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An Innocents-Spreaders-Calmness-Removes (ISCR) rumor propagation model is established with nonlinear incidence and time
delay on complex networks in this paper. Based on the mean-field theory, the spreading dynamics of the ISCRmodel are discussed
in detail. Firstly, the basic reproduction number R0 is obtained by the next generation matrix method to ensure the existence of
rumor-prevailing equilibrium. Secondly, by utilizing the Routh–Hurwitz criterion and LaSalle’s invariance principle, the local
stability and global stability of rumor equilibria are proved. Moreover, the optimal control is presented via Pontryagin’s minimum
principle, which is to effectively restrain rumor diffusion. Finally, the theoretical results are verified by numerical simulations.

1. Introduction

Rumors are usually defined as unproven words and may
damage personal reputation, affect financial markets, cause
social panic and instability, and severely disrupt people’s
normal and orderly life. Social networks do build a good
platform for people’s communication, but it also provides an
opportunity for a dishonest person to spread rumors. In the
online virtual social platform, everyone has their own online
virtual identity, and the virtual identity is the medium for
rumors to diffuse [1]. Compared with traditional rumors,
Internet rumors spread faster and wider, so people should
paymore attention to them and take certainmeasures to deal
with them when necessary. +erefore, it is vital to study the
potential mechanism and control measures of rumor
propagation on social networks. Based on mathematical
models, the research on the mechanism of rumor propa-
gation has received extensive attention from scholars.

Considering the similarities between the spread of ru-
mors and epidemics, traditional rumor propagation models
are mostly based on the dynamic models of infectious
diseases, such as SI (Susceptible-Infected), SIS (Susceptible-

Infected-Susceptible), SIR (Susceptible-Infected-Removed),
and so on. Daley and Kendall first studied the rumor
propagation dynamic analysis in 1965 and proposed a rumor
spreading model named DK model [2]. After that, Maki and
+omson [3] further improved the DK model to the MT
model in 1973. In addition, some scholars also applied the
fractal-factional order model to the infectious disease model
[4], and others discussed the backward bifurcation and
optimal control of the infectious disease model [5, 6]. Based
on the work of predecessors, many papers which considered
other affecting factors of rumor propagation have been
proposed afterwards [7–12], such as incubation [7], the
proportion of wiseman in the crowd [8], debunking behavior
in emergencies [9], media report [10], psychological factors
and forgetting mechanism [11], different attitudes towards
rumors [12], superspreaders [13], and so on.

As an effective tool, complex networks have laid a fine
foundation for studying the spread of rumors on social
networks. Zanette first proposed a rumor propagationmodel
on small-world networks by utilizing complex network
theory to the study of rumor propagation [14]. Li et al. had
established an I2S2R (Ignorants-Spreaders 1-Spreaders 2-
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Stiflers 1-Stiflers 2) rumor spreading model on homoge-
neous networks [15]. A novel SIR (Susceptible-Propagating-
Recovery) rumor spreading model was proposed in both
homogeneous and heterogeneous networks by Zhu et al.
[16]. Nowadays, there are still many articles considering the
rumor spreading model on complex networks [17–22].
Based on the aforementioned models, a rumor propagation
model is proposed on complex networks in this paper.

It is worth emphasizing that the incidence rate plays a
significant role in the spread of rumors. +e incidence
mainly includes bilinear incidence and nonlinear incidence.
+e characteristic of bilinear incidence is that the number of
Spreaders increases linearly. However, the psychological
changes of Innocents have a lot of influence on rumor
propagation, which make bilinear incidence have some
limitations, and the nonlinear incidence is used frequently in
[23–25]. For example, the incidence R0 was proposed by
Capasso and Serio [23] to represent saturation phenomena
for large numbers of infectives. +e incidence
g(I) � kI/(1 + αI) was utilized to explain the following
phenomenon: the incidence of infectious diseases may show
a downward trend during the peak of infectious diseases
because some individuals take protective steps to reduce
contact with others individuals [24]. +e incidence 1/(1 +

αIh) was used by Ruan and Wang [25] to describe the in-
hibition rate that came from an increasing number of
susceptible individuals. Although the nonlinear incidence
was first used in disease transmission models, it can also be
considered in the rumor transmission model because of the
similar transmission mechanism. Based on the above dis-
cussion, the nonlinear incidence c〈k〉I(t)S(t)/1 + αS(t) is
used in this paper to describe the influence of the psycho-
logical changes of Innocents on rumor propagation, where c

represents the spreading ability of rumors and α represents
the impact of population crowding or changes on Innocents.
Obviously, this is more in line with the reality. Hence,
considering the nonlinear incidence is of significance for the
study of rumor propagation.

As is well known to all, people sometimes may not timely
respond to rumors. When an Innocent receives a rumor, it
takes some time to consider whether to spread the rumor.
+is is the reason why time delay exists. +erefore, this will
motivate us to study rumor propagation with time delay. For
instance, Jain et al. [26] analyzed the effect of delay to in-
fluence thinkers. A delayed rumor spreading model was
proposed by Li and Ma [27] in emergencies. Chen et al. [28]
established multiple delayed models to explore the new
characteristics of rumor spreading process. Meanwhile,
timeliness is the important characteristic of rumor propa-
gation, so it is vital to study the rumor propagation model
with time delay.

In light of above discussion, our main contributions are
reflected as follows:

(1) A novel ISCR rumor propagation model is pro-
posed with nonlinear incidence and time delay on
complex networks. Based on the traditional SIR
model, this paper adds a “Calmness” compart-
ment, which makes the model more realistic.

(2) In real social networks, the spread of rumors de-
pends on the degree of nodes in the network, so this
paper models the spread process of rumors based on
the network structure.

(3) Because individuals need a certain reaction time
after exposure to rumors and the number of
Spreaders is limited, this paper considers the ef-
fects of time delay and nonlinear incidence on
rumor propagation. Moreover, the nonlinear in-
cidence describes the influence of the psycho-
logical changes of Innocents on rumor
propagation.

(4) By utilizing the Routh–Hurwitz criterion and
LaSalle’s invariance principle, the local stability and
global stability of rumor equilibria are proved in
detail.

(5) To reduce the density of Spreaders and control costs,
an optimal control strategy with time delay is given
and analyzed for the controlled system by Pon-
tryagin’s minimum principle. Meanwhile, this paper
also analyzes the influence of time delay on optimal
control in numerical simulation.

2. Problem Description

In this section, a novel ISCR rumor propagation model is
proposed on complex networks to learn the dynamics of
rumor propagation mechanism. Four states are proposed
to represent the different states of individuals in the
process of rumor propagation. Innocents (I(t)) represent
those who do not perceive rumors but may be infected.
Spreaders (S(t)) represent those who understand rumors
and spread them. Calmness (C(t)) represents those who
calm down before they stop spreading rumors. Removes
(R(t)) represent those who perceive rumors but do not
spread them. I(t), S(t), C(t), and R(t) denote the density
of Innocents, Spreaders, Calmness, and Removes at time
t, respectively. Moreover, we assume that
I(t) + S(t) + C(t) + R(t) � 1.

+e process of ISCR model is shown in Figure 1.
According to the mean-field theory, the model can be de-
scribed as follows:
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dI(t)

dt
� π −

c〈k〉I(t)S(t − τ)

1 + αS(t − τ)
− (β + μ)I(t),

dS(t)

dt
�

c〈k〉I(t)S(t − τ)

1 + αS(t − τ)
− (δ + θ + μ)S(t),

dC(t)

dt
� δS(t) − (η + μ)C(t),

dR(t)

dt
� βI(t) + θS(t) + ηC(t) − μR(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where 〈k〉 denotes the average degree of complex networks,
τ ≥ 0 is the average infectious delay of the infectious rumors,
π represents the recruitment rate of Innocents, c denotes the
spread rate of Spreaders, α is the saturation coefficient that
measures the inhibitory or psychological effect of the general
public towards rumors, β is the transfer rate from Innocents
to Removes due to the immune mechanism, θ is the for-
getting rate from Spreaders to Removes by the forgetting
mechanism, δ is the calmness rate of Spreaders, and η is the
transfer rate from Calmness to Removes. Suppose that every
class has the same emigration rate μ, and the recruitment
rate is equal to the emigration rate, that is, π � μ. Assume
that above parameters are positive.

+e initial conditions of system (1) are taken by the
following form:

I(t) � ϕI(t)≥ 0,

S(t) � ϕS(t)≥ 0,

C(t) � ϕC(t)≥ 0,

R(t) � ϕR(t)≥ 0, t ∈ [− τ, 0],

(2)

where ϕ ∈ C([− τ, 0],R+). +e Banach space C is nonneg-
ative continuous, mapping the interval [− τ, 0] into R+.

Remark 1. It is worth noting that a novel state called
“Calmness” is introduced in model (1) which means rumor
Spreaders may go through a calm period before becoming
Removes. In the early stage of an emergency, if the main-
stream media has low credibility, then some Spreaders may
first tend to believe the information told by acquaintances
rather than the mainstream media. However, when

acquaintances know that the previous information is fab-
ricated and tell Spreaders, then Spreaders will calm down
and may gradually reduce the spread of rumors. Spreaders
confirm that the information is indeed fabricated afterwards
and then stop spreading rumors.

Lemma 1. .e positive invariant set of system (1) is defined
by

Ω � (I, S, C, R) ∈ R4
+: 0≤ I + S + C + R≤ 1 , (3)

with initial conditions (2).

Lemma 2. If I(0)≥ 0, S(0)≥ 0, C(0)≥ 0, and R(0)≥ 0, the
solutions I(t), S(t), C(t), and R(t) of system (1) with the
initial conditions (2) are positive for all t≥ 0.

Proof. If I(0)≥ 0, according to the first equation of system
(1), one has

dI(t)

dt
� π −

c〈k〉I(t)S(t − τ)

1 + αS(t − τ)
− (β + μ)I(t). (4)

It can be rewritten as

dI(t)

dt
exp 

t− τ

0

c〈k〉S(u)

1 + αS(u)
+ β + μ du 

+ I(t)
c〈k〉S(t − τ)

1 + αS(t − τ)
+ β + μ exp 

t− τ

0

c〈k〉S(u)

1 + αS(u)
+ β + μ du 

� π × exp 
t− τ

0

c〈k〉S(u)

1 + αS(u)
+ β + μ du .

(5)

+us,

d

dt
I(t)exp 

t− τ

0

c〈k〉S(u)

1 + αS(u)
+ β + μ du  

� π × exp 
t− τ

0

c〈k〉S(u)

1 + αS(u)
+ β + μ du .

(6)

+en, according to the variation of constant formula,

I S R

C

µC

µR

µSµI δS ηC

θS

βI

π
γ k  IS(t−τ)
1+αS(t−τ)

Figure 1: +e process of ISCR model.
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I(t)exp 
t− τ

0

c〈k〉S(u)

1 + αS(u)
+ β + μ du  − I(0)

� 
t− τ

0
π × exp 

u

0

c〈k〉S(λ)

1 + αS(λ)
+ β + μ dλ  du.

(7)

Hence,

I(t) � I(0)exp − 
t− τ

0

c〈k〉S(u)

1 + αS(u)
+ β + μ du 

+ exp − 
t− τ

0

c〈k〉S(u)

1 + αS(u)
+ β + μ du 

× 
t− τ

0
π × exp 

u

0

c〈k〉S(λ)

1 + αS(λ)
+ β + μ dλ  du 

> 0.

(8)

Similarly, one can prove that S(t)> 0, C(t)> 0, and
R(t)> 0. So, the solutions I(t), S(t), C(t), and R(t) of
system (1) with the initial condition (2) are positive for all
t> 0. □

3. Dynamic Analysis of the ISCR Model

In this section, the equilibria and the basic reproduction
number of system (1) are calculated via utilizing the next
generation matrix method [29]. +en, the stability of
equilibria is discussed by using the Routh–Hurwitz criterion
[30] and LaSalle’s invariance principle [31].

3.1. Equilibria of Model and the Basic Reproduction Number.
Let the right side of system (1) be zero, and one has

π −
c〈k〉I(t)S(t − τ)

1 + αS(t − τ)
− (β + μ)I(t) � 0,

c〈k〉I(t)S(t − τ)

1 + αS(t − τ)
− (δ + θ + μ)S(t) � 0,

δS(t) − (η + μ)C(t) � 0,

βI(t) + θS(t) + ηC(t) − μR(t) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Let S(t) � 0 in system (9), and one can easily get the
rumor-free equilibrium of system (1) by the following:

E0 � I0, 0, 0, R0(  �
π

β + μ
, 0, 0, 1 −

π
β + μ

 . (10)

To facilitate the calculation of the basic reproduction
number of system (9), let x � (S, I, C, R)T; then, system (9)
can be rewritten as

dx

dt
� F(x) − V(x), (11)

where

F(x) �

c〈k〉I(t)S(t − τ)

1 + αS(t − τ)

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

V(x) �

(δ + θ + μ)S(t)

c〈k〉I(t)S(t − τ)

1 + αS(t − τ)
+(β + μ)I(t) − π

(η + μ)C(t) − δS(t)

μR(t) − βI(t) − θS(t) − ηC(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(12)

+en,

F � DF E0(  �

c〈k〉I0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

V � DV E0(  �

δ + θ + μ 0 0 0

c〈k〉I0 β + μ 0 0

− δ 0 η + μ 0

− θ − β − η μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(13)

By calculation, R0 is obtained as follows:

R0 �
c〈k〉I0

δ + θ + μ
�

c〈k〉π
(δ + θ + μ)(β + μ)

. (14)

Assume that rumor-prevailing equilibrium
E∗ � (I∗, S∗, C∗, R∗) is a solution of system (1), that is,

π −
c〈k〉I

∗
S
∗

1 + αS
∗ − (β + μ)I

∗
� 0,

c〈k〉I
∗
S
∗

1 + αS
∗ − (δ + θ + μ)S

∗
� 0,

δS
∗

− (η + μ)C
∗

� 0,

βI
∗

+ θS
∗

+ ηC
∗

− μR
∗

� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

From (15), one can get
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I
∗

�
δ + θ + μ + απ

c〈k〉 + α(β + μ)
,

S
∗

�
c〈k〉π − (δ + θ + μ)(β + μ)

(δ + θ + μ)[c〈k〉 + α(β + μ)]
�

β + μ
c〈k〉 + α(β + μ)

R0 − 1( ,

C
∗

�
δ

η + μ
S
∗

�
δ(β + μ)

(η + μ)(c〈k〉 + α(β + μ))
R0 − 1( , R

∗
�
βI
∗

+ θS
∗

+ ηC
∗

μ
.

(16)

Obviously, rumor-prevailing equilibrium E∗ � (I∗,

S∗, C∗, R∗) of system (1) exists if R0 > 1, and I∗ > 0, S∗ > 0,
C∗ > 0, R∗ > 0.

Remark 2. According to the expression of R0, the basic
reproduction number is independent of time delay, that is to
say, the time delay τ is only related to the spread time of
rumors and will not affect the spread scale of rumors.

3.2. Stability Analysis

Theorem 1. Rumor-free equilibrium E0 � ((π/β + μ),

0, 0, 1 − (π/β + μ)) is locally asymptotically stable for all τ ≥ 0
if R0 < 1.

Proof. To simplify the calculation, let x(t) � I

(t) − π/(β + μ), y(t) � S(t), z(t) � C(t), and w(t) � R

(t) − (1 − π/(β + μ)), and the linearized system of (1) is as
follows:

dx(t)

dt
� −

c〈k〉π
β + μ

y(t − τ) − (β + μ)x(t),

dy(t)

dt
�

c〈k〉π
β + μ

y(t − τ) − (δ + θ + μ)y(t),

dz(t)

dt
� δy(t) − (η + μ)z(t),

dw(t)

dt
� βx(t) + θy(t) + ηz(t) − μw(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

+e characteristic equation of system (17) is

λ + β + μ
c〈k〉π
β + μ

e
− λτ 0 0

0 λ −
c〈k〉π
β + μ

e
− λτ

+ δ + θ + μ 0 0

0 − δ λ + η + μ 0

− β − θ − η λ + μ





� 0.

(18)

+en,

(λ + μ)(λ + β + μ)(λ + η + μ) λ +(δ + θ + μ) 1 − R0e
− λτ

   � 0.

(19)

If τ � 0, the characteristic equation of system (19) is

(λ + μ)(λ + β + μ)(λ + η + μ) λ +(δ + θ + μ) 1 − R0(   � 0.

(20)

One has

λ1 � − (β + μ)< 0,

λ2 � − (η + μ)

λ4 � − μ< 0,

λ3 � (δ + θ + μ) R0 − 1( .

(21)

If R0 < 1, in light of the Routh–Hurwitz criterion [30], E0
is locally asymptotically stable for τ � 0.

Now, if τ > 0, one only needs to consider the following
formula:

λ +(δ + θ + μ) 1 − R0e
− λτ

  � 0. (22)

Assume that (22) has a purely imaginary root λ � iω,
with ω> 0. +en, separating real and imaginary parts gives

(δ + θ + μ)R0 cos ωτ � δ + θ + μ,

(δ + θ + μ)R0 sin ωτ � − ω.
 (23)

Equation (23) is squared and then added to obtain

(δ + θ + μ)
2R2

0 � (δ + θ + μ)
2

+ ω2
. (24)

+en,

ω2
� (δ + θ + μ)

2 R2
0 − 1 . (25)

+erefore, equation (22) has no purely imaginary root if
R0 < 1. Hence, rumor-free equilibrium E0 is locally as-
ymptotically stable for any τ ≥ 0 if R0 < 1. □

Remark 3. If R0 < 1, rumor-free equilibrium E0 is unstable
for any τ ≥ 0.

Remark 4 (see [30]). Consider the following linear delay
differential equation:

_x(t) � Ax(t) + Bx(t − r), (26)

where x ∈ Rn, A, B ∈ Rn×n, and r> 0. +e solution of
equation (26) is eλc(c ∈ Rn, c≠ 0). Also, the characteristic
equation of system (26) is h(λ) � λ − A − Be− λr � 0.
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Theorem 2. Rumor-prevailing equilibrium E∗ � (I∗, S∗,

C∗, R∗) of system (1) is locally asymptotically stable for all
τ ≥ 0 if R0 > 1.

Proof. Let x(t) � I(t) − I∗, y(t) � S(t) − S∗, z(t) � C(t)

− C∗, and w(t) � R(t) − R∗, and the linearized system of (1)
takes the following form:

dx(t)

dt
� − (β + μ)x(t) −

c〈k〉S
∗

1 + αS
∗ x(t) −

c〈k〉I
∗

1 + αS
∗

( 
2 y(t − τ),

dy(t)

dt
� − (δ + θ + μ)y(t) +

c〈k〉S
∗

1 + αS
∗ x(t) +

c〈k〉I
∗

1 + αS
∗

( 
2 y(t − τ),

dz(t)

dt
� δy(t) − (η + μ)z(t),

dw(t)

dt
� βx(t) + θy(t) + ηz(t) − μw(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

+e characteristic equation of system (27) is

λ + β + μ +
c〈k〉S

∗

1 + αS
∗

c〈k〉I
∗

1 + αS
∗

( 
2e

− λτ 0 0

−
c〈k〉S

∗

1 + αS
∗ λ −

c〈k〉I
∗

1 + αS
∗

( 
2e

− λτ
+ δ + θ + μ 0 0

0 − δ λ + η + μ 0

− β − θ − η λ + μ





� 0. (28)

+en,
(λ + η + μ)(λ + μ) λ2 + p1λ + p0 − q1λ + q0( e

− λτ
  � 0,

(29)
where

p1 � δ + θ + μ + β + μ +
c〈k〉S

∗

1 + αS
∗, q1 �

c〈k〉I
∗

1 + αS
∗

( 
2,

p0 � (δ + θ + μ) β + μ +
c〈k〉S

∗

1 + αS
∗ , q0 �

c〈k〉I
∗

1 + αS
∗

( 
2 (β + μ).

(30)

If τ � 0, equation (29) can be rewritten as

(λ + η + μ)(λ + μ) λ2 + p1 − q1( λ + p0 − q0  � 0. (31)

Obviously, λ1 � − (η + μ)< 0, λ4 � − μ< 0. Furthermore,
one only need to consider the following equation:

λ2 + p1 − q1( λ + p0 − q0 � 0, (32)

where
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p1 − q1 � δ + θ + μ + β + μ +
c〈k〉S

∗

1 + αS
∗ −

c〈k〉I
∗

1 + αS
∗

( 
2

� δ + θ + μ + β + μ +
c〈k〉

1 + αS
∗ S
∗

−
I
∗

1 + αS
∗ 

� δ + θ + μ + β + μ +
(δ + θ + μ)[c〈k〉 + α(β + μ)]

δ + θ + μ + απ

×
β + μ

c〈k〉 + α(β + μ)
R0 − 1(  −

δ + θ + μ
c〈k〉

 

�
(δ + θ + μ)(β + μ)

δ + θ + μ + απ
R0 − 1(  +

α(δ + θ + μ)
2
(β + μ) R0 − 1( 

c〈k〉(δ + θ + μ + απ)
+ β + μ.

(33)

If R0 > 1, p1 − q1 > 0. +en,

p0 − q0 � (δ + θ + μ) β + μ +
c〈k〉S

∗

1 + αS
∗  −

c〈k〉I
∗

1 + αS
∗

( 
2 (β + μ)

�
c〈k〉

1 + αS
∗ S
∗
(δ + θ + μ) −

I
∗

1 + αS
∗ (β + μ)  +(β + μ)(δ + θ + μ)

�
(δ + θ + μ)[c〈k〉 + α(β + μ)]

δ + θ + μ + απ
(β + μ)(δ + θ + μ)

c〈k〉 + α(β + μ)
R0 − 1(  −

δ + θ + μ
c〈k〉

(β + μ)

+(β + μ)(δ + θ + μ) �
(δ + θ + μ)

2
(β + μ)

δ + θ + μ + απ
R0 − 1(  +

α(β + μ)(δ + θ + μ)
2

c〈k〉(δ + θ + μ + απ)
R0 − 1( .

(34)

If R0 > 1, p0 − q0 > 0. +en, one has λ2 < 0, λ3 < 0.
+erefore, rumor-prevailing equilibrium E∗ is locally as-
ymptotically stable for τ � 0 if R0 > 1.

Let

F(λ) � λ2 + p1λ + p0 − q1λ + q0( e
− λτ

. (35)

Now, if τ > 0, assume that (35) has a purely imaginary
root λ � iω, with ω> 0. +en,

− ω2
+ p1iω + p0 − q1iω + q0( (cos ωτ − i sin ωτ) � 0.

(36)
Separating real and imaginary parts gives

p0 − ω2
� q1ω sin ωτ + q0 cos ωτ,

p1ω
2

� q1ω cos ωτ − q0 sin ωτ.

⎧⎨

⎩ (37)

Equation (37) is squared and then added to obtain

ω4
+ p

2
1 − q

2
1 − 2p0 ω2

+ p
2
0 − q

2
0 � 0. (38)

Let ρ � ω2, and equation (38) can be rewritten as

ρ2 + p
2
1 − q

2
1 − 2p0 ρ + p

2
0 − q

2
0 � 0, (39)

where
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p
2
1 − q

2
1 − 2p0 � δ + θ + μ + β + μ +

c〈k〉S∗

1 + αS∗
 

2

−
c〈k〉I∗

1 + αS∗( )2
 

2

− 2(δ + θ + μ) β + μ +
c〈k〉S

∗

1 + αS
∗ 

� (δ + θ + μ)
2

+(β + μ)
2

+ 2(β + μ)
c〈k〉S

∗

1 + αS
∗

+
c
2
〈k〉

2

1 + αS
∗

( 
2 S
∗

( 
2

−
I∗

1 + αS∗
 

2
⎡⎣ ⎤⎦.

(40)

Let

f � (δ + θ + μ)
2

+
c
2
〈k〉

2

1 + αS
∗

( 
2 S
∗

( 
2

−
I∗

1 + αS∗
 

2
⎡⎣ ⎤⎦

� (δ + θ + μ)
2

+
(β + μ)

2
(δ + θ + μ)

2

(δ + θ + μ + απ)
2 R0 − 1( 

2
−

[c〈k〉 + α(β + μ)]
2
(δ + θ + μ)

4

c
2
〈k〉

2
(δ + θ + μ + απ)

2

� (δ + θ + μ)
2 c

2
〈k〉

2
(δ + θ + μ + απ)

2
− [c〈k〉 + α(β + μ)]

2
(δ + θ + μ)

2

c
2
〈k〉

2
(δ + θ + μ + απ)

2 

+
(β + μ)

2
(δ + θ + μ)

2

(δ + θ + μ + απ)
2 R0 − 1( 

2
� (δ + θ + μ)

4 2αc〈k〉(β + μ) R0 − 1(  + α2(β + μ)
2 R2

0 − 1 

c
2
〈k〉

2
(δ + θ + μ + απ)

2
⎛⎝ ⎞⎠

+
(β + μ)

2
(δ + θ + μ)

2

(δ + θ + μ + απ)
2 R0 − 1( 

2
.

(41)

If R0 > 1, p2
1 − q21 − 2p0 > 0. +en,

p
2
0 − q

2
0 � (δ + θ + μ)

2 β + μ +
c〈k〉S∗

1 + αS∗
 

2

−
c〈k〉I∗

1 + αS∗( )2
 

2

(β + μ)
2

� (δ + θ + μ)
2
(β + μ)

2
+ 2(δ + θ + μ)(β + μ)

c〈k〉S
∗

1 + αS
∗

+
c
2
〈k〉

2

1 + αS
∗

( 
2 S
∗

( 
2
(δ + θ + μ)

2
−

I∗

1 + αS∗
 

2

(β + μ)
2⎡⎣ ⎤⎦.

(42)

Let
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m � (δ + θ + μ)
2
(β + μ)

2
+

c
2
〈k〉

2

1 + αS
∗

( 
2 S
∗

( 
2
(δ + θ + μ)

2
−

I∗

1 + αS∗
 

2

(β + μ)
2⎡⎣ ⎤⎦

� (δ + θ + μ)
2
(β + μ)

2
+

[c〈k〉 + α(β + μ)]
2
(δ + θ + μ)

2

(δ + θ + μ + απ)
2

×
(δ + θ + μ)

2
(β + μ)

2

[c〈k〉 + α(β + μ)]
2 R0 − 1( 

2
−

(δ + θ + μ)
2
(β + μ)

2

c
2
〈k〉

2 

� (δ + θ + μ)
2
(β + μ)

2
−

(δ + θ + μ)
4
(β + μ)

2
[c〈k〉 + α(β + μ)]

2

c
2
〈k〉

2
(δ + θ + μ + απ)

2

+
(δ + θ + μ)

4
(β + μ)

2

(δ + θ + μ + απ)
2 R0 − 1( 

2

�
(δ + θ + μ)

4
(β + μ)

2

(δ + θ + μ + απ)
2 R0 − 1( 

2
+(δ + θ + μ)

2 c
2
〈k〉

2
(δ + θ + μ + απ)

2
(β + μ)

2

c
2
〈k〉

2
(δ + θ + μ + απ)

2

−
(δ + θ + μ)

2
(β + μ)

2
[c〈k〉 + α(β + μ)]

2

c
2
〈k〉

2
(δ + θ + μ + απ)

2 

� (δ + θ + μ)
4 2αc〈k〉(β + μ)

3 R0 − 1(  + α2(β + μ)
4 R2

0 − 1 

c
2
〈k〉

2
(δ + θ + μ + απ)

2
⎛⎝ ⎞⎠

+
(δ + θ + μ)

4
(β + μ)

2

(δ + θ + μ + απ)
2 R0 − 1( 

2
.

(43)

If R0 > 1, p2
0 − q20 > 0. +en, (35) has no purely imaginary

roots if R0 > 1. Hence, rumor-prevailing equilibrium E∗ is
locally asymptotically stable for any τ ≥ 0 if R0 > 1. □

Theorem 3. If R0 < 1, rumor-free equilibrium
E0 � (π/(β + μ), 0, 0, 1 − π/(β + μ)) is globally asymptoti-
cally stable for all τ ≥ 0.

Proof. Construct the following Lyapunov function:

V(t) � S(t) + 
t

t− τ

c〈k〉I0S(u)

1 + αS(u)
du. (44)

Differentiate V(t) along the solution E0 of system (1) as
follows:

dV(t)

dt
�
dS(t)

dt
+

c〈k〉I0S(t)

1 + αS(t)
−

c〈k〉I0S(t − τ)

1 + αS(t − τ)

�
c〈k〉I(t)S(t − τ)

1 + αS(t − τ)
− (δ + θ + μ)S(t) +

c〈k〉I0S(t)

1 + αS(t)
−

c〈k〉I0S(t − τ)

1 + αS(t − τ)

≤ 〈k〉I0S(t) − (δ + θ + μ)S(t) �
c〈k〉πS(t)

β + μ
− (δ + θ + μ)S(t)

� (δ + θ + μ)S(t) R0 − 1( .

(45)

+erefore, R0 < 1 ensures that dV(t)/dt≤ 0 and
dV(t)/dt � 0 if and only if I(t) � I0, S(t) � 0, C(t) � 0,
R(t) � R0. Adopting LaSalle’s invariance principle [31], we

have limt⟶∞I(t) � I0, limt⟶∞S(t) � 0, limt⟶∞C(t) � 0
and limt⟶∞R(t) � R0, that is, E0 is globally asymptotically
stable for all τ ≥ 0 if R0 < 1. □
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Remark 5. Rumor-free equilibrium is globally asymptoti-
cally stable for all τ ≥ 0 if R0 < 1, that is to say, rumor will
gradually die out with the growth of time, and the density of
Spreaders will gradually approach zero.

Theorem 4. If R0 > 1, rumor-prevailing equilibrium E∗ �

(I∗, S∗, C∗, R∗) is globally asymptotically stable for all τ ≥ 0.

Proof. Define the Lyapunov function as

W(t) � W1(t) + W2(t) +
c〈k〉I

∗
S
∗

1 + αS
∗ W3(t), (46)

where

W1(t) � I(t) − I
∗

− I
∗ln

I(t)

I
∗ ,

W2(t) � S(t) − S
∗

− S
∗ln

S(t)

S
∗ ,

W3(t) � 
t

t− τ

S(u)

S
∗ − 1 − ln

S(u)

S
∗  du, x − 1 − ln x> 0(x> 0).

(47)

Differentiate W1(t) along the solutions of system (1) as
follows:

dW1(t)

dt
� 1 −

I
∗

I(t)
 

dI(t)

dt

� 1 −
I
∗

I(t)
  π −

c〈k〉I(t)S(t − τ)

1 + αS(t − τ)
− (β + μ)I(t) 

� 1 −
I
∗

I(t)
 

c〈k〉I
∗
S
∗

1 + αS
∗ +(β + μ)I

∗
−

c〈k〉I(t)S(t − τ)

1 + αS(t − τ)
− (β + μ)I(t) 

� − (β + μ)
I(t) − I

∗
( 

2

I(t)
+

c〈k〉I
∗
S
∗

1 + αS
∗ 1 −

1 + αS
∗

( I(t)S(t − τ)

I
∗
S
∗
[1 + αS(t − τ)]

 

× 1 −
I
∗

I(t)
 .

(48)

Differentiating W2(t) along the solutions of system (1),
one has

dW2(t)

dt
� 1 −

S
∗

S(t)
 

dS(t)

dt

� 1 −
S
∗

S(t)
 

c〈k〉I(t)S(t − τ)

1 + αS(t − τ)
− (δ + θ + μ)S(t) 

� 1 −
S
∗

S(t)
 

c〈k〉I(t)S(t − τ)

1 + αS(t − τ)
−

c〈k〉I
∗
S(t)

S
∗ ×

S
∗

1 + αS
∗ 

� 1 −
S
∗

S(t)
 

c〈k〉I
∗
S
∗

1 + αS
∗

1 + αS
∗

( I(t)S(t − τ)

I
∗
S
∗
[1 + αS(t − τ)]

−
S(t)

S
∗ 

�
c〈k〉I

∗
S
∗

1 + αS
∗

1 + αS
∗

( I(t)S(t − τ)

I
∗
S
∗
[1 + αS(t − τ)]

−
S
∗

S(t)

1 + αS
∗

( I(t)S(t − τ)

I
∗
S
∗
[1 + αS(t − τ)]



−
S(t)

S
∗ + 1.

(49)
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Differentiate W3(t) along the solutions of system (1) as
follows:

dW3(t)

dt

�
S(t)

S
∗ − 1 − ln

S(t)

S
∗  −

S(t − τ)

S
∗ + 1 + ln

S(t − τ)

S
∗ 

�
S(t)

S
∗ −

S(t − τ)

S
∗ + ln

S(t − τ)

S(t)
 .

(50)

Hence,

dW(t)

dt

�
dW1(t)

dt
+
dW2(t)

dt
+

c〈k〉I
∗
S
∗

1 + αS
∗

dW3(t)

dt

� − (β + μ)
I(t) − I

∗
( 

2

I(t)
+

c〈k〉I
∗
S
∗

1 + αS
∗ × 1 −

1 + αS
∗

( I(t)S(t − τ)

I
∗
S
∗
[1 + αS(t − τ)]

 

× 1 −
I
∗

I(t)
  +

1 + αS
∗

( I(t)S(t − τ)

I
∗
S
∗
[1 + αS(t − τ)]

−
S
∗

S(t)
×

1 + αS
∗

( I(t)S(t − τ)

I
∗
S
∗
[1 + αS(t − τ)]

−
S(t)

S
∗ + 1 +

S(t)

S
∗ −

S(t − τ)

S
∗ + ln

S(t − τ)

S(t)
 

� − (β + μ)
I(t) − I

∗
( 

2

I(t)
+

c〈k〉I
∗
S
∗

1 + αS
∗ 2 −

I
∗

I(t)
+

1 + αS
∗

( S(t − τ)

S
∗
[1 + αS(t − τ)]



−
S(t − τ)

S
∗ −

S
∗ 1 + αS

∗
( I(t)S(t − τ)

S(t)I
∗
S
∗
[1 + αS(t − τ)]

+ ln
S(t − τ)

S(t)
 

� − (β + μ)
I(t) − I

∗
( 

2

I(t)
−

c〈k〉I
∗
S
∗

1 + αS
∗

I
∗

I(t)
− 1 − ln

I
∗

I(t)
 

+
S
∗ 1 + αS

∗
( I(t)S(t − τ)

S(t)I
∗
S
∗
[1 + αS(t − τ)]

− 1 − ln
S
∗ 1 + αS

∗
( I(t)S(t − τ)

S(t)I
∗
S
∗
[1 + αS(t − τ)]

 

+
1 + αS(t − τ)

1 + αS
∗ − 1 − ln

1 + αS(t − τ)

1 + αS
∗ 

−
c〈k〉I

∗
S
∗

1 + αS
∗ 1 −

1 + αS(t − τ)

1 + αS
∗ −

1 + αS
∗

( S(t − τ)

S
∗
[1 + αS(t − τ)]

+
S(t − τ)

S
∗ .

(51)

Let Y � 1 −
1 + αS(t − τ)

1 + αS
∗ −

1 + αS
∗

( S(t − τ)

S
∗
[1 + αS(t − τ)]

+
S(t − τ)

S
∗

�
α S
∗

− S(t − τ) 
2

S
∗ 1 + αS

∗
( [1 + αS(t − τ)]

≥ 0.

(52)

Because x − 1 − ln x> 0(x> 0),

Discrete Dynamics in Nature and Society 11



dW(t)

dt
� − (β + μ)

I(t) − I
∗

( 
2

I(t)
−

c〈k〉I
∗
S
∗

1 + αS
∗

I
∗

I(t)
− 1 − ln

I
∗

I(t)
 

+
S
∗ 1 + αS

∗
( I(t)S(t − τ)

S(t)I
∗
S
∗
[1 + αS(t − τ)]

− 1 − ln
S
∗ 1 + αS

∗
( I(t)S(t − τ)

S(t)I
∗
S
∗
[1 + αS(t − τ)]

 

+
1 + αS(t − τ)

1 + αS
∗ − 1 − ln

1 + αS(t − τ)

1 + αS
∗  −

c〈k〉I
∗
S
∗

1 + αS
∗ ×

α S
∗

− S(t − τ) 
2

S
∗ 1 + αS

∗
( [1 + αS(t − τ)]

≥ 0.

(53)

Obviously, dW(t)/dt≤ 0 and dW(t)/dt � 0 if and only if
I(t) � I∗, S(t) � S∗, C(t) � C∗, R(t) � R∗. +en, one has
limt⟶∞I(t) � I∗, limt⟶∞S(t) � S∗, limt⟶∞C(t) � C∗,
and limt⟶∞R(t) � R∗, that is, E∗ is globally asymptotically
stable for all τ ≥ 0 if R0 > 1. □

Remark 6. If R0 > 1 for all τ ≥ 0, rumor-prevailing equilib-
rium is globally asymptotically stable, that means rumors
will spread steadily over time and will not die out in the end.

Remark 7. For the construction of the Lyapunov function of
the delayed model in this paper, we must first ensure the
positive definiteness of the function. Secondly, uncertain
limit integral functions are added to the Lyapunov function
to offset the previous delayed term. Finally, the algebraic
method is used to ensure that the derivative of the Lyapunov
function is negative. Meanwhile, Holling-type II functional
response is added in this paper, which makes the analysis of
the delayed model more difficult.

4. Optimal Control

In this section, optimized control strategies are proposed so
as to control the spread of rumors and reduce the control
cost of social platforms, and the optimal control solution is
found by utilizing Pontryagin’s minimum principle [32].
Next, a control variable u(t) is introduced to represent the
function of control strategy for S(t). +en, an admissible
control set is defined:

U � u(t) ∈ L
2
(0, T): 0≤ t≤T; 0≤ u(t)≤ 1 . (54)

+e controlled system can be obtained by

dI(t)

dt
� π −

c〈k〉I(t)S(t − τ)

1 + αS(t − τ)
− (β + μ)I(t),

dS(t)

dt
�

c〈k〉I(t)S(t − τ)

1 + αS(t − τ)
− (δ + θ + μ)S(t) − u(t)S(t),

dC(t)

dt
� δS(t) − (η + μ)C(t),

dR(t)

dt
� βI(t) + θS(t) + u(t)S(t) + ηC(t) − μR(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(55)

with initial conditions (2). +en, an objective function is
considered as

J(t) � 
t

0
S(t) +

A

2
u
2
(t) dt, (56)

where A(A> 0) is a weight coefficient to keep the density of
S(t) in balance and control the cost of u(t).

Lemma 3 (see [33]). .e controlled system (56) with any
initial conditions has a unique solution.Proof. +e con-
trolled system (56) can be rewritten as

dX(t)

dt
� BX(t) + F X(t), Xτ(t)(  + C(u, X(t)), (57)

where
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X(t) �

I(t)

S(t)

C(t)

R(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B �

− (β + μ) 0 0 0

0 − (δ + θ + μ) 0 0

0 δ − (η + μ) 0

β θ η − μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

F X(t), Xτ(t)(  �

π −
c〈k〉I(t)S(t − τ)

1 + αS(t − τ)

c〈k〉I(t)S(t − τ)

1 + αS(t − τ)

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C(u, X(t)) �

0

− u(t)S(t)

0

u(t)S(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(58)

and Xτ(t) � X(t − τ). System (57) is a nonlinear system
with a bounded coefficient. Set

G X(t), Xτ(t)(  � BX(t) + F X(t), Xτ(t)( . (59)

A simple calculation shows that

F X1(t), X1( τ(t)(  − F X2(t), X2( τ(t)( 


≤M1 X1(t) − X2(t)




+M2 X1( τ(t) − X2( τ(t)


,

(60)

where M1 and M2 are some positive constants, independent
of state variables I(t), S(t), C(t), and R(t)≤N(t), and

X1(t) − X2(t)


 � I1(t) − I2(t)


 + S1(t) − S2(t)


 + C1(t) − C2(t)


 + R1(t) − R2(t)


,

X1( τ(t) − X2( τ(t)


 � I1( τ(t) − I2( τ(t)


 + S1( τ(t) − S2( τ(t)




+ C1( τ(t) − C2( τ(t)


 + R1( τ(t) − R2( τ(t)


.

(61)

Here (Ii)τ(t) � Ii(t − τ), (Si)τ(t) � Si(t − τ),
(Ci)τ(t) � Ci(t − τ), and (Ri)τ(t) � Ri(t − τ), for i � 1, 2.
+erefore, it is easy to show that

G X1(t), X1( τ(t)(  − G X2(t), X2( τ(t)( 


≤L X1(t) − X2(t)




+ X1( τ(t) − X2( τ(t)




(62)

where L � max M1, M2, ‖B‖ <∞. +us, it follows that the
function G is uniformly Lipschitz continuous. +e solution
of system (55) exists from (62). And the solution of system

(55) takes into account the constraints on the controls u(t)

and the restrictions on the non-negativeness of the state
variables.

In order to find an optimal solution, first we find the
Lagrangian function and Hamiltonian function for the
optimal control system (55). +e Lagrangian function of the
problem is taken as

L(S(t), u(t)) � S(t) +
A

2
u
2
(t), (63)

and we define the Hamiltonian function H(t) as
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H(t) � L(S(t), u(t)) + λ(t)f(I(t), S(t), C(t), R(t))

� S(t) +
A

2
u(t)

2
+ λ1(t) π −

c〈k〉I(t)S(t − τ)

1 + αS(t − τ)
− (β + μ)I(t) 

+ λ2(t)
c〈k〉I(t)S(t − τ)

1 + αS(t − τ)
− u(t)S(t) − (δ + θ + μ)S(t)  + λ3(t)(δS(t)

− (η + μ)C(t)) + λ4(t)(βI(t) + θS(t) + u(t)S(t) + ηC(t) − μR(t)),

(64)

where λi(t), (i � 1, 2, 3, 4), represent the adjoint variables to
be determined appropriately. □

Lemma 4. .ere exists an optimal control
u∗(t) � (i∗(t), s∗(t), c∗(t), r∗(t)) such that

J u
∗
(t)(  � min(J(u(t))), (65)

for system (55) under the initial conditions (2).

Proof. In fact, the following conditions are satisfied. (i) +e
set of control and corresponding state variables is not empty.
(ii) +e control space U is convex and closed by definition.
(iii) Each right hand side of the state system is continuous

and is bounded by a sum of the bounded control and the
state. Furthermore, it can be written as a linear function of
the control variate u(t) with coefficients depending on time
and the state. (iv) S(t) + (A/2)u2(t) is convex on the control
set U and is bounded below. +us, according to [34], there
exists an optimal control u∗(t). +is completes the
proof. □

Theorem 5. Let (i∗(t), s∗(t), c∗(t), r∗(t)) be the optimal
state solutions with associated optimal control variable u∗(t)

for the optimal control system (55). .en, adjoint variables
λi(t)(i � 1, 2, 3, 4) satisfy

dλ1(t)

dt
� λ1(t) ×

c〈k〉s
∗
(t)

1 + αs
∗
(t)

+ β + μ  − λ2(t) ×
c〈k〉s

∗
(t)

1 + αs
∗
(t)

− λ4(t)β,

dλ2(t) � − 1 + λ2(t)(u(t) + δ + θ + μ) − λ3(t)δ − λ4(t)(θ + u)

dt

+λ2(t)(t + τ)
c〈k〉i

∗
(t)

1 + αs
∗
(t)( 

2 λ1(t) − λ2(t)( ,

dλ3(t)

dt
� λ3(t)(η + μ) − λ4(t)η,

dλ4(t)

dt
� λ4(t)μ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(66)

with transversality conditions

λ1(T) � λ2(T) � λ3(T) � λ4(T) � 0. (67)

Furthermore, the optimal control

u
∗
(t) � max min

λ2(t) − λ4(t)( s
∗
(t)

σ
, 1 , 0 , (68)

can be found.

Proof. Differentiating the Hamiltonian function (64) with
respect to I(t), S(t), C(t), and R(t) and substituting
I(t) � i∗(t), S(t) � s∗(t), S(t − τ) � s∗(t), C(t) � c∗(t),
R(t) � r∗(t), and u(t) � u∗(t) into equations, one has
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dλ1(t)

dt
� −

zH(t)

zI(t)
� λ1(t) ×

c〈k〉s
∗
(t)

1 + αs
∗
(t)

+ β + μ  − λ2(t) ×
c〈k〉s

∗
(t)

1 + αs
∗
(t)

− λ4(t)β,

dλ2(t)

dt
� −

zH(t)

zS(t)
− λ2(t + τ)

zH(t)

zS(t − τ)
� − 1 + λ2(t)(u(t) + δ + θ + μ) − λ3(t)δ

− λ4(t)(θ + u) + λ2(t + τ)
c〈k〉i

∗
(t)

1 + αs
∗
(t)( 

2 λ1(t) − λ2(t)( ,

dλ3(t)

dt
� −

zH(t)

zC(t)
� λ3(t)(η + μ) − λ4(t)η,

dλ4(t)

dt
� −

zH(t)

zR(t)
� λ4(t)μ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(69)

By the optimal conditions, one has

zH(t)

zu(t)
� σu
∗
(t) − λ2(t)s

∗
(t) + λ4(t)s

∗
(t) � 0⇒u

∗
(t) �

λ2(t) − λ4(t)( s
∗
(t)

σ
. (70)

Considering the range of control variable and the
property of Hamiltonian function, one has

u
∗
(t) �

0,
λ2(t) − λ4(t)( s

∗
(t)

σ
≤ 0,

λ2(t) − λ4(t)( s
∗
(t)

σ
, 0<

λ2(t) − λ4(t)( s
∗
(t)

σ
≤ 1,

1,
λ2(t) − λ4(t)( s

∗
(t)

σ
> 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(71)

So, the optimal control u∗(t) can be obtained as

u
∗
(t) � max min

λ2(t) − λ4(t)( s
∗
(t)

σ
, 1 , 0 . (72)

□

5. Numerical Simulations

In this section, the theoretical results are verified by some
numerical simulations. We choose the average degree 〈k〉 �

3.2799 in this paper.

5.1. Stability of Rumor-Free Equilibrium

Case 1. In model (1), let τ � 2, c � 0.02, π � 0.013, δ � 0.02,
θ � 0.08, μ � 0.013, β � 0.025, α � 0.08, and η � 0.06. By
simple calculation, the basic reproduction number
R0 � 0.1986< 1. From +eorem 1, rumor-free equilibrium
E0 of model (1) is locally asymptotically stable which is
verified by Figure 2(a). Figure 2(b) describes the asymptotic
stability of equilibrium E0.

5.2. Stability of Rumor-Prevailing Equilibrium

Case 2. Choose τ � 2, c � 0.3, π � 0.02, δ � 0.015, θ � 0.01,
μ � 0.02, β � 0.02, α � 0.2, and η � 0.04 in model (1). By
simple calculation, R0 � 10.9330> 1. +e local stability of
rumor-prevailing equilibrium E∗ is examined as shown in
Figure 3(a), and the asymptotic stability of rumor-prevailing
equilibrium E∗ is examined as shown in Figure 3(b).

5.3. .e Influence of τ on Rumor Propagation. Choose
τ � 0, 2, 4, 6, 8, and other parameters are fixed as Case 2. +e
global stability of rumor-prevailing equilibrium E∗ can be
obtained when R0 > 1, and rumors always exist. From
Figure 4(a), we can find that time delay will suppress the
peak of Spreaders’ density. As the time delay increases, the
maximum density of Spreaders gradually decreases.
+erefore, it is appropriate to consider time delay in the
spread of rumors.

5.4. .e Influence of α on Rumor Propagation. Let
α � 0, 0.2, 0.4, 0.6, 0.8, and other parameters are fixed as Case
2. +e influence of α on rumor propagation can be observed
from Figure 4(b). With the increase of t, when α becomes
larger, the density of Spreaders will be reduced, which in-
dicates that psychological factors have a positive impact on
rumor propagation.

5.5. .e Influence of c on Rumor Propagation. Choose
c � 0.1, 0.2, 0.3, 0.4, 0.5, and other parameters are fixed as
Case 2. From Figure 5(a), the influence of c is apparent.
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Figure 2: +e stability of rumor-free equilibrium E0 when R0 < 1.
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Figure 3: +e stability of rumor-prevailing equilibrium E∗ when R0 > 1.
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Figure 4: (a) +e density of S(t) with different values of τ, R0 > 1. (b) +e density of S(t) with different values of α, R0 > 1.
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Infection rate of rumors will affect the ultimate extent of
Spreaders, which provides a novel channel to control ru-
mors. For instance, in the early stage of rumor propagation,
forbidding Spreaders in online social networks can reduce
the infection rate of rumors.

5.6. .e Influence of β on Rumor Propagation. Let
β � 0, 0.01, 0.02, 0.03, 0.04, and other parameters are fixed as
Case 2. +e positive influence of immune mechanism can be
shown by Figure 5(b) on rumor propagation. +e density of
Removes is affected by different immunization rate. In-
creasing the density of Removes can be achieved by in-
creasing the immunization rate. For example, more
popularization of science videos or articles should be
published by some well-known online social networking
platforms such as Weibo, WeChat, and so on to improve the
level of public scientific knowledge.

5.7. Effect of Optimal Control. In this part, the optimal
control can effectively lessen the density of Spreaders and
extend the region of rumors by numerical simulations. Next,
we discuss the influence of time delay on optimal control and
give some suggestions to control rumor propagation.

5.7.1. Without Time Delay. Choose A � 4 in the objective
function J(t), and other parameters are fixed as Case 2
besides τ � 0. +e density of individuals with and without
optimal control is shown in Figure 6(a). If time delay is equal
to zero, the spread speed of rumors is accelerated, and the
control time should also be advanced. In daily life, our
country and government should spread the harmfulness of
rumors through various channels, strengthen publicity, and
strengthen the education of the people. When rumors

appear, the government and relevant departments should
quickly formulate emergency plans to ensure social security.
+ey will do a good job with the goal of “the most true
information, the fastest speed, and the best effect” to reduce
the harm to the society caused by the spread of rumors.

5.7.2. With Time Delay. Choose A � 4 in the objective
function J(t), and other parameters are fixed as Case 2. +e
density of individuals with and without optimal control is
shown in Figure 6(b). It is obvious that control strategy that
we proposed controls rumors successfully. At the beginning
of the rumor, a downward trend is shown from the density of
the Spreaders, and the density of Removes is increasing
rapidly under the control strategy.

Next, the path of optimal control u(t) and control cost
J(t) is shown in Figure 7. Choose t � 10, and the optimal
control u(t) is gradually decreased to 0 with time as shown
in Figure 7(a). Moreover, the manifestation of objective
function J(t) is shown in Figure 7(b). Obviously, with the
decrease of control force, the control cost gradually increases
for a certain time.

5.8. General Comparison. Figure 8 clearly shows the impact
of time delay on optimal control. Obviously, time delay only
affects the control time and does not affect the final result of
control. When the time delay is equal to zero, the density of
Spreaders decreases rapidly under control, but the density of
Spreaders decreases very slowly when time delay exists.
+erefore, in the initial stage of rumor propagation, the
government and relevant media industries should refute the
rumor in time to shorten the public’s response time when
facing the rumor, so as to achieve the purpose of controlling
the rumor.
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Figure 5: (a) +e density of S(t) with different values of c, R0 > 1. (b) +e density of R(t) with different values of β, R0 > 1.
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Figure 6: (a) +e impact of optimal control without time delay. (b) +e impact of optimal control with time delay.
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Figure 7: (a) +e path of optimal control u(t). (b) +e path of control costs J(t).
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6. Conclusion

In this paper, an ISCR rumor propagation model with
nonlinear incidence and time delay is presented on complex
networks. According to the mean-field theory, the ISCR
model is discussed in detail. Firstly, the basic reproduction
number R0 � c〈k〉π/(δ + θ + μ)(β + μ) is calculated by
utilizing the next generation matrix theory. Secondly, the
locally asymptotic stability of rumor-free (prevailing)
equilibrium is verified by using the Routh-Hurwitz criterion
and the globally asymptotic stability of equilibria is con-
firmed by using LaSalle's invariance principle under
R0 < 1(> 1). Because time delay τ only affects the spread
time of rumors, it does not affect the final spread scale and
state of rumors, and the following results are given:

(i) If τ � 0, rumor-free equilibrium is locally asymp-
totically stable under R0 < 1 and rumor-prevailing
equilibrium under R0 > 1 is globally asymptotically
stable.

(ii) If τ > 0, the locally and globally asymptotic stability
of rumor-free (prevailing) equilibrium is satisfied
under R0 < 1(> 1).

+en, according to Pontryagin’s minimum principle, the
optimal control is presented to minimize the density of
Spreaders and control costs. Finally, the theoretical results of
this paper are verified via some numerical simulations.
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