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A total k-coloring of a graph is an assignment of k colors to its vertices and edges such that no two adjacent or incident elements
receive the same color.+e total coloring conjecture (TCC) states that every simple graphG has a total (Δ(G) + 2)-coloring, where
Δ(G) is the maximum degree of G. +is conjecture has been confirmed for planar graphs with maximum degree at least 7 or at
most 5, i.e., the only open case of TCC is that of maximum degree 6. It is known that every planar graph G of Δ(G)≥ 9 or
Δ(G) ∈ 7, 8{ } with some restrictions has a total (Δ(G) + 1)-coloring. In particular, in (Shen and Wang, 2009), the authors proved
that every planar graph with maximum degree 6 and without 4-cycles has a total 7-coloring. In this paper, we improve this result
by showing that every diamond-free and house-free planar graph of maximum degree 6 is totally 7-colorable if every 6-vertex is
not incident with two adjacent four cycles or three cycles of size p, q, ℓ for some p, q, ℓ􏼈 􏼉 ∈ 3, 4, 4{ }, 3, 3, 4{ }{ }.

1. Introduction

+roughout the paper, we consider only simple, finite, and
undirected planar graphs and follow [1] for terminologies
and notations not defined here. Given a graph G, we use
V(G) and E(G) to denote the vertex set and the edge set of
G, respectively. For a vertex v ∈ V(G), we denote by dG(v)

the degree of v in G and let NG(v) � u | uv ∈ E(G){ }. A
k-vertex, k− -vertex or k+-vertex is a vertex of degree k, at
most k, or at least k, respectively. For a planar graph G, we
always assume that G is embedded in the plane, and denote
by F(G) the set of faces of G. +e degree of a face f ∈ F(G),
denoted by dG(f), is the number of edges incident with f,
where each cut-edge is counted twice. A face of degree k, at
least k, or at most k is called a k-face, k+-face, or k− -face. A
k-face with consecutive vertices v1, v2, . . . , vk along its
boundary in some direction is often said to be a
(dG(v1), dG(v2), . . . , dG(vk))-face. Two faces are called ad-
jacent if they are incident with a common edge.

A total k-coloring of a graph G is a coloring from
V(G)∪E(G) to 1, 2, . . . , k{ } such that no two adjacent or
incident elements have the same color. A graph G is said to

be totally k-colorable if it admits a total k-coloring. +e total
chromatic number of G, denoted by χt(G), is the smallest
integer k such that G is totally k-colorable. +e total coloring
conjecture (TCC), which was proposed by Behzad [2] and
Vizing [3] independently, states that every simple graph G is
totally (Δ(G) + 2)-colorable, where Δ(G) is the maximum
degree of G. TCC has been confirmed for graphs with the
maximum degree at most 5 [4]. For planar graphs, it is
known that every planar graph G with Δ(G)≥ 7 is
(Δ(G) + 2)-colorable [5]; in particular, if Δ(G)≥ 9, then
χt(G) � Δ(G) + 1 [6, 7]. +erefore, the only open case of
TCC for planar graphs is the ones with maximum degree 6.
As for this special kind of planar graphs, the first work was
conducted by Wang et al. [8], who verified TCC for planar
graphs with maximum degree 6 and without cycles of
length 4. Sun et al. [7] improved the result by proving that
every planar graph G with maximum degree 6 is totally 8-
colorable if G contains no adjacent triangles. In [9], Zhu
and Xu further improved this result by showing that every
planar graph with maximum degree 6 is totally 8-colorable if
the graph does not contain any subgraph isomorphic to a 4-
fan.
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+is papermainly focuses on the sufficient conditions for
planar graphs with maximum degree 6 to be totally 7-col-
orable. As for this topic, it has been proved that χt(G) � 7 if
G does not contain 5-cycles [10] or 4-cycles [11]. We will
show that every planar graph G with Δ(G) � 6 has a total 7-
coloring if G contains no some forbidden 4-cycles, which
improves the result of [11].

Theorem 1. Suppose that G is a planar graph with Δ(G) � 6.
If G does not contain a subgraph isomorphic to a diamond or
a house, as shown in Figure 1, and every 6-vertex in G is not
incident with two adjacent 4-cycles or 3-cycles with sizes
p, q, ℓ for some p, q, ℓ􏼈 􏼉 ∈ 3, 4, 4{ }, 3, 4, 4{ }{ }, then χt(G) � 7.

2. Reducible Configurations

Let H be a minimal counterexample to +eorem 1 in the
sense that the quantity |V(H)| + |E(H)| is minimum. +at
is, H satisfies the following properties:

(1) H is a planar graph of maximum degree 6
(2) H contains no subgraph isomorphic to a diamond or

a house.
(3) Every 6-vertex of H is incident with neither two

adjacent 4-cycles nor 3-cycles with sizes p, q, l for
some p, q, ℓ􏼈 􏼉 ∈ 3, 4, 4{ }, 3, 4, 4{ }{ }

(4) H is not totally 7-colorable such that
|V(H)| + |E(H)| is minimum subject to (1), (2), and
(3)

Notice that every planar graph with maximum degree 5
is totally 7-colorable [4]. Additionally, it is easy to check that
every subgraph of H also possesses (2) and (3). +erefore,
every proper subgraph of H has total 7-coloring ϕ using the
color set C � 1, 2, . . . , 7{ }.

For a vertex v, we use Cϕ(v) to denote the set of colors
appearing on v and its incident edges, and
Cϕ(v) � ( 1, 2, . . . , 7{ }\Cϕ(v)). +is section is devoted to
investigating some structural information, which shows that
certain configurations are reducible, i.e., they cannot occur
in H.

Lemma 1

(1) Let uv be an edge of H such that dH(u)≤ 3 or
dH(v)≤ 3. 2en, dH(u) + dH(v)≥ 8

(2) 2e subgraph that is induced by all edges whose two
ends are 2-vertex and 6-vertex, respectively, in H is a
forest.

+e proof of Lemma 1 can be found in [12].
For any componentT of the forest stated in Lemma 1 (2),

we can see that all leaves (i.e., 1-vertices) of T are 6-vertices.
+erefore, T has maximummatching M that saturates every
2-vertex in T. For each 2-vertex v in T, we refer to the
neighbor of v that is saturated by M as the master of v, see
[13]. Clearly, for given M, each 6-vertex can be the master of
at most one 2-vertex, and each 2-vertex has exactly one
master.

+e following result follows from Lemma 1 directly.

Lemma 2. Every 4-face in H is incident with at most one 2-
vertex.

Lemma 3. Let f be a 3-face incident with a 2-vertex. 2en,
every 6-vertex incident withf has only one neighbor of degree 2.

Proof. Let v1 be the 2-vertex incident with f, and v2, v3 be
the two 6-vertex incident with f. We first show that the
result holds for v2 and then holds for v3 analogously. Assume
to the contrary that v2 has another neighbor of degree 2, say
u(≠ v1). Let ϕ be a total 7-coloring of H − v1v2 by the
minimality of H. Erase the colors on v1 and u. Without loss
of generality, we assume Cϕ(v2) � 7{ }. If ϕ(v1v3)≠ 7, then
v1v2 can be properly colored with 7. Hence, H has a total 7-
coloring by coloring v1, u properly (since v1, u are 2-vertices,
there are at least three available colors for each of them) and
a contradiction. So, we assume ϕ(v1v3) � 7. Let
w � (NH(u)\ v2􏼈 􏼉). When ϕ(uw)≠ 7, we can color v1v2 with
ϕ(v2u) and recolor v2u with 7. When ϕ(uw) � 7, let
ϕ(v2v3) � x and ϕ(v2u) � y. We first exchange the colors of
v1v3 and v2v3 and then color v1v2 with y and recolor v2uwith
x. +erefore, we can obtain a 7-total-coloring of H by
coloring v1, u with two available colors. +is contradicts the
assumption of H. □

Lemma 4. H has no (4, 4, 4)-face.

Proof. Suppose that H has a (4, 4, 4)-face with three incident
vertices v1, v2, and v3. By the minimality of H,
H − v1v2, v2v3, v3v1􏼈 􏼉 has a total 7-coloring f. Erase the
colors on vi for i � 1, 2, 3. Clearly, each element in
v1, v2, v3, v1v2, v2v3, v3v1􏼈 􏼉 has at least three available colors.
+erefore, f can be extended to a total 7-coloring of H, a
contradiction. □

Lemma 5. H has no (3, 5, 3, 5)-face.

Proof. Assume to the contrary that H has (3, 5, 3, 5)-face
f � v1v2v3v4, where dH(v1) � dH(v3) � 3 and dH(v2) �

dH(v4) � 5. By the minimality of H, H − v1v2, v2v3,􏼈

v3v4, v4v1} has total 7-coloring ϕ. Erase the colors on v1, v3.
Clearly, each edge of v1v2, v2v3, v3v4, v4v1􏼈 􏼉 has at least two
available colors. +erefore, we can properly color edges
v1v2, v2v3, v3v4 and v4v1. Additionally, since v1 and v3 are

(a) (b)

Figure 1: (a) Diamond. (b) House.
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3-vertices and they are not adjacent in H (because H

contains no subgraph isomorphic to a diamond), we can
properly color v1 and v3 with two available colors. Hence, we
obtain a total 7-coloring of H and a contradiction. □

Lemma 6. Every 6-vertex incident with a 2-vertex in H is
adjacent to at most five 3− -vertices.

Proof. Let v be a 6-vertex incident with a 2-vertex v1 in H.
Assume to the contrary that NH(v) contains six 3− -vertices.
Let NH(v) � v1, v2, v3, v4, v5, v6􏼈 􏼉, where dH(v1) � 2,

dH(vi)≤ 3 for i � 2, 3, 4, 5, 6. By the minimality of H, H −

vv1􏼈 􏼉 has total 7-coloring ϕ. Without loss of generality, we
assume Cϕ(v) � 7{ }. Erase the colors on vi for
i � 1, 2, 3, 4, 5, 6. If 7 does not appear on the edges incident
with v1, then we can properly color vv1 with 7. Otherwise, we
can properly color vv1 with ϕ(v) by recoloring v with 7.
Additionally, since v1, v2, v3, v4, v5, v6 are 3− -vertices, there is
at least one available color for each of them, and by Lemma 1
(1), vivj ∉ E(H) for any i, j ∈ 1, 2, . . . , 6{ }, i≠ j. Hence, we
can obtain a 7-total-coloring of H and a contradiction. □

Lemma 7. H contains no configurations depicted in Figure 2,
where the vertices marked by • have no other neighbors in H.

Proof. For configuration (1), by the minimality of H, H −

vv1􏼈 􏼉 has 7-total-coloring ϕ. Without loss of generality, we
assume that Cϕ(v) � 1, 2, 3, 4, 5, 6{ }. If ϕ(v1u1)≠ 7 (or
ϕ(v2u2)≠ 7), then we can properly color vv1 with 7 (or with
ϕ(vv2) by recoloring vv2 with 7). If ϕ(v4u)≠ 7, then we can
properly color vv1 with ϕ(vv4) by recoloring vv4 with 7. So,
we assume ϕ(u1v1) � ϕ(u2v2) � ϕ(uv4) � 7. Let ϕ(u1u2) �

c1. Obviously, c1 ≠ 7. If c1 ≠ϕ(vv2), then we can recolor u1u2
with 7, u1v1 with c1, u2v2 with c1, and then properly color vv1
with 7. If c1 � ϕ(vv2), then c1 ≠ ϕ(vv4). +erefore, we can
safely interchange the colors of vv2 and vv4, recolor u1u2
with 7, u1v1 with c1, u2v2 with c1, and then properly color vv1
with 7. +us, we obtain a 7-total-coloring of H and a
contradiction.

For configuration (2), let ϕ be a 7-total-coloring of
H − vv1􏼈 􏼉. Assume that Cϕ(v) � 1, 2, 3, 4, 5, 6{ }, where
ϕ(vvi) � i − 1 for i � 2, 3, 4, 5, 6, and ϕ(v) � 6. By a similar
argument as in (1), we assume ϕ(u1v1) � ϕ(u2v2) �

ϕ(u3v3) � ϕ(uv5) � 7. Let ϕ(u1u2) � c1 and ϕ(v2u3) � c2.
Obviously, c1, c2 ≠ 7. First, if c1 ∉ 1, c2􏼈 􏼉, then we can recolor
u1u2 with 7, u1v1 with c1, u2v2 with c1, and then properly
color vv1 with 7. Second, if c1 � 1, then c1 ≠ c2. When c2 ≠ 4,
we can safely interchange the colors of vv2 and vv5, recolor
u1u2 with 7, u1v1 with c1, u2v2 with c1, and then properly
color vv1 with 7. When c2 � 4, we can safely interchange the
colors of vv2 and vv3, recolor u1u2 with 7, u1v1 with c1, u2v2
with c1, and then properly color vv1 with 7. +ird, if c1 � c2,
then c1 ≠ 1. When c1 ≠ 2, we can recolor u1u2 and v2u3 with
7, recolor u1v1, u2v2, and u3v3 with c1, and then properly
color vv1 with 7. When c1 � 2, we can safely interchange the
colors of vv3 and vv5, recolor u1u2 and v2u3 with 7, recolor
u1v1, u2v2, and u3v3 with c1, and then properly color vv1 with
7. Hence, we obtain a 7-total-coloring of H and a
contradiction.

For configuration (3), let ϕ be a 7-total-coloring of
H − vv1􏼈 􏼉. Assume that Cϕ(v) � 1, 2, 3, 4, 5, 6{ }, where
ϕ(vvi) � i − 1 for i � 2, 3, 4, 5, 6, and ϕ(v) � 6. By a similar
argument as in (1), assume that ϕ(u1v1) � ϕ(u2v2) �

ϕ(u3v3) � 7. Let ϕ(u1u2) � c1 and ϕ(u2v3) � c2. Obviously,
c1, c2 ≠ 7 and c1 ≠ c2. If c1 ≠ 1, then we can recolor u1u2 with
7, u1v1 with c1, u2v2 with c1, and then properly color vv1 with
7. If c1 � 1, then c2 ≠ 1.+erefore, we can recolor u1u2 with 7,
u1v1 with c1, u2v2 with c2, u2v3 with c1, and then properly
color vv1 with 7. So, we obtain a 7-total-coloring of H and a
contradiction. □

3. Discharging

In this section, to complete the proof of +eorem 1, we will
use the discharging method to derive a contradiction. For a
vertex v, we denote by n3(v) and n4(v) (or simply by n3 and
n4) the number of 3-faces and 4-faces incident with v, re-
spectively. For a face f, we denote by m2(f) and m3(f) (or
simply by m2 and m3) the number of 2-vertices and 3-
vertices incident with f, respectively.

According to Euler’s formula |V(H)| − |E(H)|+

|F(H)| � 2, we have

􏽘
v∈V(H)

dH(v) − 4( 􏼁 + 􏽘
f∈F(H)

dH(f) − 4( 􏼁 � − 8< 0.
(1)

Now, we define c(x) to be the initial charge of
x ∈ V(H)∪F(H). Let c(x) � dH(x) − 4 for each x ∈
V(H)∪F(H). Obviously, 􏽐x∈(V(H)∪F(H))ch(x) � − 8< 0.
+en, we apply the following rules to reassign the initial
charge that leads to a new charge c′(x). If we can show that
c′(x)≥ 0 for each x ∈ V(H)∪F(H), then we obtain a
contradiction and complete the proof. +e discharging rules
are defined as follows:

(R1): from each k-vertex to each of its incident k′-face
f, transfer

(1/3) if k ∈ 5, 6{ }, k′ � 3, and f is a (5+, 5+, 5+)-face
(1/2) if k ∈ 5, 6{ }, k′ � 3, and f is a (4− , 5+, 5+)-face or
(4− , 4− , 5+)-face
(1/5) if k � 5, k′ � 4, and f is incident with a 2-vertex
or 3-vertex

(R2): from each 6-vertex to each of its incident 4-face f,
transfer

(1/4) if f is a (2, 6, 4+, 6)-face
(5/12) if f is a (2, 6, 3, 6)-face
(2/15) if f is a (3, 5+, 5+, 5+)-face or (3, 6, 4, 5)-face
(1/6) if f is a (3, 6, 4, 6)-face
(1/3) if f is a (3, 6, 3, 6)-face
(7/15) if f is a (3, 6, 3, 5)-face

(R3): from each 6-vertex u to each of its adjacent 2-
vertex v, transfer

(1/2) if v is incident with a 3-face
(4/5) if v is not incident with a 3-face and u is a master
of v

(1/5) if v is not incident with a 3-face and u is not a
master of v
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(R4): from each 4-face to each of its adjacent k-vertex v,
transfer

(1/2) if k � 2 and v is not incident with a 3-face
(1/3) if k � 3 and v is not incident with a 3-face

(R5): from each 5+-face to each of its adjacent k-vertex
v, transfer

1 if k � 2 and v is incident with a 3-face
(1/2) if k � 2 and v is not incident with a 3-face
(1/2) if k � 3 and v is incident with a 3-face
(1/3) if k � 3 and v is not incident with a 3-face

(R6): each 5+-face transfers (1/6) to its adjacent
(4− , 4− , 5+)-face
(R7): every 4+-face with positive charge after R1 to R6
transfers its remaining charges evenly among its in-
cident 6-vertices.

+e rest of this article is to check that c′(x)≥ 0 for every
x ∈ V(H)∪F(H).

4. Final Charge of Faces

Let f be a face of H. Suppose that f is a 3-face. By Lemma 1
(1) and Lemma 4, it follows that f is incident with at most
two 4− -vertices. If f is incident with at most one 4− -vertex,
then by (R1), c′(f) � 3 − 4 + 3 × (1/3) � 0 or c′(f) � 3−

4 + 2 × (1/2) � 0. If f is incident with two 4− -vertices, then
by (R1) and (R6), c′(f) � 3 − 4 + (1/2) + 3 × (1/6) � 0.

Suppose that f is a 4-face. Clearly, f is not adjacent to a
3-face since H does not contain any subgraph isomorphic to
a house. If f is incident with neither a 2-vertex nor a 3-
vertex, then c′(f) � c(f) � 0; if f is incident with a 2-
vertex, then f is a (2, 6, 3+, 6)-face by Lemma 1 (1) and
Lemma 2, and the 2-vertex is not incident with any 3-face
(since H contains no subgraph isomorphic to a diamond).
So, by (R2), (R4), and (R7), c′(f) � 2 × (5/12) − (1/2) −

(1/3) � 0 (when f is incident with a 3-vertex) or c′(f) �

2 × (1/4) − (1/2) � 0 (when f is not incident with any 3-
vertex); if f is not incident with a 2-vertex but is incident
with a 3-vertex, then f is either a (3, 5+, 4+, 5+)-face or a 3,
(3, 5+, 3, 6)-face by Lemma 1 (1) and Lemma 5. For the
former case, after (R1), (R2), and (R4), f has at least 3 ×

(2/15) − (1/3) � (1/15) (when f is (3, 5+, 5+, 5+)-face) or
(1/5) + (2/15) − (1/3) � 0 (when f is (3, 5+, 4, 5)-face) or
2 × (1/6) − (1/3) � 0 (when f is (3, 6, 4, 6)-face). +erefore,

c′(f)≥ 0 by (R7). For the latter case, c′(f) � (1/5)+

(7/15) − 2 × (1/3) � 0 by (R1), (R2), (R4), and (R7) (when f

is (3, 5, 3, 6)-face), or c′(f) � (1/3) + (1/3) − 2 × (1/3) � 0
by (R2), (R4), and (R7) (when f is (3, 6, 3, 6)-face).

Suppose that f is a 5-face. Since H does not contain any
subgraph isomorphic to a house, it has that every 2-vertex
incident with it is not incident with a 3-face. Obviously,
m2 + m3 ≤ 2. If m2 + m3 ≤ 1, then f has at least
5 − 4 − (1/2)(m2 + m3) − (1/6)(5 − 2(m2 + m3))≥ 0 after
(R5) to (R6), and hence, c′(f)≥ 0 by R7. If m2 + m3 � 2,
then f is not adjacent to any (4− , 4− , 5+)-face. Hence, f has
at least 5 − 4 − (1/2)(m2 + m3) � 0 after (R5) to (R6), and
c′(f)≥ 0.

Suppose that f is a 6-face. +en, at most one 2-vertex
incident with f is incident with a 3-face. Otherwise, H

contains a subgraph isomorphic to a house. By Lemmas 1 (1)
and (2), it is easy to see that m2 ≤ 2 and m2 + m3 ≤ 3. When
m2 + m3 ≤ 2, the number of (4− , 4− , 5+)-faces adjacent to f

is at most 6 − 2(m2 + m3). +erefore, f has at least
min 6 − 4 − 1 − (1/2) − 2 × (1/6), 6 − 4 − 1 − 4 × (1/6), 6−{

4 − 6 × (1/6)} � (1/6) after (R5) to (R6), and hence,
c′(f)≥ 0 by R7. When m2 + m3 � 3, it follows that f is not
adjacent to any (4− , 4− , 5+)-faces. +erefore, f has at least
6 − 4 − 1 − 2 × (1/2) � 0 after (R5) to (R6), and c′(f)≥ 0.

For the convenience of proving c′(v)≥ 0 for every
v ∈ V(H), we first introduce the following lemma, which
indicates that every 7+-face has positive charges.

Lemma 8. Let v be a 6-vertex. 2en, v receives at least (1/8)

from each of its incident 7+-face by (R7).

Proof. Let f be a k-face incident with v, where k is an integer
and k≥ 7. Clearly, the number of (4− , 4− , 5+)-faces adjacent
to f is at most k − 2(m2 + m3).

Suppose k≥ 8. +en, f has at least k − 4 − m2 − (1/2) ×

m3 − (1/6) × (k − 2 × (m2 + m3)) � (5/6)k − 4 − (2/3)m2 −

(1/6)m3 charges after (R5) to (R6) since 0≤m2 ≤ ⌈k − 1/2⌉

by Lemma 1 (2) and m2 + m3 ≤ ⌈k/2⌉ by Lemma 1 (1).
+erefore, v receives at least ((5/6)k − 4 − (2/3)m2−

(1/6)m3/k − m2 − m3) � (5/6) − (1/6) · (24 − m2 − 4m3/k −

m2 − m3)≥ (5/6) − (1/6) × (17/4) � (1/8) when m2 � 3,

m3 � 1, k � 8 from f.
Suppose k � 7. Clearly, m2 + m3 ≤ 3. Particularly, in the

case of m2 + m3 � 3, f is not adjacent to any
(4− , 4− , 5+)-face. First, when m2 � 3, it has that f is incident

v1 v2

v3
v4

v5

v6

v

u1 u2

u

(a)

v3

v5

v

v6 v4

v2

v1
u1

u3u2

u

(b)

u3

u2
u1

v
v2 v3

v4
v5

v6

v1

(c)

Figure 2: +ree forbidden configurations in H.
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with at most two 2-vertices that are incident with a 3-face
(otherwise, there is a subgraph isomorphic to a house and a
contradiction). +erefore, f has at least 7 − 4 − 2 − (1/2) �

(1/2) charges after (R5) to (R6). Second, when m2 � 2, it
follows that m3 ≤ 1. If m3 � 0, then f is adjacent to at most
three (4− , 4− , 5+)-faces (note that when f is adjacent to a
(4− , 4− , 5+)-face, f has to be incident with a 4-vertex. So, f

is incident with at most four 6-vertices in this case).
+erefore, f has at least 7 − 4 − 2 − 3 × (1/6) � (1/2)

charges after (R5) to (R6). If m3 � 1, then f is not adjacent to
any (4− , 4− , 5+)-face. +erefore, f has at least 7 − 4 − 2 −

(1/2) � (1/2) charges after (R5) to (R6). +ird, when m2 ≤ 1,
it has that m3 ≤ 2. In this case, we can see that f has at least
7 − 4 − 1 − (1/2) − (1/2) � 1 charges after (R5) to (R6). All
of the above show that f sends v at least (1/4) × (1/2) �

(1/8) by (R7).
By Lemma 8, we can see that c′(f)≥ 0 for every

7+-face f. □

4.1. Final Charge of Vertices. We start with an observation
and a lemma.

Observation. Let v be a vertex of H. Since H has no subgraph
isomorphic to a diamond, we have n3 ≤ 􏼆( dH(v) − 1)/2􏼇.
Moreover, if v is a 6-vertex, then by the condition of +e-
orem 1, n4 ≤ 3 and n3 + n4 ≤ 3.

Lemma 9. Suppose that v is a 6-vertex incident with three
consecutive faces of size 4, 6, and 4, respectively, where the 6-face
is denoted by f, see Figure 3(a).2en, by (R7), f gives v at least

(1) (1/8) if f is incident with at most two 3− -vertices
(2) (1/6) if f is incident with three 3− -vertices and

dH(v1) � dH(v2) � 2 (see Figure 3(b))
(3) (1/9) if f is incident with three 3− -vertices and

dH(v1) � dH(v2) � 3 (see Figure 3(c))
(4) (2/9) if f is incident with three 3− -vertices and

dH(v1)≠dH(v2)

Proof. Since H contains no subgraph isomorphic to a di-
amond or a house, v1 and v2 are not incident with a 3-face if
dH(v1)≤ 3 and dH(v1)≤ 3, and f is incident with at most
one 2-vertex that is incident with a 3-face.

For (1), if dH(v1)≤ 3 and dH(v2)≤ 3, then f is adjacent
to at most two (4− , 4− , 5+)-faces. +erefore, f has at least
6 − 4 − (1/2) − (1/2) − 2 × (1/6) � (4/6) charges after (R5)
to (R6), and v receives at least (1/4) × (4/6) � (1/6) from f.

If exact one of v1 and v2 is a 3− -vertex, say v1, then we
consider two cases. First, m2 + m3 � 2. In this case, f is
adjacent to at most one (4− , 4− , 5+)-face. Particularly, if v1 is
a 2-vertex, denoted by x � NH(v1)/ v{ }, then x is not adjacent
to another 2-vertex that is incident with a 3-face by Lemma
3. +is implies that when f is incident with a 2-vertex that is
incident with a 3-face, the 2-vertex is a neighbor of v2, and so
f is not incident with any (4− , 4− , 5+)-face. Consequently,
f has at least min{6 − 4 − (1/2) − 1 � (1/2) (when v1 is a

2-vertex)and 6 − 4 − (1/3) − 1 − (1/6) � (1/2) (when v1 is a
3-vertex)}� (1/2) charges after (R5) to (R6), and v receives at
least (1/4) × (1/2) � (1/8) from f. Second, m2 + m3 � 1, i.e.,
f is incident with only one 3− -vertex v1. +en, f is adjacent
to at most three (4− , 4− , 5+)-faces. +erefore, f has at least
6 − 4 − (1/2) − 3 × (1/6) � 1 charges after (R5) to (R6), and
v receives at least (1/4) from f.

If dH(v1)≥ 4 and dH(v2)≥ 4, then m2 + m3 ≤ 2. When
m2 + m3 � 2, one can readily check that f is not adjacent to
any (4− , 4− , 5+)-face.+erefore, f has at least 6 − 4− (1/2) −

1 � (1/2) charges after (R5) to (R6), and v receives at least
(1/4) × (1/2) � (1/8) from f. When m2 + m3 � 1, it has that
f is adjacent to at most two (4− , 4− , 5+)-faces. +erefore, f

has at least 6 − 4 − 1 − 2 × (1/6) � (2/3) charges after (R5) to
(R6), and v receives at least (1/5) × (2/3) � (2/15) from f.
When m2 + m3 � 0, it has that f has at least 6 − 4 − 4 ×

(1/6) � (4/3) charges after (R5) to (R6), and v receives more
than (1/6) × (4/3) � (2/9) from f.

For (2) and (3), it follows that f is not adjacent to any
(4− , 4− , 5+)-face. If dH(v1) � dH(v2) � 2, then the other
3− -vertex incidents with f are a 3-vertex.+erefore, f has at
least 6 − 4 − (1/2) − (1/2) − (1/2) � (1/2) charges after (R5)
to (R6), and v receives at least (1/2) × (1/3) � (1/6) from f.
If dH(v1) � dH(v2) � 3, then f has at least 6 − 4 − (1/3) −

(1/3) − 1 � (1/3) charges after (R5) to (R6), and v receives at
least (1/3) × (1/3) � (1/9) from f.

For (4), it is clear that v1 and v2 are 3− -vertices. Without
loss of generality, we assume dH(v1) � 2 and dH(v2) � 3, see
Figure 3(d), where v3 is another 3− -vertex incident with f. If
dH(v3) � 2, then v3 is not incident with a 3-face by Lemma 3.
+erefore, f has at least 6 − 4 − (1/2) − (1/3)− (1/2) � (2/3)

charges after (R5) to (R6), and v receives at least (1/3) ×

(2/3) � (2/9) from f.
In the following, we turn to the proof of c′(v)≥ 0 for

every v ∈ V(H). Let v ∈ V(H) be a vertex of H. By Lemma 1
(1), we have dH(v)≥ 2.

Suppose that v is a 2-vertex. +en, v has two neighbors
with degree 6 by Lemma 1 (1). If v is incident with a 3-face,
then v is incident with a 5+-face. So, v receives (1/2) from
each of its neighbors by (R3) and receives 1 from its incident
5+-face. Hence, c′(v) � 2 − 4 + 2 × (1/2) + 1 � 0. If v is not
incident with a 3-face, then by (R3), v receives (4/5) from its
master and (1/5) from its other neighbor of degree 6 and
receives (1/2) from each of its adjacent 4+-face by (R4) and
(R5). +erefore, c′(v) � 2 − 4+ (4/5) + (1/5) +2× (1/2) � 0.

Suppose that v is a 3-vertex. If v is incident with a 3-face,
then v is incident with two 5+-faces since H does not contain
any subgraph isomorphic to a house. So, by
(R5), c′(v) � 3 − 4 + 2 × (1/2) � 0. If v is not incident with
any 3-face, then v is incident with three 4+-faces. Hence, by
(R4) and (R5), c′(v) � − 1 + 3 × (1/3) � 0.

Suppose that v is a 4-vertex. By the discharging rules (R1)
to (R7), we have c′(v) � c(v) � 0.

Suppose that v is a 5-vertex. By the observation, we have
n3 ≤ 2. If n3 � 0, then v is incident with at most five 4-faces.
So, by (R1), c′(v)≥ 1 − 5 × (1/5) � 0. If n3 � 1, then n4 ≤ 2 by
the condition of +eorem 1. So, by (R1), c′(v)≥
1 − (1/2) − 2 × (1/5) � (1/10) � (1/10). If n3 � 2, then n4 � 0
by the same reason. So, by (R1), c′(v)≥ 1 − 2 × (1/2) � 0.
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Suppose that dH(v) � 6. By the observation, we have
n3+n4 ≤ 3. Denote by t2 the number of 2-vertices adjacent to
v. +en, t2 ≤ 5 by Lemma 6. When t2 � 0, it is clear that
c′(v)≥ 6 − 4 − 3 × (1/2) � (1/2) by (R1) and (R2). When
t2 � 1, denote by u the unique 2-vertex adjacent to v. First,
n3 + n4 ≤ 2. +en, c′(v)≥ 6 − 4 − (4/5) − 2 × (1/2) �

c′(v)≥ 6 − 4 − (1/2) − 3 × (1/5) � 0 by (R1), (R2), and (R3).
Second, n3 + n4 � 3. In this case, by the condition of +e-
orem 1, either n3 � 3 or n4 � 3. For the former, we have
c′(v)≥ 6 − 4 − (1/2) − 3 × (1/2) � 0 by (R1), (R2), and (R3).
For the latter case, if u is incident with a (2, 6, 3, 6)-face, then
v is incident with at most one (3, 5, 3, 6)-face by Lemma 6.
+erefore, c′(v)≥ 6 − 4 − (4/5) − (5/12) − (7/15) − (1/6) �

(3/20) by (R2) and (R3); if u is not incident with a
(2, 6, 3, 6)-face, then v is incident with at most two (3, 5, 3,
6)-faces. +erefore, c′(v)≥ 6 − 4 − (4/5) − (1/4) − (7/15) −

(7/15) � (1/60) by (R2) and (R3). In what follows, we as-
sume t2 ≥ 2, and then, by Lemma 3, we have that every 2-
vertex is not incident with a 3-face. +us, when n3+n4 � 0,
c′(v)≥ 6 − 4 − (4/5) − 4 × (1/5) � (2/5) by (R3). Now, we
further consider the following three cases:

Case 1. n3+n4 � 1. If n3 � 1 and n4 � 0, then t2 ≤ 4 by
Lemma 3.+erefore, c′(v)≥ 6 − 4 − (4/5) − 3 × (1/5) −

(1/2) � (1/10) by (R1) and (R3). If n3 � 0 and n4 � 1,
denoted by f the 4-face incident with v, then by Lemma
6 and (R2) and (R3), when f is a (2, 6, 3, 6)-face, it has
that t2 ≤ 4 and c′(v)≥ 6 − 4 − (4/5) − 3 × (1/5)−

(5/12) � (11/60); when f is a (2, 6, 4+, 6)-face, t2 ≤ 5
and c′(v)≥ 6 − 4 − (4/5) − 4 × (1/5) − (1/4) � (3/20);
when f is a (3, 5+, 3, 5+)-face, t2 ≤ 3 and c′(v)≥
6 − 4 − (4/5) − 2 × (1/5) − (7/15) � (1/3); when f is a
(3, 5+, 4+, 5+)-face, t2 ≤ 4 and c′(v)≥ 6 − 4− (4/5) − 3 ×

(1/5) − (1/6) � (13/30); and when f is a (4+, 4+,

4+, 4+)-face, t2 ≤ 4 and c′(v)≥ 6 − 4 − (4/5) − 3 ×

(1/5) � (3/5).
Case 2. n3 + n4 � 2. If t2 � 2, then c′(v)≥ 6 − 4− (4/5) −

(1/5) − (1/2) − (1/2) � 0 by (R1), (R2), and (R3). If
t2 ≥ 3, then we have n3 ≤ 1 by Lemma 3 and the as-
sumption that H contains no subgraph isomorphic to a
diamond. In the following, we consider two subcases:

Case 2.1. n3 � 0 and n4 � 2. Let NH(v) � v1, v2, v3, v4,􏼈

v5, v6} and f1 and f2 be the two 4-faces incident with
v, see Figure 4(a). By Lemma 2, each of f1 and f2 is
incident with at most one 2-vertex, so t2 ≤ 4.

When t2 � 3, it has that at least one of f1, and f2 is
incident with a 2-vertex, say f1. By Lemma 1 (1), it
follows that f1 is a (2, 6, 3+, 6)-face. If f1 is a (2, 6, 4+,
6)-face, then c′(v)≥ 6 − 4 − (4/5) − 2 × (1/5)−

(1/4) − (7/15) � (1/12) by (R2) and (R3). If f1 is a (2,
6, 3, 6)-face, then we further consider the following
two cases regarding to f2. First, f2 is incident with a
2-vertex, i.e.,f2 is a (2, 6, 3+, 6)-face by Lemma 1 (1). If
f2 is a (2, 6, 4+, 6)-face, then c′(v)≥ 6 − 4 − (4/5) −

2 × (1/5) − (1/4) − (5/12) � (2/15) by (R2) and (R3).
Otherwise, f2 is a (2, 6, 3, 6)-face. In this case,
according to Lemmas 7 (1) and (2), we can deduce that
f is a 6+-face. +erefore, according to Lemmas 8 and
9, v receives at least (1/8) from f by (R7). So,
c′(v)≥6 − 4 − (4/5) − 2 × (1/5) − 2× (5/12) + (1/8) �

(11/120) by (R2), (R3), and (R7). Second, f2 is not
incident with any 2-vertex.+en, we consider m3(f2),
the number of 3-vertices incident with f2. Obviously,
m3(f2)≤1 by Lemma 1 (1) and Lemma 6 (since
t2 �3). Hence, c′(v)≥6 − 4 − (4/5) − 2× (1/5)−

(5/12) − (1/6) � (13/60) by (R2) and (R3).
When t2 � 4, it follows that both f1 and f2 are
(2, 6, 3+, 6)-faces by Lemma 1 (1) and Lemma 2, and at
most one of them is a (2, 6, 3, 6)-face by Lemma 6.
Naturally, v4 and v5 are 2-vertex, and neither of them
is incident with a 3-face. Denote by f the face incident
with v, v1, and v2, see Figure 4(a).+en, dH(f′) � 6 by
Lemma 7 (1). If dH(f′) � 6, then by (R7), it sends at
least min (1/3) × (6 − 4 − 2 × (1/2) − (1/2)),{ (1/4) ×

(6 − 4 − 2 × (1/2))} � (1/6) to v. If dH(f′)≥ 7, then it
sends at least (1/8) to v by Lemma 8. +erefore,
c′(v)≥6 − 4 − (4/5) − 3×(1/5) − (5/12) − (1/4)+(1/8)�

(7/120) by (R2) and (R3).
Case 2.2. n3 � 1, and n4 � 1. Denote by f1 and f2 the
3-face and 4-face incident with v and f′ the face
incident with v and not adjacent to f1 or f2, see
Figure 4(b). By Lemmas 2 and 3, we can see that f1 is
not incident with any 2-vertex (since t2 ≥ 3), f2 is
incident with one 2-vertex, and v4 and v5 are 2-ver-
tices. Obviously, v4 and v5 are not incident with any 3-
face. Additionally, by Lemma 7 (1), we can see that
dH(f′)≥ 6. +us, with an analogous proof as above
(Case 2.1), v can receive at least (1/8) from f′ by (R7).
+erefore, c′(v)≥ 6 − 4 − (4/5) − 2 × (1/5) − (1/2)−

(5/12) + (1/8) � (1/120) by (R2) and (R3).
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Figure 3: Cases of Lemma 9.
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Case 3. n3 + n4 � 3. In this case, since we assume t2 ≥ 2,
it has that n3 � 0 and n4 � 3 by the condition of
+eorem 1 and Lemma 3. Denote by f1, f2, andf3 the
three 4-faces incident with v and f1′, f2′, andf3′ the
three 5+-faces incident with v, see Figure 5. By Lemma
2, it has that t2 ≤ 3.

Case 3.1. t2 � 2. Without loss of generality, we assume
f1 and f2 are incident with 2-vertices. +en, both of
f1 and f2 are (2, 6, 3+, 6)-faces by Lemma 1 (1). Now,
we turn to considering f3. First, f3 is incident with
two 3-vertices, i.e., both v1 and v2 are 3-vertices. +en,
at most one of f1 andf2 is a (2, 6, 3, 6)-face. If both f1
and f2 are (2, 6, 4+, 6)-face, then c′(v)≥ 6 − 4−

(4/5) − (1/5) − (7/15) − (1/4) − (1/4) � (1/30) by
(R2) and (R3). Otherwise, we assume f1 is a (2, 6, 3,
6)-face. In this case, by (R7), when dH(v5) � 3,
according to Lemmas 8 and 9, v can receive at least
(1/3) × (5 − 4 − (1/3) − (1/2)) � (1/18) from fi

′ for
i � 1, 2, 3 if fi

′ is a 5-face; when dH(v5) � 2, we have
that dH(v6) � 3, and v can receive at least (1/3) × (5 −

4 − (1/3) − (1/3)) � (1/9) from f1′ if f1′ is a 5-face and
at least (1/3) × (5 − 4 − (1/3) − (1/2)) � (1/18) from
f3′ if f3′ is a 5-face. Additionally, by Lemmas 8 and 9, v
can receive at least 1/9 from fi

′ for i � 1, 2, 3 if fi
′ is a

6+-face. +erefore, c′(v)≥6 − 4 − (4/5) − (1/5)−

(7/15) − (5/12) − (1/4) +3× (1/18) � (1/30) by (R2)
and (R3). Second, f3 is incident with at most one 3-
vertices. +en, c′(v)≥6 − 4 − (4/5) − (1/5) − (1/6)−

(5/12) − (5/12) � 0 by (R2) and (R3).
Case 3.2. t2 � 3. +en, each of fi is a (2, 6, 3+, 6)-face,
where i ∈ 1, 2, 3{ }. Particularly, by Lemma 6, at most
two of them are (2, 6, 3, 6)-faces. When v is incident
with at most one (2, 6, 3, 6)-face, we, without loss of
generality, assume that f3 is a (2, 6, 3, 6)-face, and by
symmetry, let dH(v1) � 3 and dH(v2) � 2. If v6 (or v3)
is a 2-vertex, then by Lemma 7 (2) (or Lemma 7 (1)),
f1′ (or f3′) is a 6+-face. If neither v6 nor v3 is a 2-vertex,
then v4 and v5 are 2-vertices, and by Lemma 7 (1),f2′ is
a 6+-face. +erefore, by Lemmas 8 and 9, v can receive
at least (1/8) from fi

′ for some i ∈ 1, 2, 3{ } by (R7)
(note that v is adjacent to at most one 3-vertex in this
case). Hence, c′(v)≥6 − 4 − (4/5) − 2× (1/5) − (1/4)−

(5/12) − (1/4) + (1/8) � (1/120) by (R2) and (R3).
When v is incident with two (2, 6, 3, 6)-faces, by
symmetry, we assume f1 and f2 are (2, 6, 3, 6)-faces.
Without loss of generality, we assume dH(v1) � 2 and
then dH(v2)≥4.

First, if dH(v5) � 3 and dH(v5) � 3, then f1′ is a 6+-face
by Lemma 7 (1). When f1′ is a 6-face, f1′ gives v at least
(1/3) × (6 − 4 − (1/2) − (1/2) − (1/2)) � (1/6); when f1′ is a
k-face, where k≥ 7, by (R2), (R3), and (R7), we can deduce
that f1′ gives v at least (k − 4 − 2× (1/2) − (m2(f1′) − 2)−

(1/2) × m3(f1′) − (1/6) × (k − 2m2(f1′) − 2m3(f1′))/k−

m2(f1′)− m3(f1′))≥ (5/24)(k � 7,m2(f1′) � 3,m3(f1′) � 0).
Consider the face f2′. If f2′ is a 6+-face, then by (R7), f2′

sends at least (1/9) to v according to Lemmas 8 and 9. If f2′ is
a 5-face, then by Lemmas 7 (1) and (2), we can deduce that
dH(v4) � 3. So, f2′ sends at least (1/3) × (5 − 4 − (1/3) −

(1/3)) � (1/9) to v by (R7).
Consider the face f3′. If f3′ is a 6+-face, then by (R7), f3′

sends at least 1/8 to v according to Lemmas 8 and 9. If f3′ is a
5-face, then when dH(v3) � 3, f3′ sends at least (1/3) × (5 −

4 − (1/3) − (1/2)) � (1/18) to v; when dH(v3) � 2, let
v2, v, v3, u1, u2 be the five vertices incident with f3′, where u1
is adjacent to v3 and u2 is adjacent to v2.+en, dH(u1) � 6 by
Lemma 1 (1), and dH(u2)≥ 3 by Lemma 7 (3). If dH(u2)≥ 4,
then v can receive at least (1/3) × (5 − 4 − (1/2)−

2 × (1/6)) � (1/18) from f3′. Otherwise, if dH(u2) � 3, then
dH(v2)≥ 5, and f3 is incident with only one 3− -vertex v1. So,
f3 has at least 2 × (1/4) + (1/5) − (1/2) � (1/5) after (R1),
(R2), and (R4). So, f3 gives v at least (1/15) by (R7) in this
case.

To sum up, we have c′(v)≥6 − 4 − (4/5) − 2× (1/5)−

(1/4) − (5/12) − (5/12) + (1/6) + (1/9) + (1/18) � (1/20) by
(R2) and (R3).

Second, if dH(v6) � 3 and dH(v5) � 2, then both f1′ and
f2′ are 6+-faces by Lemmas 7 (1) and (2). So, each of f1′ and
f2′gives v at least (1/8) by Lemmas 8 and 9. In addition, with
the similar analysis as the above, v can receive at least either
(1/18) from f3′ or (1/15) from f3. Hence, c′(v)≥ 6 − 4 −

(4/5) − 2 × (1/5) − (1/4) − (5/12) − (5/12) + (1/8) + (1/8)+

(1/18) � (1/45) by (R2) and (R3).
In all cases, we have shown that c′(x)≥ 0 for every

x ∈ V(H)∪F(H). +erefore, 􏽐x∈V(H)∪F(H)c(x) �

􏽐x∈V(H)∪F(H)c′(x)≥ 0, a contradiction. +is completes the
proof of +eorem 1. □

5. Conclusion

By using the “discharging” approach, we obtain a sufficient
condition for a planar graph of maximum degree 6 to be
totally 7-colorable. Since no planar graphs of maximum
degree 6 that are not totally 7-colorable are found, it is widely
believed that every planar graph of maximum degree 6 has a
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Figure 4: Illustration for the proof of case 2.

f 2′

f 3′f 1′

f 1 f 2

f 3v1 v2

v3

v4v5

v6
v

Figure 5: Illustration for the proof of case 3.
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total 7-coloring [11]. Our result enhances the reliability of
this conjecture. Nevertheless, to prove TCC for planar
graphs, it still requires persistent efforts on the study of
structures of planar graphs of maximum degree 6. As a
future work, we would like to further explore the structural
properties of this kind of graphs, as well as the possibility of
applying them in the proof of TCC for planar graphs.
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