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In this paper, we present a predator-prey system with mutual interference and distributed time delay and study its dynamical
behavior. Based on the existence and universality of mutual interference among species, it is necessary to further study an
impulsive food web system. By using stability theory, slight perturbation technique, and comparison theorem, we obtain some
theoretical results of the system, such as boundedness and permanence. Moreover, numerical experiments are used to verify the
theoretical results and to explore the dynamical behavior of the system, which exhibits rich dynamical behavior such as chaotic
oscillation, periodic oscillation, symmetry-breaking bifurcations, chaotic crises, and period bifurcation. Finally, we give some
practical guidelines for biological systems based on the theoretical results and numerical experiments of the system.

1. Introduction

In the past few decades, food web or food chain predator-
prey system has been widely studied bymany scholars. Many
researchers have obtained some classical theoretical
knowledge of the predator-prey system and given some
practical control strategies, regulation means, and simula-
tion analysis; all these results can be found in these papers
[1–4]. With the evolution and development of the ecological
system, the relationships of dynamics between predators and
prey will continue to be the significant theme of ecology and
mathematics, since its existence and importance.

For the predator-prey system, the average consumption
rate of a prey by a predator is a hot topic, which is called
functional response, and it affects the population relation-
ship between predator and prey. In recent work, for example,
these papers [5–7] presented the influence of different
functional response functions on the predator-prey system.
Moreover, for typical food chain or food web system with an
impulsive effect, we can see these papers [8–10]. Specially,
some models combined different functional response
functions to present the complexity of the system, such as

Sahoo and Poria [11] combined Holling type-I and Holling
type-II to study the role of alternative food as a disease
controller in a disease-induced predator-prey system. Sahoo
and Poria [12] combined general Holling type and Holling
type-I to present a diseased prey-predator model, which gave
an idea for constructing a realistic food chain model through
a proper choice of general Holling parameters. Ghosh et al.
[13] discussed the effect of a modified form of Holling type-
II response function on additional food for a prey-predator
model with prey refuge. In the evolution of biological sys-
tems, the state of species changes often occurs at a certain
moment. /ese processes are affected by short-term dis-
turbances; compared with process duration, the state change
time always can be neglected [14, 15]. So it can be assumed
that these perturbations are instantaneous; i.e., these per-
turbations are the form of impulse. Obviously, the impulsive
effect is often manifested in the medical mutation rhythm
model, biological control model, economic optimization
model, frequency-modulated dynamic model, and phar-
macokinetics; we can see the related literature in [16–19];
and the papers [20, 21] pointed out that impulsive differ-
ential equations are a good mathematical tool for describing
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the evolution of these models. In addition, time delay has
also been extensively studied in predator-prey systems. In
general, two types of time delays have been extensively
studied [22]; i.e., continuous/distributed time delay and
discrete delay. Some impulsive predator-prey models with

distributed time delays are investigated; for example, these
papers [23–25] showed some theoretical results and guiding
significance of several impulsive systems with distributed
time delays. Zhao et al. [26] presented an ecological model
with the effect of impulsive and time delay as follows:

dx1(t)

dt
� rx1(t)

k0 − x1(t)

k1 − x1(t)
  − b3x

2
1(t) − a3x1(t)x2(t) −

a1x1(t)x3(t)

b1 + x1(t) + c1x3(t)
,

dx2(t)

dt
� d1x2(t) 

t

− ∞
F(t − s)x1(s)ds −

a2x2(t)x3(t)

b2 + x2(t) + c2x3(t)
− m1x2(t),

dx3(t)

dt
�

e1a1x1(t)x3(t)

b1 + x1(t) + c1x3(t)
+

e2a2x2(t)x3(t)

b2 + x2(t) + c2x3(t)
− m2x3(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
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t≠ nT,

x1 t+( ) − x1(t) � 0,

x2 t+( ) − x2(t) � 0,

x3 t+( ) − x3(t) � p,

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

t � nT,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where x1(t) is the lowest level prey’s density, x2(t) is the
midlevel predator’s density, and x3(t) is the top predator’s
density at time t.

However, in our best knowledge, mutual interference is
rarely considered in the predator-prey system. Actually, the
phenomenon of mutual interference between predators and
prey has always existed, which was studied by Hassell in
1971, and Hassell detailedly introduced the mutual inter-
ference constant m(0<m≤ 1). For example, a Volterra
system which contains mutual interference is explored by
Hassell as follows [27]:

x′ � xg(x) − ψ(x)ym,

y′ � y − d + kψ(x)ym− 1 − q(y)( ,

⎧⎨

⎩ (2)

where ψ(t) is a functional response. Compared with the
predator-prey system without mutual interference, the
predator-prey system with mutual interference contains
more dynamic behavior. For example, Wang and Zhu [28]
proposed the existence of periodic solutions with mutual
interference as follows:

x′(t) � x(t) a1(t) − b1(t)x(t)(  −
c1(t)x(t)

k + x(t)
y

m
(t),

y′(t) � y(t) − a2(t) − b2(t)y(t)(  +
c1(t)x(t)

k + x(t)
y

m
(t), m ∈ (0, 1).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3)

Guo and Chen [29] explored a predator-prey model with
mutual interference as follows:

x′(t) � x(t) a1(t) − b1(t)x(t)(  −
k1(t)x(t)

a + bx(t) + cy(t)
y

m
(t),

y′(t) � y(t) − a2(t) − b2(t)y(t)(  +
k2(t)x(t)

a + bx(t) + cy(t)
y

m
(t), (0<m≤ 1).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

/ere are few literatures that present the complex dy-
namic behavior of mutual interference systems [30–32].

On the one hand, chaos has a serious impact on the
management of dynamic population systems. Schaffer and

Kot [33] discussed that chaos is a more complex phe-
nomenon, and controlling chaos is a challenging problem.
Sahoo and Poria [34] applied a technique of controlling
chaotic predator-prey population dynamics by supplying
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additional food to the top predator, which study is aimed to
introduce a new nonchemical chaos control mechanism in a
predator-prey system with the applications in fishery
management and biological conservation of prey-predator
species. /e control and management of chaotic population
dynamics are one of the main goals of today’s ecological

mathematical modeling. In our work, we also explore the
impact of chaos on complex systems.

In our work, our main purpose is to explore the effect of
mutual interference in an impulsive food web with dis-
tributed time delays. /e food web system described by
differential equations is presented as follows:

x′(t) � rx(t)
k0 − x(t)

k1 − x(t)
− bx

2
(t) − a3x(t)y(t) −

a1x(t)z(t)m

b1 + x(t) + c1z(t)
,

y′(t) � dy(t) 
t

− ∞
G(t − s)x(s)ds −

a2y(t)z(t)m

b2 + y(t) + c2z(t)
− m1y(t),

z′(t) �
e1a1x(t)z(t)m

b1 + x(t) + c1z(t)
+

e2a2y(t)z(t)m

b2 + y(t) + c2z(t)
− m2z(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
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t≠ nT,

t≠ (n + l − 1)T,

x t+( ) � 1 − δ1( x(t),

y t+( ) � 1 − δ2( y(t),

z t+( ) � 1 − δ3( z(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

t � (n + l − 1)T,

x t+( ) − x(t) � 0,

y t+( ) − y(t) � 0,

z t+( ) − z(t) � p,

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

t � nT,
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(5)

where x(t), y(t), and z(t) represent the densities of
bottom prey, medium-level predators, and top level
predator at time t, respectively. All parameters about the
system are positive. Prey’s intrinsic increase rate is
denoted by r. Capture rate of predator to prey was
expressed by ai(i � 1, 2, 3). In addition, ei(i � 1, 2) rep-
resents the transformation rate of predator to prey. m1
and m2 represent the mortality rate of predators y and z,
respectively. /e fraction of available resources was
represented by k1. rk0 represents the carrying capacity of
the prey, where (0≤ k0/k1 ≤ 1). b represents the internal
competition rate of prey x(t). m is the parameter of
mutual interference, and its range of values is [0, 1]. /e
species are harvested at time t � (n + l − 1)T, and the
fraction of harvest is δ1, δ2, and δ3, respectively, where
their range of values are [0, 1]. Define d as the product of
the conversing rate of prey by predators and average
predation rate. Predators z(t) are added to the system at
t � nT, and the increased amount is p. In this mathe-
matical model, the impulsive period is represented by T,
0< l< 1; n is the nonnegative integer. In fact, it needs

some time for predators to grow by consuming prey, and
the time delay occurs in the functional response term,
where the function G(t) � ae− at satisfies 

+∞
0 G(s)ds � 1

and a is defined as the parameter of distributed time
delay.

Now, we can take a chain transformation q(t) �


t

− ∞ G(t − s)x(s)ds to better explore the system (5). Since


t

− ∞ G(t − s)x(s)ds is convergent and


t

− ∞
G(t − s)ds � lim

A⟶− ∞


t

A
ae

− a(t− s)ds � 1, (6)

we can get

Δq(t) � 
t+

− ∞
G(t − s)x(s)ds − 

t

− ∞
G(t − s)x(s)ds � 0,

t � nT, t � (n + l − 1)T.

(7)

Hence, system (5) can be converted to system (8) as
follows:
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x′(t) � rx(t)
k0 − x(t)

k1 − x(t)
− bx

2
(t) − a3x(t)y(t) −

a1x(t)z(t)m

b1 + x(t) + c1z(t)
,

y′(t) � dy(t)q(t) −
a2y(t)z(t)m

b2 + y(t) + c2z(t)
− m1y(t),

z′(t) �
e1a1x(t)z(t)m

b1 + x(t) + c1z(t)
+

e2a2y(t)z(t)m

b2 + y(t) + c2z(t)
− m2z(t),

q′(t) � ax(t) − aq(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t≠ nT,

t≠ (n + l − 1)T,

x t+( ) � 1 − δ1( x(t),

y t+( ) � 1 − δ2( y(t),

z t+( ) � 1 − δ3( z(t),

q t+( ) � q(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t � (n + l − 1)T,

x t+( ) � x(t),

y t+( ) � y(t),

z t+( ) � z(t) + p,

q t+( ) � q(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t � nT.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

Based on the above discussion, we can explore the dy-
namic property of system (5) by studying system (8). Hence,
system (8) will be mainly considered in this paper.

/e remaining sections of our paper are presented as
follows. In order to get the theoretical results of this paper,
we give some preliminaries in Section 2. In Section 3, the
main theoretical results of this article are given. We compare
this paper with another paper in Section 4. Numerical ex-
periments are used to explore the mutual interference and
the other dynamic property of the system in Section 5. In
Section 6, a conclusion and a brief discussion of this article
are given.

2. Preliminaries

Some preliminaries for proving the theoretical results of
systems are given in this section, which is applied to
Section 3.

X(t) � (x(t), y(t), z(t), q(t)): R+⟶ R4
+ is defined as

the solution of system (8), which is continuous in interval
((n − 1)T, (n + l − 1)T) and ((n + l − 1)T, nT) and
R+ � [0,∞), R4

+ � (x(t), y(t), z(t), q(t)) | x, y, z, q≥ 0 ,

(n ∈ N). Define s as the mapping on the right side of system
(8). Letting V: R+ × R4

+⟶ R+, then V ∈ V0, if

(i) For each solution X(t) ∈ R4
+, the two limits lim(t,y)

⟶((n + l − 1)T+, X)V(t, y) � V((n + l − 1)T+, X)

and lim(t,y)⟶(nT+ ,X)V(t, y) � V(nT+, X) exist,
where V is the continuous in interval ((n − 1)T, (n +

l − 1)T] × R4
+ and ((n + l − 1)T, nT] × R4

+, n � 1, 2 . . .

(ii) V is locally Lipschitzian in X(t)

Definition 1. If there are two positive constants m and M
that make m≤ x(t), y(t), z(t), q(t)≤M, then system (8) is
permanent.

Definition 2. Define D+V(t, X) � limh⟶0+sup(1/h)[V(t +

h, X + hf(t, X)) − V(t, X)] as the upper right derivative of
V(t, X) of system (8), where V ∈ V0, (t, X) ∈
((n − 1)T, (n + l − 1)T] × R4

+, and ((n + l − 1)T, nT] × R4
+.

Remark 1. X(t): R+⟶ R4
+, X(t) is continuous in

((n − 1)T, (n + l − 1)T)∪ ((n + l − 1)T, nT), and X(t+
0 ) �

limt⟶t+
0
X(t) exists, where t0 � (n + l − l)T+ and nT+. /e
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solution X(t) is a piecewise continuous function. At the
same time, the mapping f with smoothness properties can
ensure the global existence and uniqueness of the model (it
can see [35]).

Lemma 1 (see [35]). Let V ∈ V0, h: R+ × R+⟶ R, and h is
the continuous in interval ((n − 1)T, (n + l − 1)T] and
((n + l − 1)T, nT]. For g ∈ R2

+, n ∈ N, the two limits
lim(t,y)⟶(nT+ ,g)h(t, y) � h(nT+, g) and lim(t,y)⟶((n+l− 1)T+ ,g)

h(t, y) � h((n + l − 1)T+, g) exist. Suppose that ψ1
n,ψ2

n: R+

⟶ R+, which are nondecreasing function for all n ∈ N. And
assume that, when t≠ nT, (n + l − 1)T,

D
+
V(t, X)≤ h(t, V(t, X)). (9)

When t � (n + l − 1)T,

V t, X t
+

( ( ≤ψ1
n(V(t, X)), (10)

and when t � nT,

V t, X t
+

( ( ≤ψ2
n(V(t, X)). (11)

Suppose that r(t) be the maximal solution of the fol-
lowing impulsive differential:

g′(t) � h(t, g(t)), t≠ nT, t≠ (n + l − 1)T,

g t+( ) � ψ1
n(g(t)), t � (n + l − 1)T,

g t+( ) � ψ2
n(g(t)), t � nT,

g 0+( ) � g0 ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

which exists on [0,∞). /en, the inequality V(0+, X0)≤g0
holds, which shows that the inequality V(t, X(t))≤ r(t) (all
t≥ 0) holds.

Now, we study the following system, which is the sub-
system of system (8):

z′(t) � − m2z(t), t≠ nT, t≠ (n + l − 1)T,

z t+( ) � 1 − δ3( z(t), t � (n + l − 1)T,

z t+( ) � z(t) + p, t � nT,

z 0+( ) � z0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

After some algebraic calculations, we can get positive pe-
riodic solution of this subsystem as follows:

z
∗
(t) �

p exp − m2(t − (n − 1)T)( 

1 − 1 − δ3( exp − m2T( 
, (n − 1)T< t≤ (n + l − 1)T,

p 1 − δ3( exp − m2(t − (n − 1)T)( 

1 − 1 − δ3( exp − m2T( 
, (n + l − 1)T< t≤ nT,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

n ∈ N, z
∗ 0+
(  � z

∗
nT

+
(  �

p

1 − 1 − δ3( exp − m2T( 
,

z
∗

(n + l − 1)T
+

(  � z
∗

lT
+

(  �
p 1 − δ3( exp − m2lT( 

1 − 1 − δ3( exp − m2T( 
,

(15)

which is a positive periodic solution of system (13). Since

z(t) �

1 − δ3( 
n− 1

z 0+( ) −
p

1 − 1 − δ3( exp − m2T( 
 exp − m2t(  + z∗(t),

(n − 1)T< t≤ (n + l − 1)T,

1 − δ3( 
n

z 0+( ) −
p

1 − 1 − δ3( exp − m2T( 
 exp − m2t(  + z∗(t),

(n + l − 1)T< t≤ nT,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)
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is the solution of system (13) with initial value z(0+)≥ 0, we
can get following lemma.

Lemma 2 (see [35]). Suppose z∗(t) is a positive periodic
solution of system (13), for each solution z(t) with z(0+)≥ 0,
it follows that |z(t) − z∗(t)|⟶ 0 as t⟶∞.

Lemma 3 (see [36]). Suppose that function V(t) ∈ PC1

(R+, R) satisfies the following equation:
dV

dt
≤w(t)V(t) + h(t), t≠ tk, t> 0,

V t+
k( ≤ jkV tk(  + lk, t � tk > 0,

g 0+( )≤g0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where w, h ∈ C(R+, R), jk ≥ 0, and lk are constants
(k � 1, 2, . . .). For t> 0, we have

V(t)≤V0 
t0<tk<t

jk
⎛⎝ ⎞⎠exp 

t

t0

w(s)ds  + 
t

t0


t0<tk<t

jk
⎛⎝ ⎞⎠

exp 
t

s
w(c)dc h(s)ds + 

t0<tk<t


tk<tj<t
jj

⎛⎝ ⎞⎠

exp 
t

tk

w(s)ds lk.

(18)

Next, we explore boundedness, globally asymptotically
stable, and permanence of system (8) in next sections.

3. Main Theoretical Results

3.1. Boundedness of System (8)

Theorem 1. Let (x(t), y(t), z(t), q(t)) be the solution of
system (8), and it always can find a positive constantM, which
makes x(t)≤M, y(t)≤M, z(t)≤M, and q(t)≤M hold.

Proof. For the solution X(t) � (x(t), y(t), z(t), q(t)) of
model (8) with initial value (x0, y0, z0, q0), let
V(t, X(t)) � e1x(t) + e2y(t) + z(t) + q(t), where V ∈ V0.
Since

dx(t)

dt
≤ rx(t)

k0 − x(t)

k1 − x(t)
− bx

2
(t)≤x(t)(r − bx(t)),

q(t) � 
t

− ∞
F(t − s)x(s)ds,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(19)

we can obtain x(t), q(t)≤ (r/b). Choose 0< λ<min
m1 − (r d/b), m2, a , we can get the following inequality
relations:

D
+
V(t) + λV(t)≤ − e1bx

2
(t) + λe1x(t) + ax(t) + e1rx(t)

+ λe2 +
re2d

b
− e2m1 y(t) + λ − m2( z(t)

+(λ − a)q(t) ≤M0, t≠ (n + l − 1)T, t≠ nT,

(20)

where

M0 �
λe1 + a + e1r( 

2

4e1b
. (21)

In addition, clearly,

V (n + l − 1)T+( )≤V((n + l − 1)T), t � (n + l − 1)T;

V nT+( )≤V(nT) + p, t � nT.


(22)

By using Lemma 3, we can obtain

D
+
V(t) + λV(t) ≤ − e1bx

2
(t) + λe1x(t) + ax(t) + e1rx(t)

+ λe2 +
re2d

b
− e2m1 y(t) + λ − m2( z(t)

+(λ − a)q(t)≤M0.

(23)

To sum up the above discussion, for sufficiently large t,
V(t, X(t)) is bounded; i.e., x(t)≤M, y(t)≤M, z(t)≤M,
and q(t)≤M hold for sufficiently large t. □

3.2. Globally Asymptotically Stable Solution (0, 0, z∗(t), 0)

Theorem 2. Let (0, 0, z∗(t), 0) be the eradication solution of
prey and intermediate predator of system (8), which is globally
asymptotically stable if and only if the following two in-
equalities hold:

rk0T

k1
+

a1

c1mm2
A1 + A2( < ln

1
1 − δ1

,

− m1T +
a2

c2mm2
B1 + B2( < ln

1
1 − δ2

,

(24)

where
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A � 1 − 1 − δ3( exp − m2T( ( 
m

,

A1 � ln 1 −
c1p

m 1 − exp − m2mlT( ( 

b1A + c1p
m

 ,

A2 � ln 1 −
c1p

m 1 − δ3( 
m exp − lm2mT(  − exp − m2mT( ( 

b1A + c1p
m 1 − δ3( 

m exp − lm2mT( 
 ,

B1 � ln 1 −
c2p

m 1 − exp − lm2mT( ( 

b2A + c2p
m

 ,

B2 � ln 1 −
c2p

m 1 − δ3( 
m exp − lm2mT(  − exp − m2mT( ( 

b2A + c2p
m 1 − δ3( 

m exp − lm2mT( 
 .

(25)

Proof. Let X(t) � (x(t), y(t), z(t), q(t)) be the solution of
system (8), by taking the technique of small amplitude
perturbations for the solution, and we can derive the local
stability of periodic solutions (0, 0, z∗(t), 0). Let x(t) � u1
(t), y(t) � u2(t), z(t) � z∗(t) + u3(t), and q(t) � u4(t),
where ui(t)(i � 1, 2, 3, 4) is a small perturbation. When
t≠ nT, (n + l − 1)T, by applying Taylor series expansion and
neglecting higher order terms, system (8) can be read as
follows:

u1′(t) �
rk0

k1
−

a1z
∗(t)m

b1 + c1z
∗(t)

 u1(t),

u2′(t) � −
a2z
∗(t)m

b2 + c2z
∗(t)

− m1 u2(t),

u3′(t) �
e1a1z
∗(t)mu1(t)

b1 + c1z
∗(t)

+
e2a2z
∗(t)mu2(t)

b2 + c2z
∗(t)

− m2u3(t),

u4′(t) � au1(t) − au4(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t≠ nT,

t≠ (n + l − 1)T,

u1 t+( ) � 1 − δ1( u1(t),

u2 t+( ) � 1 − δ2( u2(t),

u3 t+( ) � 1 − δ3( u3(t),

u4 t+( ) � u4(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t � (n + l − 1)T,

u1 t+( ) � u1(t),

u2 t+( ) � u2(t),

u3 t+( ) � u3(t),

u4 t+( ) � u4(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t � nT,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)
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so we can get
u1(t)

u2(t)

u3(t)

u4(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� Φ(t)

u1(0)

u2(0)

u3(0)

u4(0)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 0≤ t<T, (27)

where Φ(t) is the fundamental matrix of (26). At the same
time, Φ(t) satisfies

dΦ(t)

dt
�

rk0

k1
−

a1z
∗(t)m

b1 + c1z
∗(t)

0 0 0

0 −
a2z
∗(t)m

b2 + c2z
∗(t)

− m1 0 0

e1a1z
∗(t)m

b1 + c1z
∗(t)

e2a2z
∗(t)m

b2 + c2z
∗(t)

− m2 0

a 0 0 − a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Φ(t).

(28)

Let t � 0, thenΦ(0) � I is a identity matrix, so we can get the
linearized structure of system (8) as follows:

u1 (n + l − 1)T+( )

u2 (n + l − 1)T+( )

u3 (n + l − 1)T+( )

u4 (n + l − 1)T+( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

1 − δ1 0 0 0

0 1 − δ2 0 0

0 0 1 − δ3 0

0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

u1((n + l − 1)T)

u2((n + l − 1)T)

u3((n + l − 1)T)

u4((n + l − 1)T)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

u1 nT+( )

u2 nT+( )

u3 nT+( )

u4 nT+( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

u1(nT)

u2(nT)

u3(nT)

u4(nT)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(29)

By using the eigenvalues of following matrix M, we can
derive the stability of the solutions (0, 0, z∗(t), 0):

M �

1 − δ1 0 0 0

0 1 − δ2 0 0

0 0 1 − δ3 0

0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Φ(T).

(30)

If λi < 1 (i � 1, 2, 3, 4), then the periodic solution
(0, 0, z∗(t), 0) is locally stable, and their expressions are as
follows:

λ1 � 1 − δ1( exp 
T

0

rk0

k1
−

a1z
∗(t)m

b1 + c1z
∗(t)

 dt ,

λ2 � 1 − δ2( exp 
T

0
−

a2z
∗(t)m

b2 + c2z
∗(t)

− m1 dt ,

λ3 � 1 − δ3( exp − m2T( ,

λ4 � exp(− aT).

(31)

/e analysis is similar to literature [35], i.e., by using
Floquet theory, if |λi|< 1(i � 1, 2, 3, 4), then (0, 0, z∗(t), 0) is
locally asymptotically stable. So we need to calculate
|λi|< 1(i � 1, 2); herein, λ3 and λ4 are already less than one.
/erefore, we have

λ1 < 1⟺T<
k1

rk0
ln

1
1 − δ1

−
a1

c1mm2
A1 + A2(  ,

λ2 < 1⟺T>
1

− m1
ln

1
1 − δ2

−
a2

c2mm2
B1 + B2(  ,

(32)

where


T

0
z
∗
(t)

mdt � 
(n+l− 1)T

(n− 1)T

p exp − m2(t − (n − 1)T)( 

1 − 1 − δ3( exp − m2T( 
 

m

dt

+ 
nT

(n+l− 1)T

p 1 − δ3( exp − m2(t − (n − 1)T)( 

1 − 1 − δ3( exp − m2T( 
 

m

dt.

(33)

Inequality (32) holds if and only if
rk0T

k1
+

a1

c1mm2
A1 + A2( < ln

1
1 − δ1

,

− m1T +
a2

c2mm2
B1 + B2( < ln

1
1 − δ2

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(34)

Hence, when the inequality (34) is established, the
system (8) is locally asymptotically stable.

After the above discussion, we can obtain the conditions
of local asymptotic stability of periodic solutions
(0, 0, z∗(t), 0). Now, we explore global attraction of the
periodic solutions; for ε> 0, we have

ξ1 ≜ 1 − δ1( exp 
(n+l)T

(n+l− 1)T

rk0

k1
−

a1 z∗(t) − ε( )
m

b1 + c1 z∗(t) − ε( )
 dt < 1,

ξ2 ≜ 1 − δ2( exp 
T

0
dM − m1 −

a2 z∗(t) − ε( )
m

b2 + c2 z∗(t) − ε( )
 dt < 1.

(35)

Noticing that (dz(t)/dt)≥ − m2z(t), according to
Lemma 2 and comparison theorem of the impulsive
equation, for all sufficiently large t, we can obtain

z(t)> z
∗
(t) − ε. (36)

For all t> 0, assuming that inequality (36) is established,
so we consider the system (8) and inequality (36), we can get
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dx(t)

dt
≤

rk0

k1
−

a1 z∗(t) − ε( )
m

b1 + c1 z∗(t) − ε( )
 x(t), t≠ (n + l − 1)T,

x t+( ) � 1 − δ1( x1(t), t � (n + l − 1)T,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(37)

integrating (37) on ((n + l − 1)T, (n − 1)T], and from (8), we
have

x((n + l)T)≤ x (n + l − 1)T
+

( 

· exp 
(n+l)T

(n+l− 1)T

rk0

k1
−

a1 z∗(t) − ε( )
m

b1 + c1 z∗(t) − ε( )
 dt ,

� x((n + l − 1)T) 1 − δ1( exp
(n+l)T

(n+l− 1)T

·
rk0

k1
−

a1 z∗(t) − ε( )
m

b1 + c1 z∗(t) − ε( )
 dt ,

� x((n + l − 1)T)ξ1.

(38)

After some algebraic calculations of (38), which pro-
duces x((n + l)T)≤x(lT)ξn

1, when n⟶∞, it follows that
x((n + l)T)⟶ 0. When (n + l − 1)T< t≤ (n + l)T, we get
0< x(t)< x((n + l − 1)T)(1 − δ1)exp(rT), so x(t)⟶ 0 as
n⟶∞. In addition, if x(t)⟶ 0, which produces
q(t)⟶ 0. /en, for y(t), we have

dy(t)

dt
≤ dM − m1 −

a2 z∗(t) − ε( )
m

b2 + c2 z∗(t) − ε( )
 y(t), t≠ (n + l − 1)T,

y t+( ) � 1 − δ2( y1(t), t � (n + l − 1)T.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(39)

/e analysis is similar to x(t), and it can also obtain
y(t)⟶ 0 as n⟶∞.

Next, our goal is to explore z(t) to z∗(t) (t⟶∞). Let
0< ε< (r3/c)(c � (e1a1/b1) + (e2a2/b2)), we can find a
T′ > 0, which produces 0<x(t), y(t), q(t)< ε as t>T′.
Actually, assume that 0< x(t), y(t), q(t)< ε for all t≥ 0.
/en, we have the following inequality by system (8):

− m2z(t)≤
dz(t)

dt
≤ − m2z(t) + cεz(t)

m
,

c �
e1a1

b1
+

e2a2

b2
.

(40)

Because 0<m≤ 1, the inequality (40) can be changed to
− m2z(t)≤ (dz(t)/dt)≤ (− m2 + cε)z(t). We now consider
comparative systems (41) and (42):

dv1(t)

dt
� − m2v1(t), t≠ nT, t≠ (n + l − 1)T,

v1 t+( ) � 1 − δ3( v1(t), t � (n + l − 1)T,

v1 t+( ) � v1(t) + p, t � nT,

v1 0+( ) � z 0+( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(41)

dv2(t)

dt
� − m2 + cε( v2(t), t≠ nT, t≠ (n + l − 1)T,

v2 t+( ) � 1 − δ3( v2(t), t � (n + l − 1)T,

v2 t+( ) � v2(t) + p, t � nT,

v2 0+( ) � z 0+( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

let v1(t) and v2(t) be any solution of system (41) and (42),
respectively, where

v
∗
2(t) �

p exp − m2 + cε( (t − (n − 1)T)( 

1 − 1 − δ3( exp − m2 + cε( T( 
, (n − 1)T< t≤ (n + l − 1)T,

p 1 − δ3( exp − m2 + cε( (t − (n − 1)T)( 

1 − 1 − δ3( exp − m2 + cε( T( 
, (n + l − 1)T< t≤ nT.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(43)

By using Lemmas 1 and 2, which can derive
v1(t)≤ z(t)≤ v2(t). Furthermore, when t⟶∞,
v1(t)⟶ z∗(t) and v2(t)⟶ v∗2(t). /en, ∃T1 > 0 for any
ε1 > 0, and it yields the following inequalities:

z
∗
(t) − ε1 < z(t)< z

∗
(t) + ε, t≥T1. (44)

Obviously, v∗2(t)⟶ z∗(t) as ε⟶ 0. /erefore, for t
large enough, it yields z∗(t) − ε1 < z(t)< z∗(t) + ε1, which
implies z(t)⟶ z∗(t) as t⟶∞. □

3.3. Permanence of the System

Theorem 3. If the following two inequalities hold, then
system (8) is permanent:

rk0T

k1
+

a1

c1mm2
A1 + A2( > ln

1
1 − δ1

,

− m1T +
a2

c2mm2
B1 + B2( > ln

1
1 − δ2

,

(45)

where A, A1, A2, B1, and B2 are given in @eorem 2.
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Proof. From /eorem 1, we can know that there is a con-
stant M which makes x(t), y(t), z(t), q(t)<M for t≥ 0.
Since z′(t) ≥ − m2z(t), we give the following differential
equation (46):

v3′(t) � − m2v3(t), t≠ nT, t≠ (n + l − 1)T,

v3 t+( ) � 1 − δ3( v3(t), t � (n + l − 1)T,

v3 t+( ) � v3(t) + p, t � nT,

v3 0+( ) � z 0+( )> 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(46)

By Lemmas 1 and 2, for sufficiently large t≥ 0, we can get
z(t)≥ v3(t)> z∗(t) − ε and z(t)≥ (p(1 − δ3)exp(− m2T)/1
− (1 − δ3)exp(− m2T)) − ε2 � m3(ε2 > 0). So our next goal is
to find positive m1 and m2 such that x(t)≥m1, y(t)≥m2,

and q(t)≥m1 for t large enough. Now we are exploring how
to find m1.

/e following two steps prove the existence of such a m1.
Firstly, let 0<m1 < ((b1m2/e1a1M

m− 1), (b2m2/e2a2M
m− 1))

and sufficiently small ε1 > 0, then we have

c1 ≜ 1 − δ1( exp 
(n+l)T

(n+l− 1)T

r k0 − m1( 

k1
− b + a3( M

−
a1

b1
v
∗
4(t) + η1( 

m
dt> 1.

(47)

It is easy to prove that x(t)<m1 can not hold for all t≥ 0.
Otherwise, we have

z′(t) � z(t) − m2 +
e1a1x(t)z(t)m− 1

b1
+

e2a2y(t)z(t)m− 1

b2
 ,

≤ z(t) − m2 +
e1a1m1z(t)m− 1

b1
+

e2a2Mz(t)m− 1

b2
 ≜ z(t)B, t≠ nT, t≠ (n + l − 1)T,

z t+( ) � 1 − δ3( z(t), t � (n + l − 1)T,

z t+( ) � z(t) + p, t � nT,

z 0+( ) � z0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

So we can obtain v4(t)⟶ v∗4(t) as t⟶∞ (v4(t) is the
solution of (49)) and z(t)≤ v4(t):

v4′(t) � Bv4(t), t≠ nT, t≠ (n + l − 1)T,

v4 t+( ) � 1 − δ3( v4(t), t � (n + l − 1)T,

v4 t+( ) � v4(t) + p, t � nT,

v4 0+( ) � z 0+( )> 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(49)

and its periodic solution is as follows:

v
∗
(t) �

p exp(B(t − (n − 1)T))

1 − 1 − δ3( exp(BT)
, (n − 1)T< t≤ (n + l − 1)T,

p 1 − δ3( exp(B(t − (n − 1)T))

1 − 1 − δ3( exp(BT)
, (n + l − 1)T< t≤ nT.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(50)

We can easily get z(t)≤ v4(t) as t⟶ +∞ by using the
comparison theorem. So there is a T1 > 0, when t>T1,
z(t)≤ v4(t)< v∗4(t) + η1. /erefore, we have

x′(t)≥x(t)
r k0 − m1( 

k1
− b + a3( M −

a1

b1
v
∗
4(t) + η1( 

m
 , t≠ nT, t≠ (n + l − 1)T,

x t+( ) � 1 − δ1( x(t), t � (n + l − 1)T.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(51)
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N1 ∈ N and (N1 + l − 1)T≥T1. Integrating (51) on
((n + l − 1)T, (n + l)T], n≥N1, we have

x((n + l)T)≥x (n + l − 1)T
+

( exp 
(n+l)T

(n+l− 1)T

r k0 − m1( 

k1
− b + a3( M −

a1

b1
v
∗
4(t) + η1( 

m
 dt 

� x((n + l − 1)T) 1 − δ1( exp 
(n+l)T

(n+l− 1)T

r k0 − m1( 

k1
− b + a3( M −

a1

b1
v
∗
4(t) + η1( 

m
 dt 

� x((n + l − 1)T)c1.

(52)

Some algebraic calculations of (52), which produces
x((N1 + k)T)≥ x((N1)T)ck

1⟶∞ as k⟶∞. Obviously,
this is contradictory to the boundedness of x(t). /erefore,
there is a t1 > 0 such that x(t1)≥m1.

Secondly, if x(t), y(t), q(t)≥m1 for all t≥ t1, then the
proof of this theorem is completed. Otherwise, x(t)>m1 can
not hold for all t≥ t1. So we need to find out which solutions
leave the set X(t) ∈ R4

+: x(t)≥m1 , and let these solutions
return to the set again. Let t∗ � inf t≥t1 x(t)<m1 , which has
the following cases:

Case 1: if t∗ � (n1 + l − 1)T, then x(t)≥m1 and
y(t)≥m1 for t ∈ [t1, t∗) and (1 − δ1)m1 ≤x(t∗+)

� (1 − δ1)x(t∗)<m1 and (1 − δ2)m1 ≤y(t∗+) �

(1 − δ2)y(t∗)<m1. Choose n2, n3 ∈ N such that (n2 −

1)T> (ln(η1/M + p)/B1), (1 − δ1)
n2c

n3
1 exp((c2n2T)

c
n3
1 )> (1 − δ1)

n2 exp(c2(n2 + 1)T)c
n3
1 > 1, where c2 �

(r(k0 − m1)/k1) − (b + a3)M − (a1/b1)Mm < 0. Let T �

n2T + n3T, and it is deduced that there must be a
t′ ∈ (t∗, t∗ + T) such that x(t′)>m1; considering (49)
with v4(n1T

+) � x3(n1T
+), it is easy to get

v4(t) �

1 − δ3( 
n− n1+l( ) z n1T

+(  −
p

1 − 1 − δ3( exp(BT)
 exp B t − n1T( (  + v∗4(t), (n − 1)T< t≤ (n + l − 1)T,

1 − δ3( 
n− n1+l− 1( ) z n1T

+(  −
p

1 − 1 − δ3( exp B1T( 
 exp B t − n1T( (  + v∗4(t), (n + l − 1)T< t≤ nT,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(53)

and n1 + 1≤ n≤ n1 + n2 + n3 + 1. So we can get |v4(t) −

v∗4(t)|< (M + p)exp(B(t − n1T))< η1 and z(t)≤ v4(t)

< v∗4(t) + η1 for t∗ + n2T≤ t≤ t∗ + T, which indicate
that (51) holds for t∗ + n2T≤ t≤ t∗ + T. We can obtain

x(t∗ + T)≥ x(t∗ + n2T)c
n3
1 through a discussion simi-

lar to the first step. From the system (8), we have

x′(t)≥x(t)
r k0 − m1( 

k1
− b + a3( M −

a1

b1
M

m
  � c2x(t), t≠ nT, t≠ (n + l − 1)T,

x t+( ) � 1 − δ1( x(t), t � (n + l − 1)T.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(54)

Integrating (54) on t ∈ [t∗, t∗ + n2T], then we get
x(t∗ + n2T)≥m1(1 − δ1)

n2 exp(c2n2T) and x(t∗ + T)

≥m1(1 − δ1)
n2c

n3
1 exp(c2n2T)>m1; it is a contradic-

tion with x(t)<m1. So x(t)>m1 holds for all
t ∈ (t1, t∗). Let t � inf t≥t∗ x(t)≥m1 , then we can
obtain x(t)≤m1, x(t) � m1 and x(t) ≥ m1(1 − δ1)

n2+n3

exp((n2 + n3)c2T)≜m1 for t∗ < t< t. /en, we derive

that x(t)≥m1 holds for t∗ < t< t. In addition, for t> t,
since x(t)≥m1, the same discussion can be continued.
Case 2: the case of t∗ � (n1 + l − 1)T is discussed in
Case 1. Now, assume that t∗ ≠ (n1 + l − 1)T, which
produces x(t)≥m1 for t1 ≤ t< t∗ and x1(t∗) � m1. If
t∗ ∈ ((n1′ + l − 1)T, (n1′ + l)T), n1′ ∈ N, which have two
possible cases for t ∈ (t∗, (n1′ + l)T).
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Case 2(a): for all t ∈ (t∗, (n1′ + l)T), x(t)≤m1 is valid. By
the same discussion with case 1, which exists t1′ ∈ [(n1′ +
l)T, (n1′ + l)T + T] such that x(t1′)>m1; in order to
simplify the proof, we will not elaborate on it. Let
t � inf t≥t∗ x(t)>m1 , then we have x(t)≤m1 for
t∗ ≤ t<t. We get x(t)≥m1(1 − δ1)

n2+n3+1 exp
((n2 + n3)c2T)≜m1 and x(t)≥m1 for t ∈ (t∗,t). For
t>t, the same arguments can be followed since
x1(t)≥m1.
Case 2(b): there exists t∗ < t< (n1′ + l)T such that
x(t)>m1. Let t � inf t≥t∗ x(t)>m1 , then x(t)≤m1 for
t ∈ (t∗,t) and x1(t) � m1. When t ∈ (t∗,t), (54) holds.
Integrating (54) on (t∗,t), we obtain
x(t)≥ x(t∗)exp(c2(t − t∗))≥m1 exp(c2T)>m1. Since
x(t)≥m1 for t> t∗, the same arguments can be con-
tinued. Hence, x(t)≥m1 for all t≥t.

To sum up all the above discussions, we derive that
x(t)≥m1 holds for all t≥t. Using similar methods for y(t),
we can get y(t)≥m2 for all t≥ t2. Obviously, q(t)≥m1 for all
t>t1. Let m � max(m1, m2, m3); by /eorem 1 and Defi-
nition 2, we obtain that m< x(t), y(t), z(t), q(t)<M. So,
the system (8) proved to be permanent. □

4. Extension of Theoretical Results

In this section, we can see that Section 3 of this paper can be
extended to the results of the literature [26].

From /eorem 2, we know if
rk0T

k1
+

a1

c1mm2
A1 + A2( < ln

1
1 − δ1

, (55)

− m1T +
a2

c2mm2
B1 + B2( < ln

1
1 − δ2

, (56)

hold, then the eradication periodic solution (0, 0, z∗(t), 0) of
species of x(t) and y(t) is globally asymptotically stable, where
A, A1, A2, B1, and B2 are given in /eorem 2. If
m � 1, δi(i � 1, 2, 3) � 0, l � 1, inequality (55) is equivalent to

rk0T

k1
+

a1

m2c1
ln 1 −

c1p 1 − exp − m2T(  

b1 1 − exp − m2T(   + c1p
 < 0.

(57)

In addition, inequality (56) is equivalent to

− m1T +
a2

m2c2
ln 1 −

c2p 1 − exp − m2T(  

b2 1 − exp − m2T(   + c2p
 < 0.

(58)

Remark 2. /eorem 2.1 of the literature [26] can be obtained
by combining inequalities (57) and inequalities (58).

From the above discussion, the following corollary can
be obtained.

Corollary 1. If m � 1, δi(i � 1, 2, 3) � 0, l � 1, then the
eradication periodic solution (0, 0, z∗(t), 0) of species of x(t)

and y(t) of system (8) is locally asymptotically stable if

rk0T

k1
+

a1

m2c1
ln 1 −

c1p 1 − exp − m2T(  

b1 1 − exp − m2T(   + c1p
 < 0,

− m1T +
a2

m2c2
ln 1 −

c2p 1 − exp − m2T(  

b2 1 − exp − m2T(   + c2p
 < 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(59)

From /eorem 3, we know that if
rk0T

k1
+

a1

c1mm2
A1 + A2( > ln

1
1 − δ1

,

− m1T +
a2

c2mm2
B1 + B2( > ln

1
1 − δ2

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(60)

hold, then system (8) is permanent. Similar to the discussion of
inequality (55)–(58), we can obtain the following corollary.

Corollary 2. If m � 1, δi(i � 1, 2, 3) � 0, and l � 1, the
system (8) is permanent provided that

rk0T

k1
+

a1

m2c1
ln 1 −

c1p 1 − exp − m2T(  

b1 1 − exp − m2T(   + c1p
 > 0,

− m1T +
a2

m2c2
ln 1 −

c2p 1 − exp − m2T(  

b2 1 − exp − m2T(   + c2p
 > 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(61)

Remark 3. Corollary 1 and Corollary 2 are the same as
/eorem 2.1 and /eorem 2.4 of the literature [26], re-
spectively. Our theoretical results generalize the results of
the literature [26].

Remark 4. After calculation and comparison, we can know
that there are some mistakes in the form of /eorem 2.1,
/eorem 2.3, and /eorem 2.4 of the literature [26].

5. Examples and Simulations

/e effect of numerical experiments on this system is to help
us visually observe the dynamic behavior of species changing
with parameters, so some dynamical properties of the system
(8) are showed by numerical simulation in this section,
which is based on the parameters of the system in accor-
dance with actual biological significance.

Firstly, let r � 0.6, k1 � 20, k0 � 15, a1 � 0.5, a2 � 0.5,

a3 � 0.5, e1 � 0.8, e2 � 0.85, c1 � 0.6, c2 � 0.5, b1 � 1.5, b2 �

0.75, m1 � 0.1, m2 � 0.15, d � 0.9, b � 0.15, a � 1.8, l � 0.7,

δ1 � 0.65, δ2 � 0.45, δ3 � 0.2, m � 0.92, and p � 10. By ver-
ification, these parameters satisfy biological significance and the
conditions of /eorem 2, so the eradication periodic solution
(0, 0, z∗(t), 0) of species x(t) and y(t) is globally asymp-
totically stable under this numerical scenario. By the numerical
experiment, Figures 1(a)–1(e) and Figure 2 show that the
system is in asymptotic stability. Figures 1(a)–1(e) illustrate the
existence of the solution (0, 0, z∗(t), 0), and the dynamic
behavior of species x(t) and y(t) with different initial values is
described in Figure 2. In addition, let m � 0.61 while keeping
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other parameters unchanged, we will be surprised to find that
the system becomes persistent (see Figure 1(f)) through nu-
merical experiments, so Figure 1(f) shows that the parameter
m has a certain influence on the dynamic properties of the
system (8).

Secondly, let r � 0.6, k1 � 19, k0 � 15, a1 � 0.8, a2 � 0.9,

a3 � 0.2, e1 � 0.33, e2 � 0.1, c1 � 0.6, c2 � 0.33, b1 � 1.5,

b2 � 0.75, m1 � 0.25, m2 � 0.25, d � 0.9, b � 0.119, a � 1.8,

l � 0.6, δ1 � 0.1, δ2 � 0.35, δ3 � 0.25, m � 0.9, and p � 0.5.

By verification, these parameters satisfy biological sig-
nificance and the conditions of /eorem 3, so the system (8)
is permanent under this numerical scenario. By numerical
simulation, the same conclusion is verified (see
Figures 3(a)–3(d)). Similarly, let m � 0.3 while keeping other
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Figure 1: /e eradication periodic solution (0, 0, z∗(t), 0) of species x(t) and y(t) with x(0) � 0.3, y(0) � 0.2, z(0) � 0.3, and q(0) � 0.3.
(a)–(c) Time series of species x(t), y(t), and z(t), respectively; (d) time series of three species x(t), y(t), and z(t), which are in the same
quadrant; (e) phase portrait of x(t), y(t), and z(t); (f ) a special case of dynamic behaviors as m � 0.61.
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Figure 2: Dynamic behavior of (0, 0, z∗(t), 0) with different initial values, where the values of parameters are consistent with the settings in
Figures 1(a) and 1(b) phase portrait of species x(t) and z(t) and y(t) and z(t) for different initial values, respectively.
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parameters unchanged, we will be surprised to find that
species x(t) and y(t) tend to extinct (see Figure 3(f )); i.e.,
the system has changed from a persistent situation to an
extinct one, so we can see that the influence of parameter m
on the system is effective.

/irdly, by numerical analysis of bifurcation diagrams of
impulsive period T, the dynamic properties of the system (8)
can be showed. Let x(0) � 2, y(0) � 2, z(0) � 3, and
q(0) � 1. r � 0.6, k1 � 20, k0 � 15, a1 � 0.8, a2 � 0.9, a3 �

0.2, e1 � 0.8, e2 � 0.1, c1 � 0.6, c2 � 0.5, b1 � 0.25, b2 � 0.75,

m1 � 0.1, m2 � 0.15, d � 0.25, b � 0.15, a � 1.8, l � 0.7, δ1 �

0.65, δ2 � 0.45, δ3 � 0.25, m � 0.9, andp � 0.5. /e bifur-
cation diagrams of impulsive period T is presented in Fig-
ure 4, whose range of values is [17, 23]. From
Figures 4(a)–4(c), we can observe that impulsive period T
has a great influence on the system. Since their bifurcation
diagrams show many of the same phenomena, we will only
explain the bifurcation diagram of x(t) in detail here.
Figures 5 and 6 are detailed demonstrations of Figure 4(a).
When T is small, the bifurcation diagram exhibits periodic
oscillations of the system; for example, it has a periodic
oscillation as T � 16.5 (see Figure 6(a)). When
T � 17.85, 19.68, 20.46, and 20.62, bifurcation occurs, re-
spectively. More concretely, if T> 17.85, we can see from
Figure 5(a) that the phenomenon of bifurcation diagram
changes from period-doubling bifurcations’ cascade to

cascade; if T> 19.68, 4T period solution occurs (see
Figure 5(a)), and a example is showed in Figure 6(b)
(T � 19.7); if T> 20.46, 8T period solution appears (see
Figure 5(a)), and a example is showed in Figure 6(c)
(T � 20.51); if T> 20.62, 16T period solution occurs(see
Figure 5(a)). As T increased by more than 20.66, the system
was in “crisis.” Period bifurcation reappears when T> 21.22
(see Figure 5(b)). In the neighborhood of T � 22.1, sym-
metry-breaking bifurcations occur after period bifurcation
(see Figure 5(c)), which is a special simple bifurcation that
produces multiple steady states. When T � 22.61, a typical
chaotic oscillation appears (see Figure 5(c)); after this sit-
uation, chaos appears such as Figure 6(d) (T � 22.8). /at is
to say, when T is less than 17.85, the harvesting and release of
the system is frequent; when 17.85<T< 20.66, period bi-
furcation appears; if 20.66<T< 23, the dynamical properties
of the system (8) become very complex; that is, the devel-
opment of the system is unpredictable. All these results
indicate that impulsive period T has a serious effect on the
dynamic behavior of the system.

Fourthly, we explore the bifurcation diagram of im-
pulsive release p. Let T � 0.5, while other parameters are
consistent with Figure 4, whose range of values is [0, 2.5] (see
Figure 7). As we can see from Figure 5, if the amount of
release p is small, the system (8) has periodic oscillations
such as p � 0.23 (see Figure 8(a)). If the releasing amount p
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Figure 3: (a–c) Time series of persistence of x(t), y(t), and z(t), respectively, which initial values of x(0) � 1, y(0) � 0.1, z(0) � 1, and
q(0) � 1; (d) time series of three species x(t), y(t), and z(t) in the same quadrant; (e) phase portrait of x(t), y(t), and z(t); (f ) special case
of dynamic behaviors as m � 0.34.
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Figure 5: Continued.
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Figure 6: (a) Periodic oscillation when T � 16.5; (b) 4T period solution when p � 19.7; (c) 8T period solution when p � 20.51; (d) chaos
when T � 22.8.
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Figure 5: /e detailed demonstrations of Figure 4(a). (a, b) /e phenomenon of period bifurcation. (c) /e phenomenon of crisis,
symmetry-breaking bifurcations, and chaotic oscillation.
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Figure 7: (a–c) /e bifurcation diagrams of impulsive release p of x(t), y(t), and z(t), respectively, with initial values (1, 1, 1, 1) and on [0,
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Figure 8: (a) Periodic oscillations when p � 0.23; (b) 1T-period solution with p � 1.12; (c) chaos with p � 0.65.
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Figure 9:/e value of parameterm in Figure 8(b) is changed: (a) 4T-period solution when m � 0.35; (b) 6T-period solution when m � 0.31;
(c) periodic oscillation when m � 0.95.
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of predator z(t) is comparatively large, then species x(t) and
y(t) will die out. From Figure 7(b), we can see that predator
y(t) will die out when T � 1.77, the number of x(t) drops
rapidly to zero when p> 27.25, and this phenomenon shows
the role of z(t) as an advanced predator, predator z(t), control
predator y(t), and prey x(t). If the release amount p is ap-
propriate, there will be abundant phenomena in the system (8);
for example, it produces chaos (see Figure 8(c)) whenp � 0.65,
and it has 1T-period solution (see Figure 8(b)) when p � 1.12.
Furthermore, if the value of parameter m in Figure 8(b) is
changed, different dynamic properties can be obtained such as
a 4T-period solution whenm � 0.35 (Figure 9(a)), a 6T-period
solution when m � 0.31 (see Figure 9(b)), and a phenomenon
of periodic oscillation when m � 0.95 (see Figure 9(c)). All
these results show that the amount of impulsive release p and
mutual interference of predatorm produces complex dynamic
behavior to the system (8).

Finally, the effect of distributed time delay a on the system
(8) is explored. Several recent experiments have become
deterministic evidence for chaos, and the results of these
literatures show that the study of chaos is very meaningful
[37–39]. Among them, the largest Lyapunov exponents
provide a very effective diagnosis for the chaotic system, and
the largest Lyapunov exponent is the average change rate of
the two trajectories which are close in phase space as time
goes on by exponential separation or polymerization. In any
system, as long as there is a largest Lyapunov exponent greater
than zero, it considers the system to be a chaotic system [38].
Rosenstein et al. [39] introduces the general method and
process of calculating largest Lyapunov exponents. /e
corresponding largest Lyapunov exponents of a of system (8)
is calculated and output in Figure 10(a), and an example of a
strange attractor is given when a � 1.72 (Figure 10(b)). All
these results show that distributed time delay a has an im-
portant effect on the system.

6. Conclusion

/e dynamical analysis of a complex predator-prey system
with mutual interference and the effect of time delay is

presented in this paper, and numerical experiments of
corresponding theoretical analysis are also presented. /e
periodic solution (0, 0, z∗(t), 0) is global asymptotically
stable, which has been proved in/eorem 2. /e persistence
of system (8) was proved in /eorem 3. As special cases,
Corollary 1 and Corollary 2 generalize the theorems in the
literature [26], and we have obtained more abundant the-
oretical results and numerical experiments.

After theoretical analysis and numerical simulation, we
can know that impulsive period T, release amount p, mutual
interference parameters m, and distributed time delay a can
produce different dynamical properties for system (8). For
example, the solution (0, 0, z∗(t), 0) and the persistence of
system (8) are given in Figures 1 and 3, respectively. Spe-
cially, the dynamical effect of mutual interference param-
eters m is investigated. From Figures 1(d), 1(f), 3(d), 3(f),
8(b), and 9, we can know that different values of m can
produce different dynamical behaviors with the system (8),
so it is necessary for us to study the influence of mutual
interference in such a system.

In addition, the figure of largest Lyapunov exponents is
obtained by computer simulation, which can prove the
existence of chaotic phenomena in the system (8). Based on
the above theoretical results and numerical experiments, we
can know that the development of the system can be ef-
fectively controlled by choosing the appropriate impulsive
period T, the advanced predator release amount p, and the
reasonable harvest rate δi (i � 1, 2, 3). /e comprehensive
theoretical analysis and numerical simulation can give some
guidance to the development of a real ecosystem and the
balance of nature. Controlling the number of insect pop-
ulations is critical because sudden outbreaks of insects can
disrupt ecological balance and affect economic growth.
Chemical control and biological control are very important
methods for controlling agricultural pests. /e usual mea-
sure for chemical control is spraying pesticides. Chemical
control can kill pests quickly and effectively and reduce
economic losses, but it also causes certain pollution to the
environment. In order to reduce the environmental pollu-
tion caused by chemical control, biological control can be
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Figure 10: (a) /e largest Lyapunov exponents of the system (8) with varying a in [6, 13]; (b) a strange attractor when a � 1.72.
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achieved by stocking or releasing natural enemies, but its
effect is not obvious and rapid. /erefore, integrated control
is a very effective means of balancing./e results obtained in
this work provide a useful platform for pest control, fishery
production, species breeding, and other fields.
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