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'e decomposition-based algorithm, for example, multiobjective evolutionary algorithm based on decomposition (MOEA/D),
has been proved effective and useful in a variety of multiobjective optimization problems (MOPs). On the basis of MOEA/D, the
MOEA/D-DE replaces the simulated binary crossover (SBX) operator with differential evolution (DE) operator, which is used to
enhance the diversity of the solutions more effectively. However, the amplification factor and the crossover probability are fixed in
MOEA/D-DE, which would lead to a low convergence rate and be more likely to fall into local optimum. To overcome such a
prematurity problem, this paper proposes three different adaptive operators in DE with crossover probability and amplification
factors to adjust the parameter settings adaptively. We incorporate these three adaptive operators inMOEA/D-DE andMOEA/D-
PaS to solve MOPs and many-objective optimization problems (MaOPs), respectively. 'is paper also designs a sensitive ex-
periment for the changeable parameter η in the proposed adaptive operators to explore how η would affect the convergence of the
proposed algorithms.'ese adaptive algorithms are tested onmany benchmark problems, including ZDT, DTLZ,WFG, andMaF
test suites. 'e experimental results illustrate that the three proposed adaptive algorithms have better performance on most
benchmark problems.

1. Introduction

In fields like industrial production and scientific research,
the solutions for many practical problems are considered as
a type of multiobjective optimization according to many
researches. And there are many challenges in MOPs, which
means that there is still room for improvement. An MOP,
which is the main objective in this paper, is illustrated as
follows:

minF(x) � f1(x), . . . , fm(x)( ,

subject to x ∈ Ω ,
 (1)

where (x1,. . . xn) is a decision vector from the search spaceΩ
(n is the number of decision variables) and f1(x), . . . ,

fm(x) arem objective functions. As these objectives conflict
with one another, the algorithm will generate no single
optimal solution, which is the output of single-objective
optimization, but a group of solutions under the restriction

of the balance of the m objective functions f1(x), . . . , fm

(x), which means that any amelioration in one objective will
impair at least one other objective. Such one group of so-
lutions is Pareto optimal solutions (PS). 'e image of PS in
the objective space is defined as the Pareto optimal front
(PF). Decision-makers can select the probable solutions
from a set of PF [1].

'e effectiveness of solving MOPs by multiobjective
evolutionary algorithms (MOEAs) has been demonstrated.
'ese MOEAs can be classified into three categories by
various selection ways [2]: (1) decomposition-based algo-
rithms, for example, multiobjective evolutionary algorithms
based decomposition (MOEA/D) [3] and multiple single-
objective Pareto sampling (MSOPS) [4]; (2) Pareto-domi-
nance-based algorithms, for example, the nondominated
sorting genetic algorithm (NSGA-II) [5], multiobjective
genetic algorithm (MOGA) [6], strength Pareto evolutionary
algorithm (SPEA) [7], SPEA2 [8], niched Pareto genetic
algorithm (NPGA) [9], the Pareto envelope-based selection
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algorithm for multiobjective optimization (PESA) [10], and
PESA-II [11]; (3) performance indicator-based algorithms,
for example, approximated hypervolume-based evolution-
ary algorithm (HypE) [12] and indicator-based evolutionary
algorithm (IBEA) [13]. Decomposition-based MOEAs are
becoming one of the most popular algorithms during these
years. It is an essential way to combine decomposition with
scalarization in conventional multiobjective optimization.
MOEA/D, a representative decomposition-based algorithm,
uses a scalarizing approach to divide an MOP into many
subproblems with different weights. It also uses the coeffi-
cient method based on population search to solve these
subproblems [14]. Li and Zhang [15] designed a DE operator
in MOEA/D-DE to solve variant MOPs. Baatar et al. [16]
designed an adaptive parameter in A-NRDE to solve MOPs.
Recently, Zhan et al. [17] proposed an adaptive distributed
differential evolution (ADDE) to tackle the difficulties of
strategies’ selections and parameters’ settings. And Wang
[18] used a niching method in AED in solving some opti-
mization problems.

Many real-world problems, which contain more than
three objectives [19–22], are usually named many-objective
optimization problems (MaOPs). Compared with MOPs,
MaOPs usually have more complex PFs and need higher
performance requirements for algorithms. Because of the
loss of selectivity [23], the traditional MOEAs have degra-
dation in solving MaOPs [24]. For decomposition-based
MOEAs, specifying a set of weight vectors in a high-di-
mensional target space is difficult, and its performance
depends heavily on the consistency of the weight vectors and
the shape of the PF, while for Pareto-dominated algorithms,
it is difficult to provide efficient selectivity to the PFs when
dealing with a variety of obtained solutions [18]. As for
indicator-based algorithms, they usually need a lot of
computational resources. To handle these problems, a lot of
many-objective evolutionary algorithms (MaOEAs) were
proposed for solving MaOPs in the few decades. Depending
on the strategy for handling convergence enhancement and
diversity maintenance, they can be generally divided into
three classes [25].

'e first class involves decomposition-based algorithms.
MOEA/D-DD [26] combines dominance and decomposi-
tion-based strategies to solve MaOPs. MOEA/D-CRU used
the chain-reaction solution update strategy to improve the
diversity of the solutions. In MOEA/D-PaS [27], a Pareto
adaptive scalarizing method was proposed to approximate
the optimal value. In MOEA/D-LWS [14], a weighted sum
method was applied in a local manner. 'e second class is
the Pareto-based algorithms. Reference [28] proposed an
ensemble fitness ranking method to balance the convergence
and diversity in solvingMaOPs. In [29], a shift-based density
estimation method in SPEA2-SDE was proposed to reduce
the loss of selection pressure. SPEA/R used a reference di-
rection-based density estimator to solve MOPs and MaOPs.
'e third category involves indicator-based algorithms. In
[30–32], several methods have been proposed to calculate
HV in a more efficient way. Regarding the MaOPs with a
variety of objectives, other performance targets, R2 [33, 34],
Two_Arch2 [35], and SRA [36], were proposed. In recent

years, there have been many new algorithms proposed to
solve MaOPs. Liang [37] proposed a two-round selection
strategy to generate good solutions between population
diversity and convergence. Ma et al. [38] designed an
adaptive localized decision variable analysis approach to
solve MaOPs. A bottleneck objective learning strategy was
proposed by Liu et al. to balance the diversity and con-
vergence [39]. Zhang et al. proposed a DECAL algorithm to
increase the diversity of the population for solving uncon-
strained MaOPs [40]. Ma et al. [41] proposed an adaptive
reference vector reinforcement learning approach to de-
composition-based algorithms for industrial copper bur-
dening optimization. An orthogonal learning framework
was proposed by Ma et al. [42] to improve the learning
mechanism of brain storm optimization for solving complex
problems.

In this study, we design three strategies, the linear
variation, power function transformation, and the expo-
nential transformation methods, to adjust the crossover
probability and amplification factor in DE adaptively, and
we incorporate these three adaptive operators in MOEA/D
to solve MOPs and MOEA/D-PaS to solve MaOPs. We run
these algorithms on ZDT, DTLZ, WFG, and MaF test
functions. 'e experimental results illustrate that these
proposed methods have advantages on most of the test
functions.

'ere is the organization of this paper: we expound some
basic knowledge in Section 2 and elaborate on three adaptive
algorithms in Section 3. Experimental research and results
analysis are detailed in Section 4. 'e conclusions of this
paper and some future works are presented in Section 5.

2. Background

2.1. Basic Definitions. 'ere are some basic definitions in
multiobjective problems described as follows.

Definition 1. If y is Pareto dominated by x, then denoted as
x≺y, if and only if ∀i ∈ 1, 2, . . . , m{ }, fi(x)≤fi(y) and
fj(x)<fj(y), there is at least one index j ∈ 1, 2, . . . , m{ }.

Definition 2. A solution x∗ ∈ Ω is Pareto optimal if and only
if ∄x ∈ Ω such that x≺x∗.

Definition 3. 'e Pareto set (PS) is described as the set of all
Pareto optimal solutions. 'e set of all Pareto optimal
vectors, PF� F(x) ∈ Rm|x ∈ PS{ }, is called PF.

2.2. MOEA/D. An MOP can be divided into many sub-
problems in the form of single-objective optimization by
MOEA/D. Every subproblem is optimized by different
weighted aggregation [43]. 'e neighborhood of each
subproblem is dependent on several weighted vectors which
are close to the subproblem in distance. MOEA/D adopts a
group of N uniformly distributed weight vectors, where N
represents the number of subproblems. With the informa-
tion of the neighborhood, every subproblem is optimized at
the same time. 'ere are many different editions of MOEA/
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D. Our algorithms are based uponMOEA/D-DE, which is an
enhanced edition of MOEA/D. We adopt the Tchebycheff
method to aggregate the function:

ming
te

x|λ, z
∗

(  � max
1≤i≤m

λi|fi(x) − z
∗
i , (2)

where z∗ represents the ideal point which is the point with
minimum value in the i th objective. More details can be
found in [3, 15].

2.3.Differential EvolutionaryAlgorithms. Kenneth Price and
Rainer Storn proposed a variety of variation forms of dif-
ferential evolution (DE) algorithms [44, 45]. We describe the
different DE algorithms as a form of DE/X/Y/Z.

X represents the selection of the basis vector (the in-
dividual vector to be mutated) in the mutation operation,
“rand” represents an individual that is chosen at random
from the race, and “best” represents the individual that has
the best performance. Y represents the number of different
vectors. Z stands for crossover, and the binomial experiment
described as “bino” is usually used for crossover operation.
'ere are some frequently used algorithms described as
follows:

DE/rand
1/bin

: vi � xr1
+ F × xr2

− xr3
 ,

DE/best
1/bin

: vi � xbest + F × xr2
− xr3

 ,

DE/rand
2/bin

: vi � xr1
+ F × xr2

− xr3
  + F × xr4

− xr5
 ,

DE/best
2/bin

vi � xbest + F × xr2
− xr3

  + F × xr4
− xr5

 ,

(3)

where r1, r2, r3, r4, and r5 are randomly selected distinct
integers from the set {1, 2, . . ., N} and rbest is the individual
that has the best performance. F is an amplification factor,
which expands the different vector.

2.4. DE in MOEA/D. Li and Zhang [15] replaced SBX [46]
operator in MOEA/D with the DE/rand/1/bin operator and
proposed MOEA/D-DE. 'e algorithm adopts three ran-
domly selected individuals, r1, r2, and r3, to generate the new
solution from the neighborhood P:

y
’
k �

x
r1
k + F × x

r2
k − x

r3
k , rand<CR,

x
r1
k , rand>CR,

⎧⎨

⎩ (4)

where CR is the parameter that controls the rate of crossover,
F represents the amplification factor, and rand represents a
random number whose numerical value is between 0 and 1.

'e polynomial mutation in DE is described as follows:

yk �
y
’
k + δk × bk − ak( , with probability pm,

y
’
k with probability 1 − pm,

⎧⎨

⎩

δk �
(2 × rand)

1/ω+1
− 1, rand< 0.5,

1 − (2 − 2 × rand)
1/ω+1

, otherwise,

⎧⎨

⎩

(5)

where the distribution index ω and the mutation probability
pm are two parameters in the algorithm. ak represents the
lower boundary and bk is the upper boundary.

2.5. MOEA/D-PaS. In the last few decades, many MOEAs
have demonstrated their effectiveness in solving MOPs and
MaOPs. Among these MOEAs, decomposition-based al-
gorithms use evenly distributed vectors to keep the pop-
ulation diversity [37]. MOEA/D-PaS was proposed byWang
[27], using the Pareto adaptive scalarizing method to
maximize the searchability of the algorithms and enhance
the robustness to the PF.

In MOEA/D, a variety of decomposition scalarizing
methods can be used to solve MOPs. A weighted scalarizing
method can be described as follows:

g
w d

(x|w, p) � 
m

i�1
λi fi(x) − z

∗
i( 

p⎛⎝ ⎞⎠

1/p

, p≥ 1. (6)

When p � 1, the above formula represents the weighted
sum method, and when p �∞, the formula is the Tche-
bycheff method [27]. 'e different values can affect the
search speed in the objective space.'eMOEA/D-PaS uses a
set of p values to select a suitable scalarizing method to find
the optimal solutions. More details can be found in [27]. 'e
framework of the adaptive scalarizing method is described as
follows.

3. Proposed Algorithms

3.1. Adaptive Strategies. 'e contrast of other algorithms
and MOEA/D-DE shows MOEA/D-DE lower time com-
plexity and fast convergence speed [47]. However, there are
weak points such as rough race dispersion and inefficient
local search capability of the race in MOEA/D-DE. Besides,
the amplification factor and the crossover probability are
fixed in MOEA/D-DE, which would lead to a low conver-
gence rate and be more likely to fall into local optimum. To
overcome these shortcomings, we design three adaptive
operators in MOEA/D-DE.

In DE, we encode the crossover probability (CR), and the
amplification factor (F) evolved with the increase of itera-
tions. 'e traditional differential evolutionary (DE) algo-
rithm is to keep F and CR fixed in value, which will converge
slowly and be difficult to search for the global optimal so-
lution as a result of premature convergence [47]. So, we
design three adaptive operators to adjust the values of F and
CR dynamically.
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'e first method uses a linear variation named MOEA/
D-DE-LAD:

CR � CR0 + η∗
gen

maxGen
 ,

F � F0 − η∗
gen

maxGen
 .

(7)

'e second method uses power function transformation
called MOEA/D-DE-PAD:

CR � CR0 + η∗
gen

maxGen
 

2
,

F � F0 − η∗
gen

maxGen
 

2
.

(8)

'e third method uses exponential transformation
named MOEA/D-DE-EAD:

CR � η(1 − gen/maxGen)
,

F � η(gen/maxGen)
.

(9)

Compared with the traditional DE, these three methods
use different strategies to adjust the values of CR and F
dynamically. 'e values of CR and F will change by the
generations. η is an artificial parameter changed from 0.1
and 0.2 to 0.9 with step 0.1. We will discuss how the values of
η would influence the three proposed algorithms in the
following text. Algorithm 1 describes the situation that uses
the LAD adaptive strategy to generate the new solution.
While using the PAD strategy, we can replace lines 2 and 3
with CR � CR0 + η∗ (gen/maxGen)2 and F � F0 − η∗ (gen
/maxGen)2. In the same case, when using the EAD strategy,
we replace lines 2 and 3 with CR � η(1− gen/maxGen) and
F � η(gen/maxGen).

'e impressions of η on the proposed algorithms will be
discussed in the following text in detail. When η � 0.5, the
values of CR and F among the three strategies are described
as follows.

As shown in Figure 1, the three methods use different
strategies to adjust the values of CR and F. 'e values of CR
are increased by the generations. On the contrary, the values
of F are decreased.When η � 0.5, the values ofCR inMOEA/
D-DE-LAD are always bigger than the other two methods,
and the values of F in MOEA/D-DE-EAD are the minimum
among three methods during the evolutionary.

3.2. Adaptive Strategies in MOEA/D. We use the different
adaptive DE operators to generate the new solutions in
MOEA/D. CR and F will change by the increase of gener-
ations so as to accelerate the pace of converging to the
optimal solution. More details can be found from the fol-
lowing text.

3.3. Adaptive Strategies in MOEA/D-PaS. To enhance the
performance of MOEA/D-PaS for MaOPs, we incorporated
the adaptive DE methods proposed above into the MOEA/
D-PaS and proposed MOEA/D-PaS-LAD denoted as PaS-
LAD, MOEA/D-PaS-PAD denoted as PaS-PAD, and
MOEA/D-PaS-EAD denoted as PaS-EAD. We use the
adaptive DE operators in MOEA/D-PaS to generate the new
solutions.

'e framework of MOEA/D-PaS is based on MOEA/D,
and in the initialization stage (line 1 in Algorithm 3), set the
p value suite p � 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,∞{ }. And in every
generation, update the p value using Algorithm 1 to select
the suitable p value. 'e adaptive scalarizing method in
MOEA/D-PaS can select the suitable p value to enhance
searchability. 'e adaptive DE operators can generate better
solutions according to the generation. In the following text,
we will discuss the advantages of adaptive operators through
the experiments.

4. Experimental Study and Results Analysis

4.1. For MOPs. To identify the effectiveness of these oper-
ators in solving MOPs and MaOPs, we run these algorithms
on 2- and 3-objective test problems.'e details can be found
as follows.

4.1.1. Benchmark Problems. In this section, on the purpose
of testing the performance of the proposed algorithms in
solving multiobjective optimization problems, the ZDT [48]
test function set including ZDT1, ZDT2, ZDT3, ZDT4, and
ZDT6 and the DTLZ [49] test function set including DTLZ1,
DTLZ2, DTLZ3, and DTLZ4 are adopted in experiments.

4.1.2. Parameter Settings. 'e settings of the parameters in
four algorithms are described in Table 1.

Each algorithm is run for 30 times on each test problem;
each run is for 30000 function evaluations for the 2-objective
problem and 60000 evaluations for the 3-objective problem.

Input: weight vector: w, p suite: P� {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,∞},'e current generation: gen, 'emaximum generation: maxGen.
Output: 'e best p value for subproblem.
(1) if rand> gen/maxGen
(2) for each pk in P do
(3) zk←argmin(gw d(x|w, pk))

(4) End
(5) z←argmin dist(zk,w)

(6) Set p to be the smallest pk with z� zk

(7) end

ALGORITHM 1: Adaptive scalarizing method.
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F and CR are fixed parameters set in MOEA/D-DE. F0 is
the initial value of F, and CR0 is the initial value of CR. 'e
probability of mutation and its corresponding distribution
index are set as pm � 1/n and ηm � 20.

All the experiments are tested on a computer (AMD
Ryzen 5–4600H CPU (3.0GHz) 16G RAM Windows 10
systems).

4.1.3. Performance Metrics.

(1) IGD Metric. 'e reverse generation distance (IGD)
[50] is adopted to evaluate the quality of one solution
set P in the experiments set in this paper. Assuming
that P∗ is the true Pareto front, P is the practical
Pareto front found by an algorithm. 'e distance
between P∗ and P is defined as follows:

IGD P
∗
, P(  �

v∈p∗d(v, P)

P
∗


, (10)

where d(v, P) is the minimum distance between
points v and P. 'e algorithms with solutions of
smaller values of IGD will be considered to have
better performance.

(2) HV Metric. 'e HV metric evaluates the MOEA
performance by calculating the supervolume value of
the space between the nondominant solution set and
the reference point. 'e HVmetric can be defined as

HV � λ ∪ |S|
i�1vi , (11)

where λ stands for the Lebesgue measure, which is
used to measure volume. vi represents the super-
volume of reference points and nondominant in-
dividuals. |S| is the number of nondominant solution
sets.'e value of HV can comprehensively reflect the
convergence and distribution breadth of the solution
set. 'e solutions with higher values of HV are closer
to the global Pareto optimal solution. And the al-
gorithms with such solutions are considered to have
better performance.

4.1.4. Computational Complexity. Calculation of the adap-
tive operators inMOEA/D-DE runs at O(N × Nw), whereN
is the number of solutions. Nw is the number of weighted
vectors, and the number of weighted vectors is the same as
solutions. So the time complexity is O(N2).

Input: Current generation: gen, Maximum generation: maxGen, 'ree individuals: r1, r2, r3
Output: the new solution y′
(1) Using LAD strategy:
(2) CR � CR0 + η∗ (gen/maxGen)

(3) F � F0 − η∗ (gen/maxGen)

(4) Calculate the values of CR and F according to the chosen adaptive strategy

(5) Generate a new solution y′ :y′ �
xr1

+ F × (xr2
− xr3

), rand<CR,

xr1
, rand>CR,



ALGORITHM 2: Adaptive strategies.
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Figure 1: 'e values of (a) CR and (b) F.
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4.1.5. Experiments Analysis. In this paper, the three pro-
posed algorithms, MOEA/D-DE-LAD denoted as LAD,
MOEA/D-DE-PAD denoted as PAD, and MOEA/D-DE-
EAD denoted as EAD, are compared with MOEA/D-DE. In
every test function, the four algorithms are set to run thirty
times independently on the same computer.

We firstly set different values of η to see how IGD and
HV would change, and then we run these proposed al-
gorithms on more test functions with probable η com-
pared with MOEA/D-DE to see which one performs better
on these test functions. 'e probable value of η was de-
cided by the IGD and HV values that most algorithms get
best on these test functions. More details can be found as
follows.

To explore the influence of the change of η parameter on
the values of IGD and HV, we set η� [0.1, 0.2, . . ., 0.9] and
see how IGD and HV would change on the 2-objective test
functions and 3-objective test functions. 'e values of η will
influence the values of CR and F changed by generations so

as to get different values of IGD and HV. 'e results of
related experiments are shown in the following figures.

From Figure 2, we can see that

(1) On ZDT1 and ZDT2, the IGD values of LAD and
PAD increase as η increases. However, LAD has a
sharper increase than PAD. On these two test
problems, PAD performs best among the three al-
gorithms. When η� 0.1, the IGD values of LAD and
PAD are minimum. 'e values of IGD in EAD are
minimum when η� 0.9. For these 2-objective
problems, PAD keeps a lower value than the other
two algorithms.

(2) On test function DTLZ1 and DTLZ2 test problem,
there are no obvious relationships between IGD and
η. When η� 0.7, EAD has the best performance in
comparison compared with LAD and PAD. For 3-
objective problems, there is a much more complex
possibility than the 2-objective problem. 'e IGD

Input: 'e number of populations: N, the number of the weight vectors from neighborhood: T, and the maximum generation:
maxGen.

Output: Optimal solutions.
(1) Initialization:
(2) Generate N weight vectors λ1, λ2, . . . , λN from objective space evenly
(3) Calculate the distances between every pair of the weighted vectors. On the basis of the distances, find T closest weight vectors

λi1 , . . . , λiT from λi as the neighborhood of λi. For every i � 1, . . . , N, there are B(i) � (i1, . . . , iT)

(4) Initialize z � (z1, . . . , zm)’, where zj � minfj(xi) is the value which is minimum from objective space
(5) while gen<maxGen do
(6) for i ← 1 to N do
(7) if rand < δ
(8) Q ← B(i)

(9) else
(10) Q ← S
(11) end
(12) Randomly select three solutions xr1 , xr2 , xr3 from mating pool Q
(13) Generate a new solution y′ by the adaptive DE operators in Algorithm 2
(14) If a dimension in y is beyond the search boundary, instead it of the value which is chosen from the value which is within

the boundary at random
(15) Update the ideal point z : for each j � 1, . . . , m, if zj >fj(y), then set zj � fj(y)

(16) Update the solutions: if g(y|λj, z)≤g(xj|λj, z), then set xj � y

(17) end
(18) Find the nondominated solutions during every generation
(19) gen ← gen + 1
(20) end
(21) Output these nondominated solutions as optimal solutions

ALGORITHM 3: Adaptive strategies in MOEA/D.

Table 1: 'e settings of parameters.

Parameter Value Description
N-2 100 2-objective
N-3 200 3-objective
F 0.5 Amplification factor
CR 0.9 Crossover rate
F0 1.0 Initial value of F
CR0 0.5 Initial value of CR

6 Discrete Dynamics in Nature and Society



values are more susceptible to the values of η. We
need other methods to test the algorithms.

(3) 'e IGD values of EAD are complicated and
changeable, and there are no obvious patterns
compared with LAD and PAD. Moreover, in 2-
objective test problems, LAD and PAD changed
more regularly than in 3-objective problems.

From Figure 3, we could see that

(1) 'e values of HV in LAD and PAD decrease as η
increases on ZDT1, ZDT2, and DTLZ1 test func-
tions. On DTLZ2, the overall trends of LAD and
PAD are downward. When η� 0.1, the HV values of
LAD and PAD are maximum. LAD and PAD
changed more regularly than EAD on these test
functions.

(2) On ZDT1 and ZDT2, the values of HV in EAD are
flexible; there is no obvious pattern on the 2-ob-
jective test problems. When η� 0.9, the values of HV
are the maximum.

(3) On test function DTLZ1 and DTLZ2 test problem, the
HV values of EAD are downward as η changes. 'e
HV values are maximum when η is 0.1. Moreover, in
3-objective test problems, EAD changed more regu-
larly than in 2-objective problems.

'e values of CR and F are controlled by the following
parameters: CR0, F0, gen, maxGen, and η. CR0, F0, and
maxGen are the initial parameters. 'e different values of η
can reflect the speed of change of CR and F values, which
would affect the values of IGD and HV.

From the figures shown in this paper, the values of IGD
and HV would dynamically change by η. 'ese algorithms
perform better on those test functions with η� 0.1, so we set
η� 0.1 in these proposed algorithms. We run these algo-
rithms and MOEA/D-DE on ZDT series test problems. 'e
performance of the four algorithms on 2-objective test
functions is shown in the figure. In the following text, the
true PF is the real Pareto front of the test functions.
According to the comparison with the true PF, we can
inform that which algorithm performs better among these
proposed algorithms.

As shown in Figure 4, we enlarge some areas to explore
which algorithm has the better performance through
comparing the distance between the true PF and the PF of
the algorithm. 'e smaller distance between the PF and the
algorithm is, the better performance the algorithm has. In
the enlarged area, the horizontal axis represents the value of
f1, and the vertical axis is the value of f2. Compared with
MOEA/D-DE, the proposed algorithms have better per-
formance on these test functions. On ZDT1, PAD almost
converges to the PF completely. LAD has the best conver-
gence performance on ZDT2. On ZDT3, the proposed al-
gorithms are approximate. Besides, EAD has the best
performance among the four algorithms on ZDT4. 'e PFs
of the three proposed algorithms are much closer than
MOEA/D-DE to the real PF. On these 2-objective test
problems, using adaptive strategies can make the distance

between the PF of the algorithms and the real PF much
closer.

For the 2-objective problems, we made the figures which
obtain the comparison of the true PF and the PF of the four
algorithms, and we can distinguish which algorithm is better
from the figures easily. However, for 3-objective problems, it
is uneasy to recognize which performs better from the
comparisons of the four algorithms in one figure. Besides,
the performance metrics can analyze the performance of the
algorithm from various aspects. So we select IGD and HV as
criteria to judge which performs better on these test
functions.

To further explore the performance of these four algo-
rithms on the test problems, we made the statistics of IGD
and HV in the tables.

It can be seen from Table 2 that

(1) Compared with other algorithms, PAD performs
better on the ZDT1, ZDT2, ZDT4, DTLZ2, DTLZ3,
and DTLZ4 test problems. PAD has huge advantages
over MOEA/D-DE on these test functions except
ZDT6 and DTLZ1.

(2) On test functions ZDT3 and DTLZ1, EAD performs
best. LAD and PAD perform better than MOEA/D-
DE. EAD has tiny advantages over LAD and PAD.

(3) MOEA/D-DE has the best performance on the ZDT6
test problem. 'e IGD values of LAD and PAD are
close to MOEA/D-DE on ZDT6. 'e IGD value of
EAD is the biggest among these four algorithms.

(4) Compared with MOEA/D-DE, the proposed algo-
rithms have better performance on most test func-
tions. Besides, PAD has better advantages over LAD
and EAD on six test functions and only performs
worse on three of nine functions. Still, on these test
problems which PAD has not the best performance,
PAD has more advantages over MOEA/D-DE except
on ZDT6.

From Table 3, the following results are observed:

(1) PAD performs best on ZDT1, ZDT2, ZDT4, DTLZ1,
and DTLZ3 test problems and has huge advantages
over MOEA/D-DE on these test problems.

(2) Compared with the proposed algorithms, MOEA/D-
DE has the best performance on ZDT6. However, the
HV values of LAD and PAD are so closed to MOEA/
D-DE.

(3) On DTLZ2 and DTLZ4 test problems, LAD has the
maximum HV values. And on ZDT3, EAD performs
best.

(4) 'ese three proposed algorithms have better per-
formance on most test functions except on the ZDT6
test problem. Moreover, PAD has better advantages
over LAD and EAD on five of nine test problems.

From the two tables shown above, the proposed three
algorithms have advantages on most of the test functions.
MOEA/D-DE only has the best values of IGD and HV on
ZDT6; however, LAD and PAD are close to it on ZDT6.

Discrete Dynamics in Nature and Society 7



From the results shown in the tables, PAD has advantages
over LAD and EAD, and these proposed adaptive strategies
are effective on these test problems.

4.2. For MaOPs. For MaOPs, we run these algorithms on
some 4-, 7-, and 10-objective test functions to explore which
method can help MOEA/D-PaS get more nondominated
solutions.

4.2.1. Benchmark Functions and Performance Measures.
We use two test suites, WFG test functions WFG1-WFG8
[51] and MaF test problems MaF1-MaF8 [52], to test the
performance of the algorithms. WFG test suite is a classic
test problem with different scaled objectives for MaOPs and

is wildly used in [18, 25, 38, 40, 53–55]. WFG test set has
different PF shapes, which obtain nonseparable discon-
nected and biased PFs. And for MaF, it is a new test suite
with complicated PFs and is more challenging to the
MOEAs. For these test problems, each test function is tested
for 4-, 7-, and 10-objective instances. 'e settings of other
parameters can be found in the table.

'e hypervolume (HV) has brilliant theoretical qualities
[56–58], so we use the values of HV to access the perfor-
mance of the proposed algorithms. 'e HV value can reflect
the quality of the solutions by calculating the volume of a
region in the objective space bounded between a non-
dominant solution set and a reference point. A larger HV
value means that the obtained solutions set is closer to the
true PF.
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Figure 2: 'e values of IGD changed by η.
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4.2.2. Parameter Settings. We run these algorithms onWFG
and MaF test suites to explore which adaptive DE operators
perform better for the MaOPs.'e value of η is 0.1. For a fair
comparison, the population size is set to 200 for four ob-
jective problems, 240 for seven objective problems, and 280
for ten objective problems.'e evaluations are set at 100000,
168000, and 196000 for 4-, 7-, and 10-objective test func-
tions. All the algorithms are implemented in PlatEMO [59].
To make the experiment results more convincing, every
algorithm is run thirty times on each test function inde-
pendently. All the experimental results are shown in the
following tables and figures.

4.2.3. Computational Complexity. Calculation of the adap-
tive operators in MOEA/D-PaS runs at O(N × NW × Np),
where N is the number of solutions. Nw is the number of

weighted vectors, and the number of weighted vectors is the
same as solutions. Np is the number of p values. So the time
complexity is O(N2 × Np).

4.2.4. Experiments Analysis. Table 4 shows the comparison
of HV values in four algorithms on WFG1-8 test problems.
PaS-PAD has the best results in 12 out of 24 cases, while PaS-
LAD, PaS-EAD, andMOEA/D- PaS perform best in 6, 4, and
2 cases, which indicate the superiority of PaS-PAD on these
WFG problems. 'e algorithms with adaptive DE operators
have obvious advantages over MOEA/D-PaS on the WFG
test set.

For the four and seven objective problems, MOEA/D-
PaS performs worst among the four algorithms. But with
the dimension increases, for ten objective test problems,
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Figure 4: Attainment surfaces for (a) ZDT1, (b) ZDT2, (c) ZDT3, and (d) ZDT4.

Table 2: IGD metric (mean/std) results.

Problem MOEA/D-DE MOEA/D-de-LAD MOEA/D-de-PAD MOEA/D-de-EAD
ZDT1 1.3148e − 2 (3.39e − 3) 3.9948e − 3 (4.49e − 5) 3.9238 e − 3 (2.09 e − 5) 4.8875e − 3 (3.08e − 4)
ZDT2 8.5105e − 3 (2.11e − 3) 3.8976e − 3 (3.99e − 5) 3.8352 e − 3 (1.22 e − 5) 4.1308e − 3 (1.06e − 4)
ZDT3 1.7491e − 2 (4.73e − 3) 1.0911e − 2 (3.45e − 5) 1.0912e − 2 (2.85e − 5) 1.0799 e − 2 (7.83 e − 5)
ZDT4 1.8778e − 1 (1.58e − 1) 8.1790e − 3 (4.15e − 3) 5.6242 e − 3 (5.83 e − 4) 1.4027e − 2 (1.93e − 2)
ZDT6 3.1147e − 3 (1.62 e − 5) 3.1189e − 3 (1.66e − 5) 3.1220e − 3 (1.52e − 5) 8.5842e − 3 (1.80e − 2)
DTLZ1 3.0854e − 2 (5.15e − 4) 3.0598e − 2 (1.41e − 4) 3.0604e − 2 (1.58e − 4) 3.0579 e − 2 (1.26 e − 4)
DTLZ2 7.5061e − 2 (6.13e − 4) 7.4740e − 2 (3.27e − 4) 7.4733 e − 2 (3.14 e − 4) 7.5170e − 2 (4.48e − 4)
DTLZ3 2.6452e − 1 (4.20e − 1) 7.5338e − 2 (1.41e − 3) 7.4498 e − 2 (7.52 e − 4) 4.1221e − 1 (5.96e − 1)
DTLZ4 1.1675e − 1 (6.70e − 2) 7.5895e − 2 (8.73e − 4) 7.5531 e − 2 (8.33 e − 4) 7.7210e − 2 (6.94e − 3)
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MOEA/D-PaS has the best performance on WFG3 and
WFG8. For WFG1 with a convex, biased, and mixed PF,
PaS-PAD has the best performance in all cases. Regarding
WFG2 with a disconnected PF, PaS-EAD is the best in four
objectives, while the three proposed algorithms have close
performance in seven objectives, and in ten objectives, PaS-
LAD and PaS-PAD perform better than the other two al-
gorithms. For the WFG3 test problem with linear PF, PaS-
LAD has the best performance in four and seven objectives,
while MOEA/D-PaS obtains the best result in ten objectives.
Considering WFG4 with a convex PF, it is observed that
PaS-PAD shows an advantageous performance over the
other three algorithms. Meanwhile, PaS-PAD also shows its
advantages on WFG5 in four and seven objectives, while in
ten objectives, PaS-EAD has superior performance than
other algorithms. PaS-EAD also has the best performance on
WFG6 in four and seven objectives, while PaS-LAD and PaS-

PAD perform better in ten objectives. Concerning WFG7
with a convex PF, PaS-PAD performs best in seven and ten
objectives, and in four objectives, PaS-PAD has close per-
formance with PaS-LAD. On the WFG8 test function,
MOEA/D-PaS performs best in ten objectives, while PaS-
PAD has superior performance in four and seven objectives.

To better visualize the distribution of the final pop-
ulation, we plot the final population of the four algorithms
on the WFG1 test problem.

It can be seen from Figure 5 that, on the WFG1 test
problem with flat bias and a mixed structure of the PF, the
proposed algorithms with adaptive operators have better
convergence and diversity compared to MOEA/D-PaS.
'ough MOEA/D-PaS can still achieve the value, it loses the
diversity of the solutions. Among the proposed algorithms,
the PaS-PAD has better distributed solutions than PaS-LAD
and PaS-EAD.

Table 3: HV metric (mean/std) results.

Problem MOEA/D-DE MOEA/D-de-LAD MOEA/D-de-PAD MOEA/D-de-EAD
ZDT1 7.0542e − 1 (4.39e − 3) 7.1970e − 1 (1.76e − 4) 7.2001 e − 1 (9.40 e − 5) 7.1741e − 1 (6.21e − 4)
ZDT2 4.3311e − 1 (4.38e − 3) 4.4438e − 1 (1.98e − 4) 4.4474 e − 1 (8.20 e − 5) 4.4323e − 1 (4.10e − 4)
ZDT3 5.9565e − 1 (6.14e − 3) 5.9803e − 1 (1.25e − 4) 5.9802e − 1 (1.09e − 4) 5.9857 e − 1 (4.03 e − 4)
ZDT4 5.0235e − 1 (1.57e − 1) 7.1262e − 1 (6.02e − 3) 7.1646 e − 1 (9.37 e − 4) 7.0274e − 1 (3.09e − 2)
ZDT6 3.8868 e − 1 (3.53 e − 4) 3.8865e − 1 (3.54e − 4) 3.8863e − 1 (3.26e − 4) 3.8139e − 1 (2.38e − 2)
DTLZ1 7.9954e − 1 (4.20e − 3) 8.0434e − 1 (4.25e − 4) 8.0444 e − 1 (5.08 e − 4) 8.0382e − 1 (5.68e − 4)
DTLZ2 5.2575e − 1 (1.21e − 3) 5.2754 e − 1 (1.00 e − 3) 5.2738e − 1 (1.09e − 3) 5.2672e − 1 (7.98e − 4)
DTLZ3 4.1994e − 1 (1.93e − 1) 5.2825e − 1 (2.98e − 3) 5.2847 e − 1 (1.81 e − 3) 3.6518e − 1 (2.27e − 1)
DTLZ4 5.2134e − 1 (2.15e − 2) 5.3208 e − 1 (2.04 e − 3) 5.3051e − 1 (1.92e − 3) 5.3067e − 1 (3.12e − 3)

Table 4: HV metric (mean/std) comparison results on WFG.

Problem MOEA/D-PaS PaS-LAD PaS-PAD PaS-EAD
4-Objective
WFG1 7.7750e − 1 (8.45e − 2) 9.8382e − 1 (1.04e − 2) 9.8765 e − 1 (3.36 e − 3) 9.3344e − 1 (6.70e − 2)
WFG2 9.6159e − 1 (6.95e − 3) 9.8842e − 1 (1.08e − 3) 9.8855e − 1 (9.68e − 4) 9.8926 e − 1 (2.25 e − 3)
WFG3 2.8583e − 1 (8.25e − 3) 2.9166 e − 1 (7.53 e − 3) 2.8348e − 1 (8.51e − 3) 2.8803e − 1 (7.76e − 3)
WFG4 6.1657e − 1 (1.30e − 2) 6.5520e − 1 (1.13e − 2) 6.7087 e − 1 (6.20 e − 3) 6.6817e − 1 (8.13e − 3)
WFG5 6.0973e − 1 (9.17e − 3) 6.1241e − 1 (1.18e − 2) 6.1912 e − 1 (8.25 e − 3) 6.1157e − 1 (1.09e − 2)
WFG6 5.8802e − 1 (5.50e − 2) 5.1429e − 1 (9.13e − 4) 5.1408e − 1 (1.14e − 3) 6.1702 e − 1 (3.72 e − 2)
WFG7 6.5290e − 1 (1.00e − 2) 6.8584 e − 1 (2.13 e − 3) 6.8536e − 1 (2.07e − 3) 6.8268e − 1 (2.28e − 3)
WFG8 4.9088e − 1 (1.53e − 2) 5.2406e − 1 (9.59e − 3) 5.2891 e − 1 (6.16 e − 3) 5.2782e − 1 (6.52e − 3)

7-Objective
WFG1 9.8673e − 1 (2.32e − 2) 9.9962e − 1 (1.60e − 4) 9.9973 e − 1 (1.43 e − 4) 9.1178e − 1 (9.24e − 2)
WFG2 9.9647e − 1 (2.13e − 3) 9.9995 e − 1 (7.00 e − 6) 9.9995e − 1 (8.44e − 6) 9.9994e − 1 (6.03e − 5)
WFG3 1.3416e − 1 (3.23e − 2) 1.6627 e − 1 (9.11 e − 3) 1.6191e − 1 (1.21e − 2) 1.0693e − 1 (3.39e − 2)
WFG4 7.8348e − 1 (1.41e − 2) 8.6776e − 1 (8.94e − 3) 8.8070 e − 1 (4.25 e − 3) 8.7302e − 1 (7.85e − 3)
WFG5 7.2890e − 1 (1.26e − 2) 7.6889e − 1 (9.14e − 3) 7.7767 e − 1 (8.78 e − 3) 7.7617e − 1 (8.13e − 3)
WFG6 7.5305e − 1 (6.55e − 2) 6.8311e − 1 (1.28e − 3) 6.8345e − 1 (1.48e − 3) 8.0685 e − 1 (4.69 e − 2)
WFG7 8.0731e − 1 (2.62e − 2) 8.9357e − 1 (1.31e − 3) 8.9410 e − 1 (1.57 e − 3) 8.6221e − 1 (1.46e − 1)
WFG8 5.9494e − 1 (3.36e − 2) 6.7355 e − 1 (1.85 e − 2) 6.7035e − 1 (1.34e − 2) 6.4979e − 1 (7.45e − 2)

10-Objective
WFG1 9.9493e − 1 (5.56e − 3) 9.9997e − 1 (2.22e − 5) 9.9998 e − 1 (1.25 e − 5) 9.7977e − 1 (5.21e − 2)
WFG2 2.3412e − 1 (2.19e − 1) 1.0000e+ 0 (1.28 e − 6) 1.0000e+ 0 (1.45e − 6) 1.7390e − 1 (1.48e − 1)
WFG3 9.0889 e − 2 (4.25 e − 5) 8.4467e − 2 (1.80e − 2) 7.7307e − 2 (2.63e − 2) 7.8137e − 2 (1.02e − 2)
WFG4 3.8941e − 1 (3.84e − 1) 9.3650e − 1 (4.64e − 3) 9.4885 e − 1 (5.52 e − 3) 2.1424e − 1 (2.32e − 1)
WFG5 9.0472e − 2 (3.13e − 2) 1.0183e − 1 (4.38e − 2) 9.5718e − 2 (3.96e − 2) 1.5242 e − 1 (1.99 e − 1)
WFG6 3.0037e − 1 (1.68e − 1) 7.4836e − 1 (2.98e − 4) 7.4855 e − 1 (3.72 e − 4) 9.4173e − 2 (2.73e − 2)
WFG7 1.1521e − 1 (6.55e − 2) 9.6635e − 1 (1.29e − 3) 9.6725 e − 1 (1.41 e − 3) 1.0418e − 1 (5.19e − 2)
WFG8 9.8960 e − 2 (1.96 e − 2) 9.2377e − 2 (6.28e − 3) 9.2756e − 2 (8.97e − 3) 9.3403e − 2 (8.65e − 3)

Best/all 2/24 6/24 12/24 4/24
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On the WFG test set, PaS-PAD has better performance
overall. MOEA/D-PaS only has the best results in 2 out of 8
cases in ten objectives. PaS-LAD and PaS-EAD also have
advantages on some test functions compared with MOEA/
D-PaS.

To further explore which adaptive operator has superior
performance than its competitors, we also run these algo-
rithms on a newly benchmark MaF test suite. 'e HV values
of MaF1–MaF8 are shown in the table.

Table 5 collects the HV comparison results in the four
algorithms on MaF1–MaF8 with 4-, 7-, and 10-objectives.
PaS-PAD has the best performance in 9 out of 24 cases.
MOEA/D-PaS, PaS-EAD, and PaS-LAD perform best in 6, 5,
and 4 out of 24 cases. Compared with the other three al-
gorithms, PaS-PAD has superior performance.

'e PF of MaF1 is gotten by inverting the DTLZ1 PF [51].
For the four and ten objectives, MOEA/D-PaS performs better
than proposed algorithms, while in seven objectives, PaS-EAD
has a better performance. MaF2 is gotten from DTLZ2 by
enhancing the difficulty of convergence. For getting the real PF,
all the objectives should be optimized on MaF2 at the same
time. On MaF2, PaS-EAD has superior performance in four
and seven objectives, and PaS-PADhas the best performance in
ten objectives. Regarding MaF3 with a convex PF and a lot of
local PFs, PaS-PAD shows an advantageous performance over
its competitors in four, seven, and ten objectives. 'e PF of
MaF4 is obtained by inverting theDTLZ3 PF shape.MOEA/D-
PaS performs best on MaF4 in seven and ten objectives, while
in four objectives, PaS-PAD and PaS-LAD perform better than
the other two algorithms. On MaF5, PaS-PAD has superior
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Figure 5: Visualization of PF approximation by four algorithms on the 10-objective WFG1: (a) MOEA/D-PaS, (b) PaS-LAD, (c) PaS-PAD,
and (d) PaS-EAD.
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Figure 6: Continued.

Table 5: HV metric (mean/std) comparison results on MaF.

Problem MOEA/D-PaS PaS-LAD PaS-PAD PaS-EAD
4-Objective
MaF1 3.3027 e − 2 (2.53 e − 4) 3.2898e − 2 (2.14e − 4) 3.2923e − 2 (1.41e − 4) 3.2949e − 2 (2.28e − 4)
MaF2 2.1235e − 1 (2.41e − 3) 2.1637e − 1 (1.73e − 3) 2.1641e − 1 (1.58e − 3) 2.1830 e − 1 (1.52 e − 3)
MaF3 6.8649e − 1 (4.16e − 1) 9.9230e − 1 (1.22e − 2) 9.9563 e − 1 (1.06 e − 4) 9.0867e − 1 (2.53e − 1)
MaF4 1.6656e − 1 (9.62e − 2) 2.2714e − 1 (3.50e − 3) 2.2947 e − 1 (1.36 e − 3) 2.0319e − 1 (6.94e − 2)
MaF5 6.6667e − 1 (4.36e − 2) 6.6824e − 1 (5.19e − 2) 6.8048 e − 1 (1.29 e − 3) 6.1379e − 1 (1.16e − 1)
MaF6 1.3487 e − 1 (2.12 e − 3) 1.3385e − 1 (1.85e − 3) 1.3390e − 1 (2.26e − 3) 1.3378e − 1 (1.43e − 3)
MaF7 2.6213e − 1 (1.20e − 2) 2.7051 e − 1 (9.46 e − 4) 2.6184e − 1 (4.77e − 2) 2.5460e − 1 (4.88e − 2)
MaF8 0.0000e+ 0 (0.00e+ 0) 3.0523e − 3 (9.61e − 3) 7.7592 e − 3 (3.88 e − 2) 2.9531e − 3 (1.08e − 2)

7-Objective
MaF1 1.9797e − 4 (8.93e − 6) 1.9797e − 4 (5.02e − 6) 1.9549e − 4 (5.87e − 6) 2.0684 e − 4 (8.28 e − 6)
MaF2 1.6956e − 1 (2.98e − 3) 1.7424e − 1 (2.83e − 3) 1.7338e − 1 (2.64e − 3) 1.7579 e − 1 (3.53 e − 3)
MaF3 3.6908e − 1 (4.48e − 1) 8.9982e − 1 (3.05e − 1) 8.9991 e − 1 (3.05 e − 1) 8.2802e − 1 (3.77e − 1)
MaF4 7.2824 e − 3 (3.34 e − 4) 5.6786e − 3 (1.77e − 4) 5.6554e − 3 (1.46e − 4) 6.1162e − 3 (2.34e − 4)
MaF5 8.7820e − 1 (1.23e − 2) 8.8009 e − 1 (1.78 e − 3) 8.7854e − 1 (2.16e − 3) 8.5780e − 1 (3.64e − 2)
MaF6 8.4362e − 2 (5.43e − 3) 9.0020e − 2 (1.21e − 3) 8.9030e − 2 (5.98e − 3) 9.0906 e − 2 (9.54 e − 6)
MaF7 2.2109e − 1 (2.18e − 3) 2.2492 e − 1 (1.73 e − 3) 2.2470e − 1 (1.38e − 3) 2.0695e − 1 (5.23e − 2)
MaF8 0.0000e+ 0 (0.00e+ 0) 2.2588 e − 3 (8.31 e − 3) 9.5019e − 4 (2.86e − 3) 2.2216e − 3 (8.15e − 3)

10-Objective
MaF1 5.2740 e − 7 (3.83 e − 8) 4.6605e − 7 (2.00e − 8) 4.7678e − 7 (2.81e − 8) 5.2065e − 7 (2.31e − 8)
MaF2 5.0267e − 2 (5.66e − 3) 4.7869e − 2 (5.28e − 3) 5.0656 e − 2 (6.15 e − 3) 4.9576e − 2 (5.11e − 3)
MaF3 3.4330e − 2 (1.24e − 1) 5.6636e − 1 (5.04e − 1) 7.0284 e − 1 (4.61 e − 1) 0.0000e+ 0 (0.00e+ 0)
MaF4 2.8935 e − 4 (5.49 e − 5) 2.0454e − 4 (9.61e − 6) 1.9942e − 4 (6.41e − 6) 2.3963e − 4 (1.25e − 5)
MaF5 9.5392e − 1 (5.79e − 3) 9.6577e − 1 (8.78e − 3) 9.6664 e − 1 (5.42 e − 3) 9.5800e − 1 (1.91e − 2)
MaF6 8.0122e − 2 (2.15e − 2) 9.0859e − 2 (9.33e − 5) 9.0868e − 2 (8.73e − 5) 9.0903 e − 2 (1.50 e − 5)
MaF7 1.8595 e − 1 (7.27 e − 3) 1.8555e − 1 (1.85e − 3) 1.8488e − 1 (1.56e − 3) 1.4057e − 1 (5.80e − 2)
MaF8 0.0000e+ 0 (0.00e+ 0) 3.1040e − 5 (1.62e − 4) 9.9174 e − 5 (2.80 e − 4) 6.9384e − 5 (1.85e − 4)

Best/all 6/24 4/24 9/24 5/24
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performance in four and ten objectives, while in seven ob-
jectives, PaS-LAD performs best. Concerning that MaF6 has
degenerate PF, PaS-EADperforms better than other algorithms
in seven and ten objectives, and the four algorithms perform

close in four objectives. ForMaF7 with a disconnected PF, PaS-
LAD has advantageous performance in four and seven ob-
jectives, while in ten objectives, PaS-LAD has a close perfor-
mance withMOEA/D-PaS. OnMaF8, the proposed algorithms
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Figure 6: Visualization of PF approximation by four algorithms on the 10-objective MaF3: (a) MOEA/D-PaS, (b) PaS-LAD, (c) PaS-PAD,
and (d) PaS-EAD.

Table 6: Runtimes (mean/std) comparison results on WFG.

Problem PaS-LAD PaS-PAD PaS-EAD MOEA/D-PaS
2-Objective
WFG1 5.4306e+ 1 (8.58e − 1) 5.4372e+ 1 (8.35e − 1) 6.1241e+ 1 (2.75e+ 0) 5.3998 e+ 1 (6.49 e − 1)
WFG2 5.3618e+ 1 (7.04e − 1) 5.3681e+ 1 (7.34e − 1) 6.0409e+ 1 (2.68e+ 0) 5.3422 e+ 1 (7.62 e − 1)
WFG3 5.3953e+ 1 (7.03e − 1) 5.3853e+ 1 (7.07e − 1) 6.0820e+ 1 (2.67e+ 0) 5.3727 e+ 1 (6.97 e − 1)
WFG4 5.3485e+ 1 (8.39e − 1) 5.3718e+ 1 (8.19e − 1) 6.0738e+ 1 (2.80e+ 0) 5.2700 e+ 1 (8.47 e − 1)
WFG5 5.4351e+ 1 (8.03e − 1) 5.4386e+ 1 (7.10e − 1) 6.0595e+ 1 (2.49e+ 0) 5.3689 e+ 1 (8.18 e − 1)
WFG6 5.3315e+ 1 (6.63e − 1) 5.3524e+ 1 (6.94e − 1) 6.0993e+ 1 (2.74e+ 0) 5.3179 e+ 1 (8.40 e − 1)
WFG7 5.5593e+ 1 (8.18e − 1) 5.5607e+ 1 (8.21e − 1) 6.2865e+ 1 (2.87e+ 0) 5.4881 e+ 1 (9.31 e − 1)
WFG8 5.4341e+ 1 (7.90e − 1) 5.4276 e+ 1 (6.72 e − 1) 6.1010e+ 1 (2.48e+ 0) 5.4376e+ 1 (7.65e − 1)

4-Objctive
WFG1 1.1602e+ 2 (2.43e+ 0) 1.1598 e+ 2 (2.48 e+ 0) 1.2543e+ 2 (3.31e+ 0) 1.1832e+ 2 (3.01e+ 0)
WFG2 1.1882 e+ 2 (2.76 e+ 0) 1.1890e+ 2 (2.82e+ 0) 1.2971e+ 2 (2.93e+ 0) 1.1953e+ 2 (2.72e+ 0)
WFG3 1.2042e+ 2 (3.28e+ 0) 1.2010e+ 2 (2.96e+ 0) 1.0514 e+ 2 (1.44 e+ 1) 1.1744e+ 2 (7.23e+ 0)
WFG4 1.1969e+ 2 (3.42e+ 0) 1.2107e+ 2 (3.24e+ 0) 1.3144e+ 2 (3.19e+ 0) 1.1801 e+ 2 (2.70 e+ 0)
WFG5 1.2069e+ 2 (2.77e+ 0) 1.2098e+ 2 (2.97e+ 0) 1.3135e+ 2 (2.71e+ 0) 1.1969 e+ 2 (2.90 e+ 0)
WFG6 1.1705e+ 2 (2.18e+ 0) 1.1841e+ 2 (2.58e+ 0) 1.3186e+ 2 (3.32e+ 0) 1.1543 e+ 2 (3.64 e+ 0)
WFG7 1.2524e+ 2 (2.71e+ 0) 1.2508e+ 2 (2.76e+ 0) 1.3525e+ 2 (6.57e+ 0) 1.2080 e+ 2 (2.86 e+ 0)
WFG8 1.1980 e+ 2 (2.72 e+ 0) 1.2002e+ 2 (2.60e+ 0) 1.2913e+ 2 (3.65e+ 0) 1.2045e+ 2 (2.53e+ 0)

10-Objective
WFG1 1.5182 e+ 2 (2.03 e+ 0) 1.5255e+ 2 (3.52e+ 0) 1.7691e+ 2 (1.59e+ 1) 1.5425e+ 2 (1.66e+ 0)
WFG2 1.5776e+ 2 (1.41e+ 1) 1.5788e+ 2 (1.44e+ 1) 1.4846 e+ 2 (1.24 e+ 1) 1.5138e+ 2 (1.24e+ 1)
WFG3 1.2879e+ 2 (1.35e+ 1) 1.1707 e+ 2 (8.71 e+ 0) 1.3424e+ 2 (4.75e+ 0) 1.4064e+ 2 (7.13e+ 0)
WFG4 1.5341e+ 2 (1.52e+ 0) 1.5452e+ 2 (1.90e+ 0) 1.6346e+ 2 (7.38e+ 0) 1.4539 e+ 2 (7.75 e+ 0)
WFG5 1.3898e+ 2 (8.69e+ 0) 1.3485 e+ 2 (8.61 e+ 0) 1.6277e+ 2 (1.16e+ 1) 1.4766e+ 2 (7.95e+ 0)
WFG6 1.4951e+ 2 (5.74e+ 0) 1.5088e+ 2 (3.88e+ 0) 1.3634e+ 2 (1.19e+ 1) 1.1097 e+ 2 (1.18 e+ 1)
WFG7 1.6068e+ 2 (1.90e+ 0) 1.6066e+ 2 (1.72e+ 0) 1.4212e+ 2 (1.41e+ 1) 1.3254 e+ 2 (1.55 e+ 1)
WFG8 1.3959e+ 2 (1.25e+ 1) 1.3083 e+ 2 (1.39 e+ 1) 1.3834e+ 2 (8.34e+ 0) 1.3848e+ 2 (1.84e+ 1)
best/all 2/24 5/24 2/24 14/24

'e bold values represent the minimum of each rows, which denote the fastest algorithms for each test functions.
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have the smallest HV values larger than 0, while the HV values
of MOEA/D-PaS are 0 in four, seven, and ten objectives. All
algorithms could not find the obtained solutions overall, but
adaptive operators can still help the algorithms to get some
solutions from the results shown above.

Besides, we plot the final population of the four algo-
rithms on the MaF3 test problem. From Figure 6, we can see
that, on the MaF3 test problem with a convex PF, the
MOEA/D-PaS and PaS-EAD cannot achieve the solutions.
PaS-LAD and PaS-PAD have achieved solutions with better
distributed solutions than the other two algorithms. PaS-
PAD has the best convergence and diversity among these
algorithms.

On the MaF test suite, PaS-PAD still has better per-
formance than other algorithms, but the other two proposed
algorithms perform not so well compared with MOEA/D-
PaS overall. 'e adaptive operators can help algorithms get
more obtained solutions on some test problems. 'e PAD
method is better than the other two methods overall.

Table 6 represents the runtimes of every algorithm. It can
be seen from the table that when using adaptive strategy, it
would cost extra computing resources to get the optimal
solutions. MOEA/D-PaS has the best performance in 14 out
of 24 cases. PaS-LAD, PaS-PAD, and PaS-EAD perform best
in 2, 5, and 2 out of 24 cases. So the runtimes in adaptive
strategies are longer than MOEA/D-PaS. 'e values of CR
and F in the proposed three strategies are changed by the
generations. During every generation, it is necessary to
calculate the values of CR and F using extra computing
resources. But from the values of HV shown in Tables 3 and
4, we can know that it is worth spending some extra
computing resources to get better results.

5. Conclusion

MOEA/D and MOEA/D-DE have been demonstrated to be
effective and useful in solving MOPs. However, the pa-
rameters are fixed, which would affect the convergence of the
algorithm. 'is paper proposes three algorithms using
different self-adaptive DE operators to automatically adjust
the setting of parameters CR and F in different problems
based on MOEA/D-DE. 'e experiments have demon-
strated that the adaptive strategies have effectiveness on the
2-objective and 3-objective test functions. Moreover, PAD
has better performance than LAD and EAD from the tables
of IGD and HV values. For MaOPs, we incorporate the
adaptive DE methods into the MOEA/D-PaS and run these
algorithms on WFG and MaF test suites for 4-, 7-, and 10-
objective problems. According to the HV values, for WFG
problems, the proposed algorithms have huge advantages
compared with MOEA/D-PaS. Moreover, PaS-PAD has
superior performance among these adaptive methods. PaS-
LAD and PaS-EAD do not perform as well as PaS-PAD but
still have better performance than MOEA/D-PaS. Besides,
on the MaF test functions, PaS-PAD still has advantages
compared with other algorithms. In conclusion, for solving
MOPs and MaOPs, the adaptive methods can help the al-
gorithms to get more obtained solutions to converge much

closer to the real PFs. Among these adaptive methods, the
PAD method has the best performance.

However, there are still some problems to be solved; for
example, for many real-world problems, the effectiveness of
the adaptive methods needs to be proved. So we need to run
these adaptive algorithms on more complex problems to
identify their effectiveness.

For further study, firstly, we need to use these three
adaptive strategies to run more complex test functions to
identify if the PAD method still has advantages over LAD
and EAD. Secondly, we would like to use niching tech-
nologies in population to accelerate the pace of converging
to the optimal solution in the three adaptive algorithms.
'irdly, we would like to apply these proposed algorithms to
practical problems like community detection, recommen-
dation system, and so on [60]
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