
Research Article
Chaotic Dynamics and Chaos Control of Hassell-Type
Recruitment Population Model

Guo Feng

School of Data and Computer Science, Shandong Women’s University, Jinan, China 250300

Correspondence should be addressed to Guo Feng; sdwugf@163.com

Received 23 January 2020; Revised 4 March 2020; Accepted 11 March 2020; Published 9 April 2020

Academic Editor: Nikos I. Karachalios

Copyright © 2020 Guo Feng. -is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For certain parameters, the mapping of a Hassell-type recruitment population model has a chaotic attractor. -e control pa-
rameter is disturbed slightly with time by the improvement OGYmethod.When the mapping point wanders to the neighborhood
of the periodic point, the control parameter is perturbed. -e chaotic motion is controlled on the stable periodic period-1 point
and period-2 orbits, and the influence of different control parameter ranges on the control average time is analyzed. When the
selected regulator poles are different, the number of iterations used to control chaotic motion on a stable periodic orbit is different.
Numerical simulations are presented to illustrate our results with the theoretical analysis and show the effect of the
control method.

1. Introduction

Leslie models [1] with nonlinear fertility and mortality can
have complicated dynamical behavior. Ugarcovici andWeiss
[2] studied the Ricker model. -is model is described by the
two-dimensional mapping Ra,b: R2

+⟶ R2
+:

Ra,b(x, y) � (ax + cay)e− λ(x+y)
, bx􏼐 􏼑, (1)

where x and y stand for the density of the first age group and
the second age group. a and ca are the group’s initial fertility
rates (a, c> 0), b is the survival rate from the first age group
to the second one, and λ is the decay index, λ> 0. In equation
(1), the fertility rate monotonically decreases as a function of
the total population size, and the fertility decay is expo-
nential. -e other model is Hassell model. It is described by
the two-dimensional mapping Ha,b: R2

+⟶ R2
+:

Ha,b(x, y) � (ax + cay)(1 + x + y)
− β

, bx􏼐 􏼑, (2)

where a and ca are the group’s initial fertility rates, b is the
survival rate from the first age group to the second one, and β
is the decay index, β> 1. In equation (2), the fertility rate
monotonically decreases as a function of the total population
size, and the fertility decay is polynomial.

For some parameter values, these models admit an er-
godic attractor which supports a unique physical probability
measure. -is physical measure satisfies in the strongest
possible sense the population biologist’s requirement for
ergodicity in their population models. -e Lebesgue mea-
sure basin is the whole plane R2

+; Hassell [3], Wikan and
Mjølhus [4], and Ugarcovici and Weiss [2] showed that
Ricker mapping and Hassell mapping produce Hénon-like
chaotic attractors.

Here, we present a procedure to contend chaotic dy-
namics in a Hassell-type recruitment populationmodel. As a
is between 0 and 60, b� 0.7, c � 0.8, and β � 22, Hassell
mapping shows rich chaotic dynamic behavior. In biology or
ecology, the complex chaotic behavior of this mapping
shows the relationship between the number, birth rate, and
survival rate in a population, whether it survives in a bal-
anced state or makes the population develop in disorder or
chaos. -is research can provide theoretical basis and help
for the research in biology or ecology. For example, it is
applied in marine fishing or in the reproduction and pop-
ulation growth of a certain species in nature.

-e study of chaos control began in the late 1980s. -e
early research idea is to use the existing dynamic control
strategies and destroy the conditions for the occurrence of

Hindawi
Discrete Dynamics in Nature and Society
Volume 2020, Article ID 8148634, 9 pages
https://doi.org/10.1155/2020/8148634

mailto:sdwugf@163.com
https://orcid.org/0000-0003-0628-9549
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8148634


chaotic motion. Ott et al. [5] proposed a method to control
chaos. -e basic idea of controlling chaos can be understood
by considering the following one-dimensional logistic map,
one of the best studied chaotic systems:

xn+1 � f xn, r( 􏼁 � rxn 1 − xn( 􏼁, (3)

where x is restricted to the unit interval [0 1] and r is a
control parameter.-e logistic map in the neighborhood of a
periodic orbit can be approximated by a linear equation
expanded around the periodic orbit. Denote the target pe-
riod-m orbit to be controlled as x(i), i� 1, 2, . . ., m, where
x(i+ 1)� f(x(i)) and x(m+ 1)� x(1). Assume that, at time n,
the trajectory falls into the neighborhood of component i of
the period-m orbit. -e linearized dynamics in the neigh-
borhood of component (i+1) is

xn+1 − x(i + 1) �
zf

zx
xn − x(i)􏼂 􏼃 +

zf

zr
Δrn

� r0[1 − 2x(i)] xn − x(i)􏼂 􏼃

+ x(i)[1 − x(i)]Δrn,

(4)

where the partial derivatives are evaluated at x� x (i) and
r � r0. To make xn+1 stay in the neighborhood of x (i+ 1), let
xn+1 − x(i + 1) � 0, which gives

Δrn � r0
[2x(i) − 1] xn − x(i)􏼂 􏼃

x(i)[1 − x(i)]
. (5)

Equation (5) holds only when the trajectory xn enters a
small neighborhood of the period-m orbit, i.e., when
|xn − x(i)|≪ 1, and hence, the required parameter pertur-
bation Δrn is small. Let the length of a small interval defining
the neighborhood around each component of the period-m
orbit be 2ε. In general, the required maximum parameter
perturbation δ is proportional to ε. Since ε can be chosen to
be arbitrarily small, δ can also be made arbitrarily small. -e
average transient time before a trajectory enters the
neighborhood of the target periodic orbit depends on ε (or
δ). When the trajectory is outside the neighborhood of the
target periodic orbit, any parameter perturbation is not
applied, so the system evolves at its nominal parameter value
r0. Hence, we set Δrn � 0 when Δrn > δ. -e parameter
perturbation Δrn depends on xn and is time-dependent.

Pyragas [6], Shinbrot et al. [7], Pyragas [8], and Kocarev
and Parlitz [9] have put forward different improvement
measures according to various situations and further de-
veloped the OGY method, which has laid a good foundation
for the application of chaos. Flipe et al. [10] adopt the pole
assignment technique in system control to further improve
the OGY method. -e chaos of high periodic states and
high-dimensional dynamic systems in chaotic attractors is
controlled by the improved OGY method.

By the OGYmethod, Guo et al. [11, 12] studied the chaos
control of two-dimensional Lauwerier mapping

xn+1 � bxn 1 − 2yn( 􏼁 + yn,

yn+1 � ayn 1 − yn( 􏼁
􏼨 (6)

and a piecewise linear Lozi mapping

xn+1 � 1 − a xn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + yn,

yn+1 � bxn.

⎧⎨

⎩ (7)

-e chaotic motions of equations (6) and (7) are both
controlled on periodic-1 and periodic-2 orbits. Guo et al.
[13] studied the chaos control of two-degree-of-freedom
collision vibration system by the OGY method. A four-di-
mensional discontinuous system is studied. -e chaotic
motion is controlled on periodic-1 and periodic-2 orbits.

-e Hassell mapping produces a chaotic attractor as
a� 31, b� 0.7, c � 0.8, and β � 22. -e unstable period-1
point and unstable period-2 points are controlled on the
periodic orbits.

2. The Hassell Recruitment Population Model

-e Hassell recruitment population model has two gener-
ations [3]. It is described by the two-dimensional mapping
Ha,b: R2

+⟶ R2
+:

Ha,b(x, y):
f(x, y) � (ax + cay)(1 + x + y)− β,

g(x, y) � bx,

⎧⎨

⎩ (8)

where x and y stand for the density of the first age group and
the second one. a and ca are the fertility rates of the group at
time zero, b is the survival rate from the first age group to the
second one, and β is the decay index, β> 1. When β� 1, the
case corresponds to the model of Beverton and Holt [14].
-e attractors are fixed points.

For the parameters c � 0.8 and β � 22 and fixed survival
rate b= 0.7, when the initial fertility rate a changes between 0
and 35, equation (8) generates complicated features, shown
in Figure1(a)–1(e). For 0< a< 0.455, (0, 0) is a global
attractor. -ere exists a positive fixed point that is asymp-
totically stable for 0.455< a< 7. For a between 7 and 10,
unstable coexistence between the first age group and the
second one can be observed, with chaotic bands having
narrow and wide periodic windows. Subsequently, a cascade
of period-halving is shows in Figure 1(b). For a between 10
and 15, the system goes through a quasi-periodic region
(Hopf bifurcation occurs at a= 12.5, including frequency
lockings which appear as a collapse of the invariant circle to a
periodic orbit), beyond which equation (8) coexists in a
stable manner for a large range of the parameter a (as shown
in Figure 1(c)). -e system enters quasi-periodicity again
when a= 15. For a between 15 and 17, it coexists in an
unstable manner again, with chaotic bands having narrow
and wide periodic windows. For a between 17 and 25, Hopf
bifurcation occurs again (as shown in Figure 1(d)). For a
between 25 and 29, the bifurcation diagram is a periodic
window with a periodic attractor, but that it includes am-
biguous dynamic behavior. Several attractors coexist in this
region (as shown in Figure 1(e)). For a greater than 31, a
chaotic attractor appears. A Hénon chaotic attractor [15]
coexists with an attracting invariant curve (as shown in
Figure 2). For a between 0 and 60, the global bifurcation is
shown in Figure 1(a).

-e largest Lyapunov exponent measures the average
exponential rate of divergence or convergence of nearby
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orbits in the phase space. Whenever two nearby orbits move
too far apart, one of the orbits has to be moved back to the
vicinity of the other along the line of separation. For a
chaotic attractor, the largest Lyapunov exponent must be
positive. If the largest Lyapunov exponent is negative, this
implies a stable state or a periodic attractor. -e largest

Lyapunov exponents of the Hassell mapping have been
calculated and plotted in Figure 3. When 0< a< 15, the
largest Lyapunov exponent is negative.When 15< a< 30, the
largest Lyapunov exponent can be negative or positive, and
the system has Hopf bifurcation and enters quasi-periodicity
and at last generates the chaotic state. When a> 30, the
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Figure 1: Bifurcation diagrams of the Hassell mapping (c � 0.8, β � 22, b� 0.7, and 0< a< 35).
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largest Lyapunov exponent is positive. -e dynamics be-
havior is chaotic. And the chaotic attractor is found as LE
max� 2.1392e0.3.

3. Pole Assignment Technique for
Controlling Chaos

-e system is first written in the form of a discrete time [10]:

Zi+1 � F Zi, a( 􏼁, Zi ∈ R
2
, a ∈ R. (9)

F is sufficiently smooth and a is an externally adjustable
real parameter. -at is, it requires |a − a|< δ at some time,
and a is a rated value. It is assumed that there is a chaotic
attractor of equation (9) for a � a. Now, the aim is to change
the parameters such that the chaotic attractor involves al-
most all of the initial conditions so that the dynamic
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Figure 2: -e chaotic attractor of the Hassell mapping with unstable periodic orbits of period-1(.) and period-2(+).
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Figure 3: Lyapunov exponent of Hassell mapping (c � 0.8, β � 22, b� 0.7, and 0< a< 40).
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behavior of the system converges to the desired periodic
orbit in the attractor. By the OGY method, due to the er-
godicity of the chaos dynamics, when the state trajectory
enters the vicinity of the unstable periodic orbit to be sta-
bilized, a feedback control law is applied to control the
trajectory to move to the desired unstable periodic orbit.

If Z∗(a) is the unstable fixed point, by first-order Taylor
expansion, equation (9) can be written as

Zi+1 − Z∗(a) � A Zi − Z∗(a)( 􏼁 + B(a − a). (10)

Find out the values of the matrices A and B at Z � Z∗(a)

and a � a, where A is the partial derivative matrix of F (z, a)
to z, A � DzF(z, a), and B is the partial derivative matrix of
F (z, a) to a, B � DaF(z, a). -e time-dependent control
parameter a is in the form of a linear function with respect to
the variable

a − a � − K
T

Zi − Z∗(a)( 􏼁. (11)

Replace equations (11) into (10):

Zi+1 − Z∗(a) � A − BK
T

􏼐 􏼑 Zi − Z∗(a)( 􏼁. (12)

So, as long as the matrix A − BKT is asymptotically
stable, that is, if the modulus of its eigenvalues is less than 1,
the fixed point Z∗(a) is stable.-e following key questions is
how to determine the matrix KT, which can stabilize the
chaotic motion at a stable periodic point. -e pole assign-
ment is solved according to [16]. -e matrix Cn×n is a
controllable matrix, and the rank is n:

C � B AB A2B · · · An− 1B( 􏼁. (13)

-e solution of pole assignment is given by
KT � (αn − an, . . . , α1 − a1)T

− 1, where T � CW, W is a
matrix of order n:

W �

an− 1 an− 2 . . . a1 1

an− 2 an− 3 . . . 1 0

. . . . . . . . . . . . . . .

a1 1 . . . 0 0

1 0 . . . 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

where ai(i � 1, . . . , n) are the coefficients of the character-
istic polynomial of the matrix A, that is,

det(λI − A) � λn
+ a1λ

n− 1
+ · · · + an, (15)

and α1, α2, . . . , αn are the coefficients of the characteristic
polynomial det(A − BKT), that is,

det sI − A − BK
T

􏼐 􏼑􏼐 􏼑 � s
n

+ α1s
n− 1

+ · · · + αn. (16)

After working out KT, |KT(Zi − Z∗(a))|< δ is obtained
by |a − a|< δ and equation (12).

4. The Chaos Control of Hassell Mapping

As shown in Figures 2(a) and 2(b), for c � 0.8, β � 22,

and b � 0.7, when a= 31, the dynamic has period-1 point
and period-2 points. -e dynamic behavior of the mapping
is chaotic at a � 31. At the same time, there is a chaotic
attractor, which is the closure of the unstable manifolds of
the saddle points. And there is an infinite number of un-
stable periodic orbits in the chaotic attractor. -ere are an
unstable fixed point and two unstable period-2 points
embedding in the chaotic attractor.

4.1. Control of Period-1 Point of Hassell Mapping. Let the
control parameter a be a variable near the rated value a � 31
at c � 0.8, β� 22, and b � 0.7, By f(x,y) � x and g(x,y) � y,
the fixed point is (x∗,y∗) � (0.46,0.11). Bring the fixed point
into the matrixes A and B:

A �
a(1 + 1x − βx + y − βcy)(1 + x + y)− β− 1 a(c + cx − βx + cy − cyβ)(1 + x + y)− β− 1

b 0
⎛⎝ ⎞⎠

x∗ ,y∗( )

�
− 0.010 − 0.011

1.5 0
􏼠 􏼡,

B �
(x + cy)(1 + x + y)− β

􏼐 􏼑

0
⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
x∗ ,y∗( )

�
1.44

0
􏼠 􏼡.

(17)

A controllable matrix is a matrix with rank 2 as

C � B AB( 􏼁 �
1.44 − 0.144

0 2.16
􏼠 􏼡. (18)

-e solution of the pole assignment problem is given by

KT � (α2 − a2, α1 − a1)T
− 1, where T � CW, W �

a1 1
1 0􏼠 􏼡,

where ai(i � 1, 2) are the coefficients of the characteristic

polynomial of the matrix A.
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det(λI − A) � det
λ + 0.010 0.011

− 1.5 λ
􏼠 􏼡 � λ2 + 0.010λ + 0.017.

(19)

So, a1 � 0.010 and a2 � 0.017.

T � CW �
1.44 − 0.144

0 2.16
􏼠 􏼡

0.010 1

1 0
􏼠 􏼡 �

− 0.13 1.44

2.16 0
􏼠 􏼡,

T
− 1

�
0 0.4630

0.6944 0.0418
􏼠 􏼡.

(20)

-e characteristic roots of A which can also be obtained
at the fixed point (x∗, y∗) � (0.46, 0.11) are λs � − 0.005 −

0.13i, λu � − 0.005 + 0.13i. α1, α2 are the coefficients of the
characteristic polynomial of the matrix A − BKT. -e as-
sumed characteristic roots μ1, μ2 are called the adjustment
values, that is,

det sI − A − BK
T

􏼐 􏼑􏼐 􏼑 �� s
2

− μ1 + μ2( 􏼁s + μ1μ2. (21)

-e relationships between the roots and the coefficients
are obtained as

α1 � − μ1 + μ2( 􏼁,

α2 � μ1μ2.
(22)

When μ1 � 1, α1 � − 1 − α2; when μ1 � − 1, α1 � 1 + α2;
and when μ1μ2 � 1, α2 � 1 according to the range of the
values α1 and α2 determined by equation (22), as in the
shaded area in Figure 4.

From Ogata [16] and equation (9), the matrix KT is not
unique. As long as the matrix KT is obtained with the values
α1 and α2 in the triangle regionMNQ as Figure 4, it canmake
the matrix A − BKT be asymptotically stable, that is, the
modulus of its eigenvalues is less than 1, so we can take
μ1 � 0, μ2 � |λs|. As (α1, α2) � (− |λs|, 0), we can obtain

K
T

� 0 − a2, − λs

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − a1􏼐 􏼑T

− 1
� (− 0.017, − 0.12). (23)

When KT is found, |KT(Zi − Z∗(a))|< δ is obtained by
|a − a|< δ and equation (12). -ere is a region whose width
is 2δ/|KT|, and when Zi is in this region, the parameter is
controlled; otherwise, the parameter is not controlled. -e
control rate is given by the following formula:

a − a � − K
T

Zi − Z∗(a)( 􏼁 × u δ − K
T

Zi − Z∗(a)( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓,

(24)

where u is a step function:

u(α) �
0, α< 0,

1, α> 0.
􏼨 (25)

As shown in Figure 5, we get the different values in the
triangle region of Figure 4. When we choose
α1 � 1.75 and α2 � 0.74, the chaotic motion can be con-
trolled on the period-1 orbit at n� 5760 (as shown in
Figures 5(a) and 5(b)). When we choose
α1 � − 0.5 and α2 � 0.6, the chaotic motion can be controlled

on the period-1 orbit at n� 3300 (as shown in Figures 5(c)
and 5(d)). When the values of α1 and α2 are different from
the previous values, the number of equation (8) iterations is
different to control chaos.

4.2. Control of Period-2 of Hassell Mapping. By iterating
equation (8), we can obtain

H Ha,b(x, y)􏼐 􏼑:
F(x, y, a),

G(x, y, a),
􏼨 (26)

where

F(x, y, a) � a
2
(x + cy)(1 + x + y)

− β
+ cay􏼐 􏼑

· 1 +(ax + cay)(1 + x + y)
− β

+ y􏼐 􏼑
− β

,

G(x, y, a) � b
2
x.

(27)

When a � 31, the points (x1, y1) and (x2, y2) of period
two are (0.15, 0.26) and (0.34, 0.056), which are obtained as
follows: F(x, y, a) � x, G(x, y, a) � y.

According to

A1 �

zF(x,y,a)

zx

zF(x,y,a)

zy

zG(x,y,a)

zx

zG(x,y,a)

zy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x1 ,y1( )

,

A2 �

zF(x,y,a)

zx

zF(x,y,a)

zy

zG(x,y,a)

zx

zG(x,y,a)

zy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x2 ,y2( )

,

B1 �

zF(x,y,a)

za

zG(x,y,a)

za

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x1 ,y1( )

,

B2 �

zF(x,y,a)

za

zG(x,y,a)

za

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x2 ,y2( )

,

(28)
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Figure 4: Choice of regulator pole area (triangle region MNQ).
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Figure 5: Control of period-1 of Hassell mapping.
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Figure 6: Control of period-2 of Hassell mapping.
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where
zF(x, y, a)

zx
� 1 +(ax + cay)(1 + x + y)

− β
+ y􏼐 􏼑

− β

· a
2
(1 + x + cy)+􏽨 a

2
(x + cy)(1 + x + y)

− β
+ cay􏼐 􏼑

· a + ax + cay)( 􏼃(1 + x + y)
− β

,

(29)

zF(x, y, a)

zy
� 1 +(ax + cay)(1 + x + y)

− β
+ y􏼐 􏼑

− β

· a
2
(1 + x + y)

− β
(1 + x + cy)+􏽨 ca

a
2
(x + cy)(1 + x + y)

− β
+ cay􏼐 􏼑

(1 + x + y)
− β

(a + ax + cay) + 1􏼐 􏼑􏽩,

(30)

zG(x, y, a)

zx
� b

2
,

zG(x, y, a)

zy
� 0,

(31)

zF(x, y, a)

za

� 1 +(ax + cay)(1 + x + y)
− β

+ y􏼐 􏼑
− β

· 2a(x + cy)(1 + x + y)
− β

+􏽨 cy

(32)

zG(x, y, a)

za
� 0. (33)

Bring (x1, y1) � (0.15, 0.26) and (x2, y2) � (0.34, 0.056)

into equation (29)–(33):

A1 �
− 1.54 − 0.98

0 − 3.23
􏼠 􏼡5,

A2 �
0.08 0.28

0 − 3.28
􏼠 􏼡,

B1 �
0

0.34
􏼠 􏼡,

B2 �
0

0.44
􏼠 􏼡.

(34)

-e controllable matrices are obtained as follows:

C1 � B1 A1B1( 􏼁 �
0 − 0.33

0.34 − 1.10
􏼠 􏼡,

C2 � B2 A2B2( 􏼁 �
0 0.12

0.44 − 1.44
􏼠 􏼡,

(35)

and ai(i � 1, 2) are the coefficients of the characteristic
polynomial of the matrix A1, a1 � 4.77, a2 � 4.97. At the
same time, the characteristic roots are
λ1s � − 0.54,λ1u � − 3.23.

-e solution of the pole assignment problem is given by

K
T
1 � α2 − a2, α1 − a1( 􏼁T

− 1
1 , (36)

where α1 and α2 are the coefficients of the characteristic
polynomial of the matrix A1 − B1K

T
1 . According to the

discussion of the values α1, α2, we take (α1, α2) � (− λ1s, 0),
where T1 � C1W1, so

K
T
1 � 0 − a2, − λ1s − a1( 􏼁T

− 1
1 � (− 4.97, − 4.23), (37)

ai(i � 3, 4) are the coefficients of the characteristic poly-
nomial of the matrix A2 − B2K

T
2 , a3 � 3.2, a4 � − 0.26, and

the characteristic roots are λ2s � 0.08, λ2u � − 3.28. We take
(α3, α4) � (− λ2s, 0), and we obtain KT

2 � (− 0.46, 4.39). -e
control rate can be given by the following equation:

a − a � − K
T
i Zn − Z(i)(a)( 􏼁 × u δ − K

T
i Zn − Z(i)(a)( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓,

i � 1, 2.

(38)

As shown in Figure 6, we get the different values in the
triangle region MNQ of Figure 4. When we choose α1 �

− 0.37, α2 � 0.3, α3 � − 0.25, and α4 � − 0.54, the chaotic
motion can be controlled on the period-1 orbit at n� 6554
(as shown in Figures 6(a) and 6(b)). When we choose α1 �

0.73, α4 � 0.24, α3 � 0.34, and α4 � 0.44, the chaotic mo-
tion can be controlled on the period-1 orbit at n� 2700 (as
shown in Figures 6(c) and 6(d)).

5. Conclusion

-e dynamic complexities of the Hassell recruitment
population model have been analyzed. -ese results
demonstrate that the reproductive rate and the resulting
population growth can also act as a strong destabilizing
factor, leading to rich dynamic behaviors. By improving
the method of the OGY, the chaotic control of the Hassell
mapping is controlled, the perturbation quantity of the
control parameter is selected by the pole configuration
method in the linear control theory, and unstable period-1
and unstable period-2 are controlled to be stable period
orbits. At the same time, the adjustment values to be
selected are different, and the number of the mapping
iterations is different to control chaos. By numerical
simulation, the effectiveness of the method is demon-
strated. -is research can provide theoretical basis and
help for the research in biology or ecology. According to
the research results, the birth rate a, survival rate b, or
decay coefficient β can be properly adjusted to achieve an
ecological balance.
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