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*is paper proposes some novel decentralized adaptive control protocols to settle the quasi-consensus problem of multiagent
systems with heterogeneous nonlinear dynamics. Based on local communication with the leader and between the followers, some
innovative control protocols are put forward to adapt the control gains and coupling weights simultaneously and to steer the
consensus errors to some bounded areas. In particular, two new inequalities are proposed to establish the Lyapunov-based
adaptive controller design approach for quasi-consensus. Some quasi-consensus criteria are derived by utilizing the designed
controllers, in which the error bound can be modulated on the basis of the adaptive controller parameters. Numerical tests are
conducted to show the feasibility of the theoretical derivation. Our findings highlight quasi-consensus in heterogeneous
multiagent systems without adding some additional complex nonlinear control terms to cancel the dynamical differences
between agents.

1. Introduction

Collaborative control of multiagent systems (MASs) has
become a research hotspot of distributed artificial intelli-
gence because of its wide application in intelligent energy,
multirobot formation, intelligent transportation, multi-
unmanned system collaboration, and other engineering
systems [1–5].

Among them, consensus or synchronization is a key
common scientific issue of cooperative control of MASs,
which has aroused great concern of multidisciplinary
scholars. In brief, a core issue is to design appropriate
control protocols to reach an agreement between agents. So
far, many significant results have been acquired, regarding
the consensus patterns, models, control algorithms, etc
(please see [6–14] and some other results).

However, the aforesaid works [1–14] on the consensus of
MASs mainly concentrate upon the case in which an agent
has the same dynamics as all the neighbors or the leader. In
some real scenes, the mismatched parameters or dynamical
differences among agents may be almost inevitable, which

will thus result in heterogeneous (or nonidentical) multi-
agent systems (HMASs) [15–17]. It is remarkably that, due to
heterogeneity, it is even impossible for HMASs to reach the
complete consensus just by state feedback control when the
coupling weights are constant. Up to now, there are few
thorough research studies on complete consensus in HMASs
because one has to add some additional complex nonlinear
control terms or design compensators to cancel the dy-
namical differences [18–26]. Another alternative technique
to deal with the heterogeneity is to transform HMASs to
homogeneous ones [27, 28]. Unfortunately, all of the
aforementioned approaches are complex and nonintuitive,
which are thus not suitable for engineering applications.
Nevertheless, in many practical HMASs, the consensus error
may be bounded, even small enough, which is, namely, the
so-called quasi-consensus (QC) [29].

Instead, an immediate and natural question, then, is how
to design a simple controller to reach QC in HMASs. Similar
to it, work to date has considered the quasi-synchronization
(QS) in heterogeneous complex dynamical networks
(HCDN) [30–34]. For example, in [33, 34], some QS criteria
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for fractional HCDN are derived via state feedback control
and impulsive control, respectively. By contrast, there are
few research studies about QC of HMASs [29, 35–38]. *e
definition of QC for MASs was first proposed in [38], and
then, the definition of QC was further broadened in [29].
After that, the QC of HMASs has been further studied. *e
QC problem of nonlinear HMASs is studied via sampled-
data control in [35]. In [36], sufficient conditions for the QC
in switched HMASs are given, considering cooperation and
competition interactions simultaneously. Ye and Shao [37]
attempted to prove that QC in HMASs under DOS attacks
can be realized by impulsive control. It should be noted,
however, that, for large scale HCDN or HMASs, the com-
putational complexity and conservativeness of QS or QC
conditions in [29–38] impede their applications. In par-
ticular, it is difficult, even impossible, to check the LMI-
based conditions without adaptive schemes for large-scale
HCDN or HMASs. Obviously, it is an interesting and open
problem to improve the QC conditions for HMASs by
exploring some new control algorithms.

Motivated by the applications of decentralized adaptive
control for synchronization in integer-order and fractional-
order complex dynamical networks [39–43], this paper aims
to design some decentralized adaptive protocols to reach QC
in HMASs. Different from some previous studies
[37, 44, 45], in our controller, the coupling and feedback
values between agents change adaptively. *e main con-
tributions in this paper are as follows. First, two new in-
equalities are proposed to establish the Lyapunov-based
adaptive controller design approach for QC in HMASs.
Second, some innovative control protocols are introduced to
accommodate the control gains and coupling weights
adaptively, to steer the consensus errors to some bounded
areas. *ird, some QC criteria under the designed con-
trollers are derived by the Lyapunov function method and
the new inequalities.

2. Preliminaries and Problem Formation

2.1. Graph 'eory. To carry out later research, we present
some important concepts about graph theory in this section.

G � V,E,A{ } is defined as a weighted undirected graph
with the network topology of N agents, where
V � 0, 1, . . . , N{ } and E � eij(i, j) ⊆V × V are the sep-
arate sets of nodes and undirected edges.A � (aij)N×N is the
weighted adjacency matrix of which the elements are
nonnegative. *e ith agent and the leader are modeled as the
node i ∈V,V � 0, 1, . . . , N{ } and node 0, respectively. As a
rule, the undirected edge (i, j) ∈ E in the weighted undi-
rected graph G denoted by an ordered pair (Vi,Vj) rep-
resents that agent i and agent j become a pair of neighbors
which can get their information from each other. *ere is an
undirected spanning tree in an undirected graph if one agent
exits an undirected path to every other distinct node.

*ere are two matrices that are considered as the net-
work topology, i.e., the weighted adjacency matrix
A � (aij)N×N with aij � aji > 0 if eij ∈ E, else aij � 0 if
eij ∉ E, and the Laplacian matrix L � (Lij)N×N which is
defined as Lii � 

N
j�1,j≠ i aij � deg(i) and Lij � − aij, i≠ j,

noted that all of them are asymmetric for the undirected
graph.

Lemma 1 (see [46]). 'e Laplacian matrix L is constructed
from the undirected network. 'ere are several properties in
the following.

(1) Eigenvalues of L satisfy 0 � λ1(L)< λ2
(L)≤ · · · ≤ λN(L) and the smallest positive eigenvalue
λ2(L) � minxT1N�0,x≠ 0(xTLx/xTx) if and only if the
network is connected.

(2) For any vector η � (η1, η2, . . . , ηN)T ∈ RN, the
equation satisfies

ηT
Lη �

1
2


i�1


j�1

Gij ηi − ηj 
2
. (1)

2.2. Problem Formation. In this paper, we consider that
there are N follower multiagent systems, which can be
described by

_ωi(t) � Aiωi(t) + Bif ωi(t), t(  + ui(t), (2)

where ωi(t) ∈ Rn can be regarded as the position vector of
the agent i.f: Rn × Rn × R+⟶ Rn represents a continuous
nonlinear vector function. Ai, Bi ∈ Rn×n represent the sys-
tem matrices of the agent i, respectively. ui(t) ∈ Rn denotes
the control protocol to be designed.

*e leader agent can be described as follows:

_ω0(t) � Aω0(t) + Bf ω0(t), t( , (3)

where ω0(t) ∈ Rn represents the leader’s state vector and A,
B ∈ Rn×n represent the leader’s systemmatrices, respectively.

For the above heterogeneous leader-follower multiagent
system, we give the following assumptions.

Assumption 1. Suppose there is a normal quantity l so that
the vector function f for any vector λ, ] ∈ Rn satisfies

‖f(λ, t) − f(], t)‖≤ l‖(λ − ])‖. (4)

Lemma 2 (see [47]). For any vector x, y ∈ Rn, the following
holds:

x
T
y≤

1
2
x

T
x +

1
2
y

T
y. (5)

Lemma 3. Any two continuous functions satisfy

_v(t) + _w(t)≤ − cv(t), (6)

where c> 0. 'en, there is a t≥ 0 so that the following holds:

v(t) ≤ (v(0) + w(0))e
− ct

− w(t) + ce
− ct ∗w(t), t≥ 0,

(7)

where ∗ is the convolution.
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Proof. Since v(t) + _w(t)≤ − cv(t), the existence of z(t)≥ 0
makes the following equation:

_v(t) + _w(t) + z(t) � − cv(t). (8)

We calculate the Laplace transform of (8) to obtain

sV(s) + sW(s) − (v(0) + w(0)) + Z(s) � − cV(s). (9)

*en, we can obtain

V(s) � (v(0) + w(0))
1

s + c
−

s

s + c
W(s) −

1
s + c

Z(s).

(10)

*e inverse Laplace transform of (10) can be obtained as

v(t) � (v(0) + w(0))e
− ct

− w(t) + ce
− ct ∗w(t) − e

− ct ∗ z(t).

(11)

*rough (10), we can obtain

v(t) ≤ (v(0) + w(0))e
− ct

− w(t) + ce
− ct ∗w(t). (12)

Lemma 4. Any two continuous functions satisfy

_v(t) + _w(t)≤ − cv(t) + ε, (13)

where c> 0 and ε> 0. 'en, there is a t≥ 0 so that the fol-
lowing formula holds:

v(t) <(v(0) + w(0))e
− ct

− w(t) + ce
− ct ∗w(t) +

ε
c

, t≥ 0.

(14)

Proof. Since _v(t) + _w(t) ≤ − cv(t) + ε, then _(v(t) − (ε/c))

+ _w(t)≤ − c(v(t) − (ε/c)).
By Lemma 3, we can obtain

v(t) −
ε
c
≤ v(0) −

ε
c

+ w(0) e
− ct

− w(t) + ce
− ct ∗w(t).

(15)

We can further obtain

v(t)≤ (v(0) + w(0))e
− ct

− w(t) + ce
− ct ∗w(t) +

ε
c

. (16)

Lemma 5 (see [47]). IfA, B,C, andD represent four different
matrices, respectively, and the matrix products AC and B D

makes sense, the Kronecker product ⊗ satisfies

(1) A⊗ (B + C) � A⊗B + A⊗C,

(2) (A⊗B)(C⊗D) � (AC)⊗ (B D).
(17)

Definition 1 (see [29]). *e leader-follower HMASs are
decided to reach QC if

lim
t⟶∞

ωi(t) − ω0(t)
����

����≤ ξ, i � 1, 2, . . . , N, (18)

where ξ is a nonnegative constant.

Assumption 2. *e network topology between agents is
undirected and connected, and each agent can acquire the
status information of the agent that has a connection re-
lationship with it and the leader agent at any time.

2.3. Our Controller. To obtain QC between HMASs (2) and
(3), we design the control input for all follower agents as

ui(t) � − c 
N

j�1
Lij(t)ωj(t) − ri(t) ωi(t) − ω0(t)( , (19)

where c is a positive constant.
*e adaptive law for the control gains is described as

_ri(t) � μ ωi(t) − ωj(t) 
T

ωi(t) − ω0(t)( , (20)

where μ is a positive constant to be selected.
*e adaptive law for the coupling weights is described as

_Lij(t) � − αij ωi(t) − ωj(t) 
T
ωi(t) − ωj(t) ,

Lij(0) � Lji(0)> 0, (i, j) ∈ E,
(21)

where αij � αji are the positive constants to be selected.

Remark 1. It should be noted that, in controller (19),
adaptive laws (20) and (21), the coupling weights Lij(t) and
the control gains ri(t) are adjusted adaptively based on local
communication with the leader and between the followers.
Combining adaptation of the coupling weights and control
gains, adaptive law (20) ensures the QC of the follower
agents, while adaptive law (21) drives the follower agents to
the leader agent.

Let the QC error vector be ei(t) � ωi(t) − ω0(t). *en,
the error model with the controller iscom

_ei(t) � Aiei(t) + Bi
f ei(t), t(  + hi ω0(t), t( 

− c 

N

j�1
Lij(t)ej(t) − ri(t)ei(t),

(22)

where f(ei(t), t) � f(ωi(t), t) − f(ω0(t), t) and
hi(ω0(t), t) � (Ai − A)ω0(t) + (Bi − B)f(ω0(t), t).

hi(ω0(t), t) represents the difference between different
agents. It can be obtained by Assumption 1:

hi ω0(t), t( 
����

���� � Ai − A( ω0(t) + Bi − B( f ω0(t), t( 
����

����

≤ Ai − A
����

���� ω0(t)
����

���� + Bi − B
����

���� f ω0(t), t( 
����

����

≤ Ai − A
����

���� ω0(t)
����

���� + Bi − B
����

����lmax ω0(t)
����

����.

(23)

Since ω0(t) is bounded, it can be obtained that
hi(ω0(t), t) is bounded.

3. Main Results

In this section, we present some theorems for achieving QC
in HMASs.
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3.1. Adaptive Control Protocol

Theorem 1. It is assumed that f(ωi(t), t) satisfies As-
sumption 1 and the follower system (2) satisfies Assumption 2.
Under the action of controller (19) and adaptive laws (20) and
(21), HMASs (2) and (3) can achieve QC.

*e Lyapunov function we constructed is

V1(t) �
1
2



N

i�1
e

T
i (t)ei(t)

+ 
N

i�1


N

j�1,j≠ i

c

4αij

Lij(t) + kij 
2

+ 
N

i�1

1
2μ

ri(t) − d
∗
i( 

2
,

(24)

where kij � kji(i≠ j) is a nonnegative constant if and only if
Lij(t) � 0 is kij � 0. d∗i is the normal constant waiting for
the value.

We take the derivative of V1(t) along (22) together with
controller (19) and adaptive laws (20) and (21), and we can
obtain

_V1(t) � 
N

i�1
e

T
i (t) _ei(t) + 

N

i�1


N

j�1,j≠ i

c

2αij

Lij(t) + kij  _Lij(t) +
1
μ



N

i�1
ri(t) − d

∗
i(  _ri(t)

� 
N

i�1
e

T
i (t) Aiei(t) + Bi

f ei(t), t(  + hi ω0(t), t(  − c 
N

j�1
Lij(t)ej(t) − ri(t)ei(t)⎛⎝ ⎞⎠

− 
N

i�1


N

j�1,j≠ i

c

2
Lij(t) + kij  ωi(t) − ωj(t) 

T
ωi(t) − ωj(t) 

+ 
N

i�1
ri(t) − d

∗
i( e

T
i (t)ei(t)

� 
N

i�1
e

T
i (t)Aiei(t) + 

N

i�1
e

T
i (t)Bi

f ei(t), t(  + 
N

i�1
e

T
i (t)hi ω0(t), t( 

− 
N

i�1
e

T
i (t)c 

N

j�1
Lij(t)ej(t) − 

N

i�1
d
∗
i e

T
i (t)ei(t)

−
c

2


N

i�1


N

j�1,j≠ i

Lij(t) + kij  ωi(t) − ωj(t) 
T
ωi(t) − ωj(t) .

(25)

*rough Assumption 1 and Lemma 2, one has



N

i�1
e

T
i (t)Bi

f ei(t), t(  � 
N

i�1
e

T
i (t)Bi f ωi(t), t(  − f ω0(t), t( ( 

≤
1
2



N

i�1
e

T
i (t)BiB

T
i ei(t) +

1
2



N

i�1
f ωi(t), t(  − f ω0(t), t( 

����
����
2

≤
1
2



N

i�1
e

T
i (t) BiB

T
i + l

2
In ei(t),

(26)



N

i�1
e

T
i (t)hi ω0(t), t( ≤

1
2



N

i�1
e

T
i (t)ei(t) +

1
2



N

i�1
hi ω0(t), t( 

����
����
2
. (27)
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From (25)–(27), we can obtain

_V1(t)≤ 
N

i�1
e

T
i (t)Aiei(t) +

1
2



N

i�1
e

T
i (t)ei(t) +

1
2



N

i�1
hi ω0(t), t( 

����
����
2

− 
N

i�1
e

T
i (t)c 

N

j�1
Lij(t)ej(t) +

1
2



N

i�1
e

T
i (t) BiB

T
i + l

2
In ei(t) − 

N

i�1
d
∗
i e

T
i (t)ei(t)

−
c

2


N

i�1


N

j�1,j≠ i

Lij(t) + kij  ωi(t) − ωj(t) 
T
ωi(t) − ωj(t) .

(28)

We can define the Laplacian matrixΩ � (τij)N×N, where
τij � kij, i≠ j and τii � − 

N

j � 1
j≠ i

τij. By Lemma 1, we can
obtain

c

2


N

i�1


N

j�1,j≠ i

Lij(t) + kij  ei(t) − ej(t) 
T

ei(t) − ej(t) 

� − c 
N

i�1


N

j�1
Lij(t)e

T
i (t)ej(t) + c 

N

i�1


N

j�1
τije

T
i (t)ej(t).

(29)

Combining with (28) and (29), we have

_V1(t)≤ 
N

i�1
e

T
i (t)Aiei(t) +

1
2



N

i�1
e

T
i (t)ei(t) +

1
2



N

i�1
hi ω0(t), t( 

����
����
2

− 
N

i�1
e

T
i (t)c 

N

i�1
Lij(t)ej(t) +

1
2



N

i�1
e

T
i (t) BiB

T
i + l

2
In ei(t)

+ c 
N

i�1


N

i�1
Lij(t)e

T
i (t)ej(t) − c 

N

i�1


N

i�1
τije

T
i (t)ej(t) − 

N

i�1
d
∗
i e

T
i (t)ei(t)

� 

N

i�1
e

T
i (t)Aiei(t) +

1
2



N

i�1
e

T
i (t) BiB

T
i + l

2
+ 1 In − 2d

∗
i · In ei(t)

+
1
2



N

i�1
hi ω0(t), t( |

����
����
2

− c 
N

i�1


N

i�1
τije

T
i (t)ej(t).

(30)

*en, there is a unitary matrix U � (u1, . . . , uN) so that
UTΩU � Δ, m(t) � (UT ⊗ In)e(t),

_V1(t)≤ e
T
(t) A +

1
2

BB
T

+ IN ⊗ l
2

+ 1 In − 2 D
∗ ⊗ In(   − c Ω⊗ In(  e(t) +

1
2

h ω0(t), t( 
����

����
2

� e
T
(t) A +

1
2

BB
T

+ IN ⊗ l
2

+ 1 In − 2 D
∗ ⊗ In(   

− c U⊗ In(  Δ⊗ In(  U
T ⊗ In e(t) +

1
2

h ω0(t), t( 
����

����
2

� e
T
(t) A +

1
2

BB
T

+ IN ⊗ l
2

+ 1 In − 2 D
∗ ⊗ In(   e(t) − cm

T
(t) Δ⊗ In( m(t)

+
1
2

h ω0(t), t( 
����

����
2
,

(31)
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where D∗ � diag(d∗1 , d∗2 , . . . , d∗N), B � diag(B1, B2, . . . , BN),
and A � diag(A1, A2, . . . , AN).

Since In is positive definite, by Lemma 1, we can get the
following:

m
T
(t) Δ⊗ In( m(t)≥ λ2(Ω)m

T
(t) IN ⊗ In( m(t). (32)

*en, we can obtain

_V1(t)≤ e
T
(t) A +

1
2

BB
T

+ IN ⊗ l
2

+ 1 In − 2 D
∗ ⊗ In(   e(t) +

1
2

h ω0(t), t( 
����

����
2

− cλ2(Ω)m
T

(t) IN ⊗ In( m(t)

� e
T
(t) A +

1
2

BB
T

+ IN ⊗ l
2

+ 1 In − 2 D
∗ ⊗ In(   e(t) +

1
2

h ω0(t), t( 
����

����
2

− cλ2(Ω)e
T

(t) P⊗ In(  IN ⊗ In(  P
T ⊗ In e(t)

� e
T
(t) A +

1
2

BB
T

+ IN ⊗ l
2

+ 1 In − 2 D
∗ ⊗ In(   − cλ2(Ω) IN ⊗ In(  e(t)

+
1
2

h ω0(t), t( 
����

����
2
.

(33)

We can choose large enough kij and d∗i so that

λmax A +
1
2

BB
T

+ IN ⊗ l
2

+ 1 In − 2 D
∗ ⊗ In(   − cλ2(Ω) IN ⊗ In(   + θ≤ 0, (34)

where θ> 0 is a positive constant.

_V1(t)≤ − θe
T
(t)e(t) +

1
2

h ω0(t), t( 
����

����
2
, (35)

where e(t) � (eT
1 , eT

2 , eT
3 , . . . , eT

N)T.
By Lemma 4, it yields

e
T

(t)e(t)≤ 
N

i�1
e

T
i (0)ei(0) + 

N

i�1


N

j�1,j≠ i

c

2αij

Lij(0) − kij 
2⎛⎝ ⎞⎠

+
N

i�1

1
μ

ri(0) − d
∗
i( 

2⎞⎠e
− 2θt

+ 2θe
− 2θt ∗  

N

i�1

1
μ

ri(0) − d
∗
i( 

2⎛⎝

+
N

i�1


N

j�1,j≠ i

c

2αij

Lij(0) − kij 
2⎞⎠ +

h ω0(t), t( 
����

����
2

2θ
.

(36)

*e error will eventually converge to finite region Ξ �

e(t) ∈ Rn|‖(t)‖≤
����������������

(‖h(ω0(t), t)‖2/2θ)



  as t⟶ +∞.*is

completes the proof.

3.2. Adaptive Pinning Control Protocol. In the previous
section, an adaptive controller (19) and an adaptive laws (20)
and (21) for all follower agents are designed. However, it is
neither realistic nor economical to control all follower agents
in engineering. In view of this, the adaptive pinning control

schemes are considered, where a fraction of the control gains
and the coupling weights are adapted.

Suppose that ε is a subset of E and HMASs (2) and (3)
are connected by the undirected edge. ε is connected. *e
pinning adaptive protocol is written as follows:

ui(t) � − c 
N

j�1
Lij(t)ωj(t) − ϑiri(t) ωi(t) − ω0(t)( , (37)

where ϑi �
1, for i � 1, 2, . . . , Ns,

0, for i � Ns + 1, . . . , N
 .
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*e adaptive law for ri(t) is the same as (20).
*e adaptive law for Lij(t) is described as

_Lij(t) � − αij ωi(t) − ωj(t) 
T
ωi(t) − ωj(t) , (38)

where (i, j) ∈ ε and Lij(0) � Lji(0)> 0.

Theorem 2. Suppose that Assumption 1 is valid and the
follower system (2) satisfies Assumption 2. 'e HMASs (2)
and (3) can achieve QC under the pinning adaptive protocol
combined with (20), (21), and (37).

Proof. Take into account the Lyapunov function candidate:

V2(t) �
1
2



N

i�1
e

T
i (t)ei(t) + 

N

i�1


N

j�1,j≠ i

c

4αij

Lij(t) + kij 
2

+ 

Ns

i�1

1
2μ

ri(t) − d
∗
i( 

2
, (39)

where cij � cji(i≠ j) is a nonnegative quantity if and only if
Lij(t) � 0 and kij � 0. d∗i is the normal constant waiting for
the value if i � 1, 2, . . . , Ns, Ns ≥ 1, or d∗i � 0.

*e derivative of V2(t) along (22), controller (37), and
the decentralized adaptive pinning laws (20) and (21) gives

_V2(t) � 
N

i�1
e

T
i (t) _ei(t) + 

N

i�1


N

j�1,j≠ i

c

2αij

Lij(t) + kij  _Lij(t) + 

Ns

i�1

1
μ

ri(t) − d
∗
i(  _di(t)

≤ 
N

i�1
e

T
i (t)Aiei(t) +

1
2



N

i�1
e

T
i (t) BiB

T
i + l

2
+ 1 In − 2d

∗
i ⊗ In ei(t)

+
1
2



N

i�1
hi ω0(t), t( 

����
����
2

− c 
N

i�1


N

j�1
τije

T
i (t)ej(t)

≤ e
T
(t) A +

1
2

BB
T

+ IN ⊗ l
2

+ 1 In − 2 D
∗ ⊗ In   − cλ2(Ω) IN ⊗ In(  e(t)

+
1
2

h ω0(t), t( 
����

����
2

,

(40)

where D
∗

� diag(d∗1 , d∗2 , . . . , d∗Ns
, 0, . . . , 0).

*e proof can be completed by using the similar analysis
method in *eorem 1.

Theorem 3. Suppose that Assumptions 1 and 2 hold. 'e
HMASs (2) and (3) can achieve QC under the pinning
adaptive protocol combined with (19), (20), and (38).

Proof. Construct the Lyapunov functional as

V3(t) �
1
2



N

i�1
e

T
i (t)ei(t) + 

N

i�1


(i,j)εε

c

4αij

Lij(t) + kij 
2

+ 
N

i�1

1
2μ

ri(t) − d
∗
i( 

2
, (41)

where kij � kji > 0, (i, j)εε, and kij � 0(i≠ j), else. Let K � (kij)N×N, kii � − 
N
i�1,i≠ j

kij; then,

Gij �

Lij(0), (i, j) ∈ E − ε,

− 
N

j�1,j≠ i

Lij(0), i � j,

0, other.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(42)
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After the derivative of V3(t) along (22), controller (19),
and the decentralized adaptive pinning laws (20) and (38),
the following holds:

_V3(t) � 
N

i�1
e

T
i (t) _ei(t) + 

N

i�1


(i,j)εε

c

2αij

Lij(t) + kij  _Lij(t) +
1
μ



N

i�1
ri(t) − d

∗
i(  _di(t)

� 
N

i�1
e

T
i (t)Aiei(t) + 

N

i�1
e

T
i (t)Bi

f ei(t), t(  + 
N

i�1
e

T
i (t)hi ω0(t), t( 

− 
N

i�1
e

T
i (t)c 

N

i�1
Lij(t)ej(t) − 

N

i�1
d
∗
i e

T
i (t)ei(t)

−
c

2


N

i�1


(i,j)εε
Lij(t) + kij  ωi(t) − ωj(t) 

T
ωi(t) − ωj(t) 

≤ 
N

i�1
e

T
i (t)Aiei(t) +

1
2



N

i�1
e

T
i (t)ei(t) +

1
2



N

i�1
hi ω0(t), t( 

����
����
2

+
1
2



N

i�1
e

T
i (t) BiB

T
i + l

2
In ei(t) − c 

N

i�1


N

j�1
Gij(t)e

T
i (t)ej(t)

− c 
N

i�1


N

j�1
τije

T
i (t)ej(t) − 

N

i�1
d
∗
i e

T
i (t)ei(t)

� e
T
(t) A + c G⊗ In(  +

1
2

IN ⊗ BB
T

+ l
2

+ 1 In   

D
∗ ⊗ In(  − cλ2 Ω

∗
(  IN ⊗ In( e(t) +

1
2

h ω0(t), t( 
����

����
2
,

(43)

where G � (Gij)N×N, Ω∗ � (τij)N×N, τij � − kij, i≠ j, and
τii � − 

N

j � 1
j≠ i

τij.

*e following proof is similar to the previous derivation
in *eorem 1; thus, we will omit this part here.

Theorem 4. Suppose that Assumptions 1 and 2 hold. 'e
HMASs (2) and (3) can achieve QC under the pinning
adaptive protocol combined with (20), (37), and (38).

Proof. *e Lyapunov functional is considered as follows:

V4(t) �
1
2



N

i�1
e

T
i (t)ei(t) + 

N

i�1


(i,j)εε

c

4αij

Lij(t) + kij 
2

+ 

Ns

i�1

1
2μ

ri(t) − d
∗
i( 

2
. (44)
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*e derivative of V4(t) along the error system (22),
controller (37), and decentralized adaptive pinning laws (20)
and (38) gives

_V4(t) � 
N

i�1
e

T
i (t) _ei(t) + 

N

i�1


N

(i,j)εε

c

2αij

Lij(t) + kij  _Lij(t) +
1
μ



Ns

i�1
ri(t) − d

∗
i(  _di(t)

≤ 
N

i�1
e

T
i (t)Aiei(t) +

1
2



N

i�1
e

T
i (t)ei(t) +

1
2



N

i�1
hi ω0(t), t( 

����
����
2

+
1
2



N

i�1
e

T
i (t) BiB

T
i + l

2
In ei(t) + c 

N

i�1


N

j�1
Gij(t)e

T
i (t)ej(t)

− c 
N

i�1


N

j�1
τije

T
i (t)ej(t) − 

Ns

i�1
d
∗
i e

T
i (t)ei(t)

� e
T
(t) A + c G⊗ In(  +

1
2

IN ⊗ BB
T

+ l
2

+ 1 In   − D
∗ ⊗ In  

− cλ2 Ω
∗

(  IN ⊗ In( e(t) +
1
2

h ω0(t), t( 
����

����
2
,

(45)

where G � (Gij)N×N, Ω∗ � (τij)N×N, τij � − kij, i≠ j,
τii � − 

N

j � 1
j≠ i

τij, and D
∗

� diag(d∗1 , d∗2 , . . . , d∗Ns
, 0, . . . , 0).

*e rest of the proof is similar to *eorem 1. To save
space, it is thus omitted here.

Remark 2. In *eorems 2–4, some sufficient conditions are
given to realize QC of HMASs (2) and (3) by using the
adaptive pinning control schemes. Actually, if the follower
agents (3) are connected, one can randomly choose a small
fraction of coupling weights and/or the control gains to
adapt. In particular, it is possible to obtain the QC by
pinning one follower agent.

4. Numerical Examples

In this section, we will confirm the theory proposed in the
paper by using digital simulation experiments.

We use five following agents and one leader agent, and
the initial communication Laplacian matrix for follower
agents is

L �

1.5

− 0.3

− 0.3

− 0.4

− 0.5

− 0.3

0.9

− 0.6

0

0

− 0.3

− 0.6

0.9

0

0

− 0.4

0

0

0.7

− 0.3

− 0.5

0

0

− 0.3

0.8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (46)

*e leader’s system matrices can be described as A �

− 2.5 10 0
1 − 1 1
0 − 18 0

⎛⎜⎝ ⎞⎟⎠ and B �

35/6 0 0
0 0 0
0 0 0

⎛⎜⎝ ⎞⎟⎠, and the nonlinear

function of the entire system can be assumed to be

f(t, x) �

0.5(|x1(t) + 1| − |x1(t) − 1|)

0
0

⎛⎜⎝ ⎞⎟⎠. *e following

system matrices are, respectively, assumed to be

Ai �

− 2.5 + 0.1∗ i 10 + 0.2∗ i 0
1 + 0.2∗ i − 1 + 0.2∗ i 1 + 0.2∗ i

0 − 18 + 0.2∗ i 0
⎛⎜⎝ ⎞⎟⎠ and

Bi �

35/6 0 0
0 0 0
0 0 0

⎛⎜⎝ ⎞⎟⎠(i � 1, 2, . . . , 5). We arbitrarily choose

the initial value as x0(0) � (3.3, 0.66, 0.1)T and
xi(0) � (11.5 + 1.8∗ i, 4.2 +1.1∗ i, 4.9 + 1.5∗ i)T (i � 1, 2,

. . . , 5). Figure 1 shows the change of ‖ei(t)‖2(i � 1, 2, . . . , 5)

for HMASs without the controller.

4.1. Example 1. In this case, the parameters of controller (19)
and adaptive laws (20) and (21) are chosen according to
*eorem 1. All agent system parameters are in accordance
with Ai and Bi. We choose c � 2.6, μ � 0.05, α12 � α21 � 2.7,
α13 � α31 � 2.4, α14 � α41 � 2.1, α15 � α51 � 1.8,
α23 � α32 � 2.1, and α45 � α54 � 2.2. We arbitrarily choose
the initial value as r(0) � (2.3, 2.1, 1.8, 1.8, 2.1)T,
x0(0) � (3.3, 0.66, 0.1)T, and xi(0) � (11.5 + 1.8∗ i,

4.2 + 1.1∗ i, 4.9 + 1.5∗ i)T(i � 1, 2, . . . , 5). Figure 2 shows

Discrete Dynamics in Nature and Society 9



the change in the state of the system under the incre-
ment controller. It visibly shows that, under the action
of the adaptive controller and adaptive law, the error
of the leader and follower finally converges to a finite
region.

4.2. Example 2. In this example, we only use the coupling
between followers and leaders 1 and 2 to achieve QC of the
entire system. All agent system parameters are in accordance
with Ai and Bi. We choose c � 2.6, μ � 0.01, α12 � α21 � 8.1,
α13 � α31 � 7.2, α14 � α41 � 6.3, α15 � α51 � 5.4,
α23 � α32 � 6.3, and α45 � α54 � 7.2. We arbitrarily choose
the 1 and 2 agents, and their initial values are selected as
r(0) � (2.3, 2.1)T. *e initial value of each agent is selected
as x0(0) � (3.3, 0.66, 0.1)T and xi(0) �

(− 6 − 1.6∗ i, 5 + 1.1∗ i, 9.4 + 2∗ i)T(i � 1, 2, . . . , 5). Fig-
ure 3 shows ei(t)2(i � 1, 2, . . . , 5) eventually tends to a finite
region.

4.3. Example 3. In this example, we use a control strategy
that pinning the coupling between followers to QC of
HMASs (2) and (3). All agent system parameters are in
accordance with Ai and Bi. We choose c � 1.2. *e pa-
rameters in the adaptive law are μ � 0.01, α14 � α41 � 7.2,
α15 � α51 � 6.3, and α23 � α32 � 5.4. We arbitrarily choose
the initial value as r(0) � (2.1, 2.1, 2, 1.9, 2.1)T,
x0(0) � (3.3, 0.66, 0.1)T and xi(0) � (− 5.3 − 0.5∗ i,

3 + 1.6∗ i, 2.7 + 1.4∗ i)T(i � 1, 2, . . . , 5). From Figure 4, we
can distinctly see that, under the control strategy designed by
*eorem 3, ei(t)2(i � 1, 2, . . . , 5) of HMASs (2) and (3) are
concentrated in a limited area.

4.4. Example 4. In this case, by controlling the coupling
between part of the follower agent and the leader and the
coupling between the follower agents, we realize the QC of
the whole system. All agent system parameters are in ac-
cordance with Ai and Bi. We choose c � 3.*e parameters in
the adaptive law are μ � 0.01, α14 � α41 � 4.9,
α15 � α51 � 4.2, and α23 � α32 � 4.9. We arbitrarily choose
the 1, 2, and 3 agents, and their initial values are selected as
r(0) � (1.8, 2.1, 1.8)T. *e initial value of each agent is
selected as x0(0) � (3.3, 0.66, 0.1)T and
x1(0) � x2(0) � x3(0) � x4(0) � x5(0) � (12.3, 5, 5.1)T.
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Figure 1: *e changes of ‖ei(t)‖2(i � 1, 2, . . . , 5) for the system without thw controller.
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Figure 5 also verifies that, under the control strategy
designed by *eorem 4, the entire system gradually con-
verges to a limited area.

5. Conclusions

*e decentralized adaptive control for QC of HMASs has
been studied. *e combined adaptation of the coupling
weights and control gains allows to drive HMASs (2) and (3)
to some bounded areas. In addition, some pinning schemes
have been proposed to adjust a fraction of the coupling
weights and control gains. To deal with the heterogeneity,
two new lemmas are proposed to derive the QC criteria. It
has been shown that the QC can be obtained without re-
quiring any global. In future works, we will extend the results
to more general HMASs, such as fractional-order HMASs,
HMASs with time delay, and cooperative-competitive in-
teraction. At the same time, we will attempt to optimize
control protocol and extend it to some other systems, i.e.,
fractional-order systems [48], memristive neural networks
[49, 50], and complex-valued neural networks [51, 52].
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