) \log v|^2 \, dx \leq c(T).
\]

Then,
\[
\int_{\Omega} |u(x, t) - v(x, t)| \, dx \leq c(T) \int_{\Omega} |u_0(x) - v_0(x)| \, dx. \tag{24}
\]

Hereinafter, the constant \(c(T) \) represents a constant which depends on \(T \).

At the end of this section, we would like to suggest that if \(m(x, t) = m \) is a constant, then condition (22) in Theorem 3 is naturally true.

3. The Proof of Theorem 1

First, we suppose that \(u_0 \in C_c^\infty(\Omega) \) and \(0 \leq u_0 \leq M \) and consider the following regularized problem:

\[
\begin{cases}
 u_{id} = \text{div}\left(a(x, t) \left(\left| u_n \right|^{m(x, t)} + \frac{1}{n} \right) \nabla u \right) + \sum_{i=1}^{N} \frac{\partial b_i(u^{m(x, t)+1})}{\partial x_i}, & (x, t) \in \Omega_T, \\
 u_n(x, t) = 1, & (x, t) \in \partial \Omega \times (0, T), \\
 u_n(x, 0) = u_{in}(x) = u_0(x) + \frac{1}{n}, & x \in \Omega.
\end{cases}
\]

According to the standard parabolic equation theory, there is a weak solution \(u_n \in L^\infty(\Omega_T) \) satisfying
\[
\left(a(x, t) + \frac{1}{n} \right)^{1/2} \left(\left| u_n \right|^{m(x, t)} + \frac{1}{n} \right)^{1/2} \nabla u \in L^2(\Omega_T),
\]
\[
\frac{1}{n} \leq u_n(x, t) \leq \left\| u_0 \right\|_{L^\infty(\Omega)} + \frac{1}{n}, \quad (x, t) \in \Omega_T. \tag{26}
\]

Moreover, by comparison theorem, we clearly have
\[
u_{n+1}(x, t) \leq u_n(x, t). \tag{27}
\]

which yields
\[
u(x, t) = \lim_{n \to \infty} u_n(x, t). \tag{28}
\]

In what follows, we are able to prove that the limit function \(u \) is a weak solution of (1) with the initial value (3).

Multiplying both sides of the first equation in (25) by \(\phi = (m(x, t) + 2) (u^{m(x, t)+1} - (1/n)^{m(x, t)+1}) \) and integrating it over \(\Omega_T \), we have
\[
\text{...}
\]

...
\[
\int_{Q_T} u_n \left(u_n^{m(x,t)+1} - \left(\frac{1}{n} \right)^{m(x,t)+1} \right) (m(x,t) + 2) \, dx \, dt
\]

\[
= \int_{Q_T} \text{div} \left[\left(a(x,t) + \frac{1}{n} \right) \left[|u_n|^{m(x,t)} + \frac{1}{n} \right] \nabla u_n \right] \left(u_n^{m(x,t)+1} - \left(\frac{1}{n} \right)^{m(x,t)+1} \right) (m(x,t) + 2) \, dx \, dt
\]

\[
+ \sum_{i=1}^{N} \int_{Q_T} \frac{\partial b_i (u_n^{m(x,t)+1})}{\partial x_i} \left(u_n^{m(x,t)+1} - \left(\frac{1}{n} \right)^{m(x,t)+1} \right) (m(x,t) + 2) \, dx \, dt.
\]

For the first term of the right-hand side of (29), because

\[
\lim_{n \to \infty} \left(a(x,t) + \frac{1}{n} \right) \left[|u_n|^{m(x,t)} + \frac{1}{n} \right] \left((m(x,t) + 1) u_n^{m(x,t)} \right]^{-1} \left| \nabla m \right|^2
\]

\[
\cdot \left| \log u_n u_n^{m(x,t)+1} - \left(\frac{1}{n} \right)^{m(x,t)+1} \log n \right|
\]

\[
= a(x,t) (m(x,t) + 1)^{-1} \left| \nabla m(x,t) \right|^2 u_n^{m(x,t)+1} |\log u_n| < \infty,
\]

\[
\int_{Q_T} \left(a(x,t) + \frac{1}{n} \right) \left[|u_n|^{m(x,t)} + \frac{1}{n} \right] \left(u_n^{m(x,t)+1} - \left(\frac{1}{n} \right)^{m(x,t)+1} \right) \left| \nabla m \right|^2 \, dx \, dt < \infty,
\]

by a complicated calculation and using the Young inequality, we can deduce that

\[
\int_{Q_T} \text{div} \left[\left(a(x,t) + \frac{1}{n} \right) \left[|u_n|^{m(x,t)} + \frac{1}{n} \right] \nabla u_n \right] \left(u_n^{m(x,t)+1} - \left(\frac{1}{n} \right)^{m(x,t)+1} \right) (m(x,t) + 2) \, dx \, dt
\]

\[
\leq -c \int_{Q_T} \left(a(x,t) + \frac{1}{n} \right) \left[|u_n|^{m(x,t)} + \frac{1}{n} \right] (m(x,t) + 1) u_n^{m(x,t)} |\nabla u_n|^2 \, dx \, dt + c.
\]

For the second term of the right-hand side of (29), because
\[
\int_{Q_T} \frac{\partial b_1(u_n^{m(x,t)+1})}{\partial x_i} u_n^{m(x,t)+1} (m(x,t) + 2) dx \, dt
\]

\[
= - \int_{Q_T} b_1(u_n^{m(x,t)+1}) \frac{\partial}{\partial x_i} \left(u_n^{m(x,t)+1} (m(x,t) + 2) \right) dx \, dt
\]

\[
= - \int_{Q_T} \left[\frac{\partial}{\partial x_i} \int_{(1/2)m(x,t)} b_1(s) ds + b_1(n^{-m(x,t)-1}) \right] \log n m x_i(x,t) \left(m(x,t) + 2 \right) dx \, dt
\]

\[
= - \int_{Q_T} b_1(n^{-m(x,t)-1}) \left(\frac{1}{n} \right)^{m(x,t)+1} \log n m x_i(x,t) dx \, dt - \int_{Q_T} b_1(n^{-m(x,t)+1}) u_n^{m(x,t)+1} m x_i dx \, dt.
\]

we can deduce that
\[
\left| \sum_{i=1}^{N} \int_{Q_T} \frac{\partial b_1(u_n^{m(x,t)+1})}{\partial x_i} \left(u_n^{m(x,t)+1} - \left(\frac{1}{n} \right)^{m(x,t)+1} \right) dx \, dt \right| \leq c.
\]

From (28)–(34), we extrapolate
\[
\int_{Q_T} \left(a(x,t) + \frac{1}{n} \right) \left(|u_n^{m(x,t)}| + \frac{1}{n} |u_n^{m(x,t)}| \right) \| \nabla u_n \|^2 dx \, dt \leq c.
\]

Accordingly, there is \(\overrightarrow{\zeta} \in L^2(Q_T) \) such that
\[
\left[\left(a(x,t) + \frac{1}{n} \right) \left(|u_n^{m(x,t)}| + \frac{1}{n} |u_n^{m(x,t)}| \right) \right]^{1/2} \nabla u_n - \overrightarrow{\zeta},
\]

weakly in \(L^2(Q_T) \). We now can prove
\[
\overrightarrow{\zeta} = a(x,t)^{1/2} |u_n^{m(x,t)}| \nabla u_n,
\]
as in a similar way as that in [32].

The last but not the least, by that \(b_1 \in C^1(\mathbb{R}) \), using (27), we have
\[
\lim_{n \to \infty} b_1(u_n^{m(x,t)+1}) = b_1(u^{m(x,t)+1}).
\]

Letting \(n \to \infty \) in (30), by (37), (38), and (39), we know \(u(x,t) \) satisfies (18).

Secondly, if \(u_0 \) satisfies only (16), we should consider equation (9) with the initial value \(u_0 \), which is the mollified function of \(u_0 \), from the above that there is a weak solution

\(u_t \) satisfying (18). Letting \(\varepsilon \to 0 \), the limit function \(u(x,t) \) is a solution of (1) satisfying (17) and (18), but generally is not continuous at \(t = 0 \) as in the case \(u_0 \in C_0^\\infty(\Omega) \).

Thirdly, the initial value (4) can be proved in a similar way as that when \(m(x,t) = m - 1 \) is a constant, one can refer to [5] for the details. Thus, \(u \) is a solution of equation (1) with the initial value (4). Thus, Theorem 1 is proved.

4. The Proof of Theorem 2

One can see that, in Definition 1, there is not any definition on the general derivative \(u_t \). At the beginning of this section, we first answer this question.

For any \(t \in [0,T] \), the Banach space \(V_t(\Omega) \) is defined by
\[
V_t(\Omega) = \{ u(x,t) : u(x,t) \in L^2(\Omega) \cap W_0^{1,1}(\Omega),
\]

\[
\| \nabla u(x,t) \|^2 \in L^1(\Omega) \},
\]

\[
\| u \|_{V_t(\Omega)} = \| u \|_{L^2(\Omega)} + \| \nabla u \|_{L^2(\Omega)},
\]

and \(V_t(\Omega) \) is denoted as its dual space. The Banach space \(W(Q_T) \) is defined by
\[
W(Q_T) = \{ u : [0,T] \to V_t(\Omega) | u \in L^2(Q_T), \| \nabla u \|^2 \in L^1(Q_T), u = 0 \text{ on } \Gamma = \partial\Omega \},
\]

\[
\| u \|_{W(Q_T)} = \| \nabla u \|_{L^2(\Omega)} + \| u \|_{L^2(Q_T)},
\]

and \(W'(Q_T) \) is denoted as its dual space. From [21], we have

\[
w \in W'(Q_T) \Rightarrow \begin{cases} w = w_0 + \sum_{i=1}^{N} D_i w_i, & w_0 \in L^2(Q_T), \, w_i \in L^2(Q_T), \\ \forall \phi \in W(Q_T), \langle w, \phi \rangle = \int_{Q_T} \left(w_0 \phi + \sum_{i=1}^{N} w_i D_i \phi \right) dx \, dt \end{cases}
\]

Lemma 1. If \(u(x,t) \) is a weak solution of equation (1) with the initial value (3), then \(u_t \in W'(Q_T) \).
Lemma 2. Suppose that \(u \in W(Q_T) \) and \(u \in W'(Q_T) \). For any continuous function \(h(s) \), let \(H(s) = \int_0^s h(s) \, ds \). For a.e. \(t_1, t_2 \in (0, T) \), there holds
\[
\int_{t_1}^{t_2} \int_{\Omega} h(u) \, du \, dt = \left[\int_{\Omega} (H(u)(x, t_2) - H(u)(x, t_1)) \, dx \right].
\]

Lemma 3. If \(\int_{\Omega} a(x, t)^{-1} \, dx \leq c(T) \), then \(\int_{\Omega} |\nabla u(x, t)|^2 \leq c(T) \). So, the weak solution of equation (1) can be defined as the homogeneous boundary value condition \(u|_{\partial \Omega} = 0 \) in the sense of the trace.

Theorem 4. Let \(u(x, t) \) and \(v(x, t) \) be two solutions of equation (1) with the initial values \(u_0(x) \) and \(v_0(x) \) respectively, and with
\[
u(x, t) = 0, \quad (x, t) \in \partial \Omega \times (0, T).
\]

Let us analyse every term in (47). In the first place,
\[
\int t \int_{\Omega} a(x, s)^{-1} \, dx \, ds
\]

\[
+ \int_{Q, m(x, s)^+} \frac{a(x, s)}{\nabla u(x, s)^+ - \nabla v(x, s)^+} \bigg| h_n(u(x, s)^+ - v(x, s)^+) \bigg| dx \, ds
\]

\[
- \frac{a(x, s)}{\nabla u(x, s)^+ - \nabla v(x, s)^+} \Delta \nu \bigg| h_n(u(x, s)^+ - v(x, s)^+) \bigg| dx \, ds
\]

\[
\sum_{i=1}^N \left[b_i \left(u(x, s)^+ - b_i \left(v(x, s)^+ \right) \right) \left(u(x, s)^+ - v(x, s)^+ \right) \right] \cdot h_n(u(x, s)^+ - v(x, s)^+) \bigg| dx \, ds = 0.
\]

Let us analyse every term in (47). In the first place,

\[
\int_{Q, m(x, s)^+} \frac{a(x, s)}{\nabla u(x, s)^+ - \nabla v(x, s)^+} \bigg| h_n(u(x, s)^+ - v(x, s)^+) \bigg| dx \, ds \geq 0,
\]

\[
- \frac{1}{2} \int_{Q, m(x, s)^+} \frac{a(x, s)}{\nabla u(x, s)^+ - \nabla v(x, s)^+} \bigg| \Delta \nu \bigg| h_n(u(x, s)^+ - v(x, s)^+) \bigg| dx \, ds
\]

\[
\sum_{i=1}^N \left[b_i \left(u(x, s)^+ - b_i \left(v(x, s)^+ \right) \right) \left(u(x, s)^+ - v(x, s)^+ \right) \right] \cdot h_n(u(x, s)^+ - v(x, s)^+) \bigg| dx \, ds.
\]

In the second place, we deal with the fourth term on the left-hand side of (47). For any given \(t \in [0, T] \), we set

\[
D_{nt} = \Omega : \left| u(x, s)^+ - v(x, s)^+ \right| < \frac{1}{n},
\]

\[
D_{nt} = \{ x \in \Omega : |u - v| = 0 \}.
\]
Clearly,
\[
\lim_{n \to \infty} D_{nt} = D_{tu}.
\] (51)

Thus, in both cases, we always have
\[
\lim_{n \to \infty} \int_0^t \int_{\Omega} \left(b_j(u^{m(x,t)}(x)) - b_j(v^{m(x,t)}(x)) \right) h_n(x, t, s) \, dx \, ds = 0.
\] (56)

In the third place, for the first term on the left-hand side of (47), by Lemma 2,
\[
\lim_{n \to \infty} \int_0^t \int_{\Omega} g_n(u^{m(x,t)}(x) - v^{m(x,t)}(x)) \frac{\partial (u - v)}{\partial t} \, dx \, ds
\]
\[
= \int_0^t \int_{\Omega} \text{sgn}(u^{m(x,t)}(x) - v^{m(x,t)}(x)) \frac{\partial (u - v)}{\partial t} \, dx \, ds
\] (57)

Let \(n \to \infty \) in (47). Formulas (48)–(57) yield
5. The Stability Based on the Partial Boundary Value Condition

Theorem 5. Let \(u(x,t) \) and \(v(x,t) \) be two solutions of equation (1) with the initial values \(u_0(x) \) and \(v_0(x) \) respectively, and with a partial boundary value condition
\[
u(x,t) = v(x,t) = 0, \quad (x,t) \in \Sigma_1 \cup \Sigma_2,
\]
where
\[
\Sigma_2 = \{ x \in \partial \Omega: a(x,t) \neq 0 \},
\]
and for any given \(i \in \{1,2,\ldots,N\} \), if \(b_i'(s) \geq 0 \),
\[
\Sigma_1 = \left\{ \bigcup_{i=1}^{N} \Sigma_{1i} \times (0,T) \right\},
\]
and if \(b_i'(s) \leq 0 \),
\[
\Sigma_1 = \left\{ \bigcup_{i=1}^{N} \Sigma_{2i} \times (0,T) \right\}.
\]

It is supposed that
\[
\left(\frac{1}{\lambda} \int_{\Omega \cap \Omega_\mu} a(x,t)|\nabla u|^2 \, dx \right)^{1/2} \leq c(T),
\]
and \(u(x,t) \) and \(v(x,t) \) satisfy
\[
\int_{\Omega} a(x,t)[1 + (m(x,t) + 1)|\nabla u|^2 - 1\log m] \, dx \leq c(T),
\]
\[
\int_{\Omega} a(x,t)[1 + (m(x,t) + 1)|\nabla v|^2 - 1\log m] \, dx \leq c(T).
\]

Then,
\[
\int_{\Omega} \int_{\Omega_\mu} \varphi(a(x,t)^{m(x,t)+1} - v^{m(x,t)+1}) \, dx \, dt
\]
\[
+ \int_{\Omega} \int_{\Omega_\mu} a(x,t) \, dx \, dt + \int_{\Omega} \int_{\Omega_\mu} a(x,t) \, dx \, dt
\]
\[
- \int_{\Omega} \int_{\Omega_\mu} a(x,t) \, dx \, dt
\]
\[
+ \int_{\Omega} \int_{\Omega_\mu} a(x,t) \, dx \, dt
\]
\[
- \int_{\Omega} \int_{\Omega_\mu} a(x,t) \, dx \, dt
\]
\[
+ \sum_{i=1}^{N} \int_{\Omega} \int_{\Omega_\mu} b_i'(u^{m(x,t)+1}) \, dx \, dt
\]
\[
= 0.
\]
Firstly, we still have
\[
\int_{\tau}^{s} \frac{a(x, t)}{m(x, t) + 1} \left(\nabla u^{m(x,t)+1} - \nabla v^{m(x,t)+1} \right) \cdot \phi_{a}(u^{m(x,t)+1} - v^{m(x,t)+1}) \, dx \, dt
\]
\[\frac{\partial}{\partial t} \int_{\Omega} \phi_{a} \left(u^{m(x,t)+1} - v^{m(x,t)+1} \right) \, dx \, dt \geq 0. \tag{72}\]

Secondly, for the third term on the left-hand side of (71) by that \(1/\lambda \left(\int_{\Omega \setminus \Omega_{a}} a(x, t)|\nabla a|^2 \, dx \right)^{1/2} \leq c(T)\), we have
\[
\left| \int_{\tau}^{s} \int_{\Omega} \frac{a(x, t)}{m(x, t) + 1} \left(\nabla u^{m(x,t)+1} - \nabla v^{m(x,t)+1} \right) \cdot \nabla \phi_{a}(u^{m(x,t)+1} - v^{m(x,t)+1}) \, dx \, dt \right|
\\leq \int_{\tau}^{s} \int_{\Omega \setminus \Omega_{a}} \frac{a(x, t)}{m(x, t) + 1} \left(|\nabla u^{m(x,t)+1}| + |\nabla v^{m(x,t)+1}| \right) |\nabla \phi_{a}| \, dx \, dt
\\leq \frac{1}{\lambda} \int_{\tau}^{s} \int_{\Omega \setminus \Omega_{a}} a(x, t) \left(|\nabla u^{m(x,t)+1}|^2 + |\nabla v^{m(x,t)+1}|^2 \right) \, dx \, dt
\\leq c \int_{\tau}^{s} \left(\int_{\Omega \setminus \Omega_{a}} a(x, t) \left(|\nabla u^{m(x,t)+1}|^2 + |\nabla v^{m(x,t)+1}|^2 \right) \, dx \right)^{1/2}
\cdot \frac{1}{\lambda} \left(\int_{\Omega \setminus \Omega_{a}} a(x, t)|\nabla a|^2 \, dx \right)^{1/2}
\rightarrow 0, \tag{73}\]
as \(\lambda \rightarrow 0\). Thirdly, for the fourth term on the left-hand side of (71), we can show
\[
\left| \int_{\tau}^{s} \int_{\Omega} \frac{a(x, t)}{m(x, t) + 1} \left[u^{m(x,t)+1} \log u - v^{m(x,t)+1} \log v \right] \nabla m \cdot \phi_{a}(x) \nabla \left(u^{m(x,t)+1} - v^{m(x,t)+1} \right) h_{n} \left(u^{m(x,t)+1} - v^{m(x,t)+1} \right) \, dx \, dt \right|
\\leq c \left(\int_{\Omega} a(x, t) \left(|\nabla u^{m(x,t)+1}|^2 + |\nabla v^{m(x,t)+1}|^2 \right) \, dx \right)^{1/2}
\cdot \frac{1}{\lambda} \left(\int_{\Omega \setminus \Omega_{a}} a(x, t)|\nabla a|^2 \, dx \right)^{1/2}
\rightarrow 0, \tag{74}\]
as \(\lambda \rightarrow 0\). The corresponding details are given below.
If \(D_{\partial t} = \{ x \in \Omega : |u - v| = 0 \}\) is with 0 measure, then
\[
\lim_{n \to 0} \int_{\tau}^{s} \int_{D_{\alpha}} a(x, t) \left| \nabla u_{m(x,t)+1} - \nabla v_{m(x,t)+1} \right|^2 \, dx \, dt \\
\leq \int_{\tau}^{s} \int_{D_{\alpha}} a(x, t) \left(\left| \nabla u_{m(x,t)+1} \right|^2 + \left| \nabla v_{m(x,t)+1} \right|^2 \right) \, dx \, dt \\
= 0,
\]
and by (64),
\[
\int_{\Omega} \eta(x, t) [1 + (m(x,t) + 1) \log u] \left| \nabla m \right|^2 \, dx \leq c(T),
\]
we obtain
\[
(75)
\]
\[
\lim_{n \to 0} \int_{\tau}^{s} \int_{D_{\alpha}} a(x, t) \left[u_{m(x,t)+1} \log u_{m(x,t)+1} - v_{m(x,t)+1} \log v_{m(x,t)+1} \right]^2 \\
\cdot \left| \nabla m \right|^2 \, dx \, dt \\
\leq \lim_{n \to 0} \int_{\tau}^{s} \int_{D_{\alpha}} a(x, t) \frac{\left[u_{m(x,t)+1} \log u_{m(x,t)+1} - v_{m(x,t)+1} \log v_{m(x,t)+1} \right]^2}{\left| u_{m(x,t)+1} - v_{m(x,t)+1} \right|^2} \left| \nabla m \right|^2 \, dx \, dt \\
\leq \int_{\tau}^{s} \int_{D_{\alpha}} a(x, t) \left[1 + (m(x,t) + 1) \log v \right]^2 \left| \nabla m \right|^2 \, dx \\
\leq c(T).
\]
(77)

When \(D_{\alpha} = \{ x \in \Omega : |u - v| = 0 \} \) has a positive measure,
\[
\lim_{n \to 0} \int_{\tau}^{s} \int_{D_{\alpha}} a(x, t) \left| \nabla u_{m(x,t)+1} - \nabla v_{m(x,t)+1} \right|^2 \, dx \, dt \\
\leq \int_{\tau}^{s} \int_{\Omega} a(x, t) \left(\left| \nabla u_{m(x,t)+1} \right|^2 + \left| \nabla v_{m(x,t)+1} \right|^2 \right) \, dx \, dt \\
\leq c(T).
\]
(78)

\[
\lim_{n \to 0} \int_{\tau}^{s} \int_{D_{\alpha}} a(x, t) \left[u_{m(x,t)+1} \log u_{m(x,t)+1} - v_{m(x,t)+1} \log v_{m(x,t)+1} \right]^2 h_{m}(u_{m(x,t)+1} - v_{m(x,t)+1})^2 \left| \nabla m \right|^2 \, dx \, dt \\
\leq \lim_{n \to 0} \int_{\tau}^{s} \int_{D_{\alpha}} a(x, t) \frac{\left[u_{m(x,t)+1} \log u_{m(x,t)+1} - v_{m(x,t)+1} \log v_{m(x,t)+1} \right]^2}{\left| u_{m(x,t)+1} - v_{m(x,t)+1} \right|^2} \left| \nabla m \right|^2 \, dx \, dt \\
= 0.
\]
(79)

Fourthly, when \(b'_i(s) \geq 0 \), using the partial boundary value condition (59),
\[- \lim_{\lambda \to 0} \lim_{n \to \infty} \int_\tau^\rho \int_\Omega \left[b_1(u(x,t+1)^{m(x,t)+1}) - b_1(v(x,t+1)^{m(x,t)+1}) \right] \phi_{\lambda} g_\lambda \left(u(x,t+1)^{m(x,t)+1} - v(x,t+1)^{m(x,t)+1} \right) dx \, dt \]

\[= - \lim_{\lambda \to 0} \int_\tau^\rho \int_\Omega \left[b_1(u(x,t+1)^{m(x,t)+1}) - b_1(v(x,t+1)^{m(x,t)+1}) \right] \phi_{\lambda} g_\lambda \left(u(x,t+1)^{m(x,t)+1} - v(x,t+1)^{m(x,t)+1} \right) dx \, dt \]

\[= - \lim_{\lambda \to 0} \int_\tau^\rho \int_\Omega \left[b_1(u(x,t+1)^{m(x,t)+1}) - b_1(v(x,t+1)^{m(x,t)+1}) \right] \phi_{\lambda} g_\lambda \left(b_1(u(x,t+1)^{m(x,t)+1}) - b_1(v(x,t+1)^{m(x,t)+1}) \right) dx \, dt \]

\[= - \lim_{\lambda \to 0} \int_\tau^\rho \int_{\Omega \setminus \Omega_{in}} \left| b_1(u(x,t+1)^{m(x,t)+1}) - b_1(v(x,t+1)^{m(x,t)+1}) \right| dx \, dt \]

\[\leq \lim_{\lambda \to 0} \int_\tau^\rho \int_{\Omega \setminus \Omega_{in}} \left| -c_1 a_\lambda \right| \left| u^{m(x,t)+1} - v^{m(x,t)+1} \right| dx \, dt \]

\[= \int_\tau^\rho \int_{\Sigma_{in}} \left| -c_1 a_\lambda \right| \left| u^{m(x,t)+1} - v^{m(x,t)+1} \right| d\Sigma \, dt \]

\[= 0. \]

When \(b_1'(s) \leq 0 \), using the partial boundary value condition (59), we have

\[\int_\tau^\rho \int_{\Omega \setminus \Omega_{in}} \left| b_1'(u(x,t+1)^{m(x,t)+1}) \right| a_\lambda dx \, dt \]

\[\leq \lim_{\lambda \to 0} \int_\tau^\rho \int_{\Omega \setminus \Omega_{in}} \left| b_1'(u(x,t+1)^{m(x,t)+1}) \right| a_\lambda dx \, dt \]

\[= \int_\tau^\rho \int_{\Sigma_{in}} \left| -c_1 a_\lambda \right| \left| u^{m(x,t)+1} - v^{m(x,t)+1} \right| d\Sigma \, dt \]

\[= 0. \]

The last but not the least, as in the proof of Theorem 2, we can show that
\[
\lim_{\lambda \to 0} \lim_{n \to \infty} \int_{\tau} \int_{\Omega} b_n(u^{m(x,t)+1}) - b_n(v^{m(x,t)+1}) \phi_{n_t}(u^{m(x,t)+1} - v^{m(x,t)+1}) \xi_t \, dx \, dt \\
\cdot h_n(u^{m(x,t)+1} - v^{m(x,t)+1}) \, dx \, dt \\
= 0.
\]

Then,
\[
\lim_{n \to \infty} \lim_{\lambda \to 0} \int_{\tau} \int_{\Omega} g_n(u^{m(x,t)+1} - v^{m(x,t)+1}) \phi_{n_t} \frac{\partial (u - v)}{\partial t} \, dx \, dt \\
= \int_{\Omega} |u(x,s) - v(x,s)| \, dx - \int_{\Omega} |u(x,t) - v(x,t)| \, dx.
\]

(83)

Letting \(\lambda \to 0 \) and \(n \to \infty \) in (73), by (74) and (80)–(85), we obtain
\[
\int_{\Omega} |u(x,s) - v(x,s)| \, dx \leq c \int_{\Omega} |u(x,t) - v(x,t)| \, dx.
\]

(84)

By the arbitraries of \(\tau \), we have
\[
\int_{\Omega} |u(x,t) - v(x,t)| \, dx \leq \int_{\Omega} |u_0(x) - v_0(x)| \, dx.
\]

(85) \(\blacksquare \)

Proof of Theorem 2. Because for every \(i \in \{1, 2, \ldots, N\} \), either \(b_i'(s) \geq 0 \) or \(b_i'(s) \leq 0 \), by checking the process of the proof of (80) or (81), we easily obtain Theorem 3. \(\blacksquare \)

6. Conclusion

In this paper, we consider the initial-boundary value problem of a generalized porous medium equation with a variable exponent. Different from the previous related works, both the diffusion coefficient \(a(x,t) \) and variable exponent \(p(x,t) \) are dependent on the time variable \(t \), we find out a partial boundary value condition matching up with the equation. The most important innovation is that the partial boundary value condition matching up with the equation is based on a submanifold of \(\mathbb{R}^n \times (0,T) \). However, because there is an additional condition (23) imposed, Theorem 3 has not answered the problem globally. In other words, how to obtain the same conclusion as that in Theorem 3 without condition (23) is remained to be studied in the future.

Data Availability

No data were used to support this study.

Conflicts of Interest

The author declares that he has no conflicts of interest.

Acknowledgments

This study was supported by the Natural Science Foundation of Fujian Province (2019J01858), China.

References

