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/is article formulates and dissects a Black–Scholes model with regime switching that can be used to describe the performance of a
complete market. An explicit integrand formula ϕ(t,ω) is obtained when the T-claim F(ω) is given for an attainable claim in this
complete market. In addition, some perfect results are presented on how to hedge an attainable claim for this Black–Scholes
model, and the price p of the European call and the self-financing portfolio θ(t) � (θ0(t), θ1(t)) are given explicitly. Finally, some
concluding remarks are provided to illustrate the theoretical results.

1. Introduction

/e Black–Scholes model (1973), one of the most important
models in modern financial theory, is often used to deter-
mine the fair prices of various options. Based on the research
involving the classical Black–Scholes model, certain em-
pirical phenomena have received considerable attention
recently. /e classical Black–Scholes model is often de-
scribed by the following equations:

X0(t) � e
ρt

,

dXi(t) � αiXi(t)dt + 􏽘
m

j�1
βijXi(t)dBj(t), i � 1, 2, . . . , n,

(1)

where βij is a n × m matrix and Bj(t) is a Brownian motion.
/e asset numbers 1, 2, . . . , n are risky because of the
presence of their diffusion terms and can be used to rep-
resent the stock investments. /e asset number 0 is risk free
due to the absence of the diffusion term, and it can be used to
represent a bank investment.

A very natural question is: if the values of αi and βij are
random, what will happen to the results? By taking ad-
vantage of the ergodic theory of irreducible Markov chain,
this paper will provide a perfect result for the case of random

αi and βij according to the switching of Markov chain. As an
application of our theoretical results, we will answer this
question in Example 1.

It is well known that the adjustments of the interest rates
by the central banks can produce large disturbances among
various options and asset investments. For this reason, it is
necessary to consider a switching noise in the Black–Scholes
model. In this paper, we adopt the Markov chain to describe
this switching noise as in [1–4]. /is type of noise can be
regarded as a significant fluctuation in themodels and can be
illustrated as a switching between n regimes.

We are motivated by the work of [5–7] for the option
pricing, and we aim to hedge an attainable claim in a
normalized market that is described by a stochastic Black-
–Scholes model with regime switching between two un-
derlying assets that consist of a bond X0(t) and a risky asset
X1(t). Under the switching noise (Markov chain) and the
white noise (Brownian motions), we give an explicit inte-
grand formula ϕ(t,ω), the price p of the European call, and
the self-financing portfolio θ(t) � (θ0(t), θ1(t)).

2. Black–Scholes Model

Suppose that a market is described by (X0(t), X1(t)), where
X0(t) is defined as
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X0(t) � e
ρt

. (2)

and X1(t) is an Itô process with the form

dX1(t) � αX1(t)dt + σdB(t), X1(0) � x1. (3)

In general, we regularly seek a portfolio θ(t) to hedge the
claim F(ω) � exp(X1(T)) if ρ, α, and σ are constants (see
[8] for more details). A T-claim F is usually given by

X
− 1
0 (T)F(ω) � z + 􏽚

T

0
ϕ(t,ω)d􏽥B(t), (4)

where X− 1
0 (·) and ϕ(t,ω) ∈ Rm satisfy

X
− 1
0 (t,ω) θ0(t), . . . , θn(t)( 􏼁σ(t,ω) � ϕ(t,ω). (5)

θ0(t) can also be chosen by the corresponding formula.
/e portfolio θ(t) � (θ0(t), . . . , θn(t)) is needed to hedge a
given claim. It is interesting to find an explicit formula of
integrand ϕ(t,ω) for a given T-claim F(ω) to make the
portfolio self-financing. Using a generalized version of the
Clark–Ocone theorem of theMalliavin calculus, one can find
the explicit expression of ϕ(t,ω). To do so, we refer the
reader to [9]. /ere is a simpler method; however, for the
Markovian case, see [8, 10] for instance. However, there are
no results for the regime-switching model, so the aim of this

paper is to dissect a more practical model for the integrand
formula ϕ(t,ω).

/e Black–Scholes model assumes that a market consists
of at least one risky asset and one riskless asset. Without loss
of generality, here we let amarket that has only two securities
X0(t) andX1(t), where X0(t) and X1(t) are two Itô pro-
cesses of the form

dX0(t) � ρX0(t)dt,

dX1(t) � αX1(t)dt + βX1(t)dB(t).
(6)

In the literature [8], the authors give the explicit formula
for the self-financing portfolio θ(t) � (θ0(t), θ1(t)) that
replicates the T-claim F(ω) � f(X1(T,ω)) explicitly. /ey
also mentioned a model as

dX0(t) � ρ(t,ω)X0(t)dt,

dX1(t) � α(t,ω)X1(t)dt + β(t,ω)X1(t)dB(t),
(7)

where B(t) is a 1-dimensional Brownian motion and
ρ(t,ω), α(t,ω), and β(t,ω) are stochastic processes. (7)
belongs to a small class of effectively solvable stochastic
differential equations. It is easy to find the solution to
equation (7),

X0(t) � X0(0)exp 􏽚
t

0
ρ(s,ω)ds􏼨 􏼩,

X1(t) � X1(0)exp 􏽚
t

0
β(s,ω)dB(s) + 􏽚

t

0
α(s,ω) −

1
2
β2(s,ω)􏼒 􏼓ds􏼨 􏼩,

(8)

explicitly, if and only if

E exp
1
2

􏽚
T

0

(α(s,ω) − ρ(s,ω))
2

β2(s,ω)
ds􏼠 􏼡􏼢 􏼣<∞. (9)

Suppose that there exists an equivalent martingale
measure Q given by

dQ(ω) � exp − 􏽚
T

0
u(t,ω)dB(t) −

1
2

􏽚
T

0
u
2
(t,ω)dt􏼠 􏼡dP(ω).

(10)

Under this martingale measure Q, by the Girsanov
theorem II, the process

􏽥B(t) ≔ 􏽚
t

0
u(s,ω)ds + B(t). (11)

is a Q-Brownian motion./us, equation (7) can be rewritten
as

dX0(t) � ρ(t,ω)X0(t)dt,

dX1(t) � ρ(t,ω)X1(t)dt + β(t,ω)X1(t)d􏽥B(t),
(12)

in terms of this Q-Brownian motion 􏽥B(t). Suppose that the
market defined by equation (12) has no arbitrage and it is
complete. Moreover, only this information for the European
option defined by equation (7) is known. Note that the
coefficients α(t,ω) and β(t,ω) in equation (7) are dependent
on the random variable ω ∈ Ω in an unknown way. /e
portfolio θ(t) for theT-claim F(ω) and the price p � p(F) at
t � 0 of the European options with T-claim F(ω) cannot be
defined explicitly. But, when ρ(t,ω) � ρ(t) and β(t,ω) �

β(t) are deterministic, the authors in [8] give the price at
t � 0 of a European option with payoff given by a contingent
T-claim

F(ω) � f X1(T,ω)( 􏼁, (13)

for some lower bounded function f: R⟶ R such that

EQ f X1(T)( 􏼁􏼂 􏼃<∞. (14)

/e price p � p(F) at time t � 0 of a European option
with payoff given by a contingent T-claim in equation (13)
has the explicit form as
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p � ξ(T)EQ f x1 exp 􏽚
T

0
β(s)d􏽥B(s) + 􏽚

T

0
ρ(s) −

1
2
β2(s)􏼒 􏼓ds􏼠 􏼡􏼠 􏼡􏼢 􏼣, (15)

where ξ(t) � X− 1
0 (t) and 􏽥B(t) is a Q-Brownian motion.

Moreover, if ρ, α, and β are constants and β≠ 0, it is a very
important special case of equation (7); the price p of a Eu-
ropean call option and the self-financing portfolio
θ(t) � (θ0(t), θ1(t)) have been given explicitly in [8]. Con-
sidering some practical meanings, we will discuss the case of
ρ, α, and β in equation (7) dependent on ω in the form of
Markov chain.We will give some perfect results by the method
of the ergodic theory of an irreducible Markov chain.

In the following part of our paper, we will discuss the
Black–Scholes model under regime switching, which is a
particular case of equation (7), that is to say,
ρ(t,ω), α(t,ω), and β(t,ω) are dependent on ω in the form of
Markov chain. At the same time, the model in this paper is an
extension of the classical Black–Scholes model and we will give

some more perfect results than in [8]. Without loss of gen-
erality, we firstly discuss a market X0(t) andX1(t) that is
formulated by a Black–Scholes model under regime switching.

3. Pricing and Hedging of an Attainable Claim

/roughout the paper, unless otherwise specified, let
(Ω,F,Ft, P) be a complete probability space with a fil-
tration Ft􏼈 􏼉t≥ 0 satisfying the usual conditions (it is right-
continuous and increasing whileF0 contains all P-null sets).
Let B(t) be a 1-dimensional standard Brownian motion
defined on a complete probability space.

If we consider switching noise (Markov chain) in the
classical Black–Scholes model, we can find a Black–Scholes
model under regime switching that has the form

dX0(t) � ρ(r(t))X0(t)dt, X0(0) � 1,

dX1(t) � α(r(t))X1(t)dt + β(r(t))X1(t)dB(t), X1(0) � x1 > 0,
(16)

where r(t) is a right-continuous Markov chain taking values
in a finite state space S � 1, 2{ }. /e generator Γ � (cij)N×N

of r(t) is given by

P r(t + δ) � j|r(t) � i􏼈 􏼉 �
cijδ + o(δ), if i≠ j,

1 + cijδ + o(δ), if i � j,

⎧⎨

⎩

(17)
where δ > 0 and cij ≥ 0 are the transition rate from i to j

satisfying cij > 0 if i≠ j while cii � − 􏽐j≠icij.
We also assume that the Markov chain is irreducible

which means that Markov chain r(t) has a unique stationary
(probability) distribution π � (π1, π2, . . . , πN) ∈ R1×N that
can be determined by solving the following linear equation:

πΓ � 0, (18)

subject to

􏽘

N

k�1
πk � 1,

πk > 0, for∀k ∈ S.

(19)

/erefore, equation (16) can be regarded as the results of
the following equations:

dX0(t) � ρ(1)X0(t)dt,

dX1(t) � α(1)X1(t)dt + β(1)X1(t)dB(t),

dX0(t) � ρ(2)X0(t)dt,

dX1(t) � α(2)X1(t)dt + β(2)X1(t)dB(t),

(20)

switching from one to the other according to the movement
of Markov chain r(t). Suppose that the stationary (proba-
bility) distribution of Markov chain is π � (π1, π2) and the
initial distribution of r(t) is also π � (π1, π2). /en, for any
t≥ 0, the Markov chain r(t) has a stationary distribution π �

(π1, π2) because it is irreducible. Note that the solution of
equation (16) is

X0(t) � exp 􏽚
t

0
ρ(r(s))ds􏼨 􏼩,

X1(t) � x1 exp 􏽚
t

0
β(r(s))dB(s) + 􏽚

t

0
α(r(s)) −

1
2
β2(r(s))􏼒 􏼓ds􏼨 􏼩.

(21)

We all know that a business cycle is often divided into two
or more different states, called “expansion” and “contraction”

in financial economics. A growing economy is frequently
described as being in expansion. For this, we can let r(t) �
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1, ρ(r(t)) � ρ(1), α(r(t)) � α(1) and β(r(t)) � β (1). We
can take the value r(t) � 2, ρ(r (t)) � ρ (2), α(r(t)) � α(2)

and β(r(t)) � β(2) to represent the state in contraction. More
generally, we can use the state space S � 1, 2, . . . , N{ } for the
value of r(t) to model more complex business cycle structures.
In this section, without loss of generality, we consider only two
states for a market (X0(t), X1(t)) by using equation (16).

Theorem 1 (see [8]). Suppose that a market X(t) in terms of
􏽥B(t) has the following form:

dX0(t) � ρ(X(t))X0(t)dt,

dXi(t) � ρ(X(t))Xi(t)dt + σi(X(t))X1(t)d􏽥B(t), 1≤ i≤ n.
(22)

And, assume that h0: Rn+1⟶ R is a given function such that

z

zxi

E
x
Q ξ(T − t)h0(X(T − t))􏼂 􏼃􏼨 􏼩

n

i�1
, (23)

exists and

E
x
Q 􏽚

T

0
ϕ2(t,ω)dt􏼢 􏼣<∞, (24)

where

ϕ(t,ω) ≔ 􏽘
n

i�1

z

zxi

E
x
Q ξ(T − t)h0(Y(T − t))􏼂 􏼃x�X(t)σi(X(t)).

(25)

3en, we have the Ito ̂representation formula

ξ(T)h0(X(T)) � EQ ξ(T)h0(X(t))􏼂 􏼃 + 􏽚
T

0
ϕ(t,ω)d􏽥B(t).

(26)

Remark 1. Note that the solution of equation (16) is Mar-
kovian and this makes it possible to apply the result of
/eorem 1 to find ϕ(t,ω) in equation (4).

Lemma 1. Let r(t) be a stationary Markov chain taking
value in a finite state space S � 1, 2, . . . , N{ }. 3en, Y(t) �

􏽒
t

0 β(r(s))dB(s) is a Gaussian process for any t> 0.

Proof. We assume that the initial distribution of r(s) is
π � (π1, π2, . . . , πN); then,

Y(t) � 􏽚
t

0
β(r(s))dB(s) � 􏽘

N

i�1
πiβ(i)( 􏼁B(t). (27)

Recall that B(t) is a Gaussian process, so it is easy to see
that for any t0 ≥ 0, the random variable Y(t0) is normally
distributed with mean 0 and variance [􏽐

N
i�1(πiβ(i))]2t0;

hence, Y(t) is a Gaussian process. □

Remark 2. By Lemma 1, we are able to study the hedging of
an attainable claim of a European option defined by a
Black–Scholes model with Markovian switching. In the
following, we consider a situation where a market has just
two securities; we let X0(t) be a risk free asset and X1(t) a
risky asset that is an Itô process with the form of equation
(16). We have the following result for the hedging of an
attainable claim for this situation.

Theorem 2. Suppose that a market is described by X(t) �

(X0(t), X1(t)) which is given by equation (16) with
ρ(r(t)), α(r(t)), β(r(t)) satisfying

E exp
1
2

􏽚
T

0

(α(r(s)) − ρ(r(s)))
2

β2(r(s))
ds􏼠 􏼡􏼢 􏼣<∞, (28)

for r(s) taking values in 1, 2{ }. 3en, we have the following:

(i) 3e market X(t){ } is no arbitrage and complete, and
the price at time t � 0 of the European T-claim
F(ω) � f(X1(T,ω)) is

p �
ξ(T)

Δ
���
2π

√ 􏽚
R
f x1 exp y + 􏽚

T

0
ρ(r(s)) −

1
2
β2(r(s))􏼒 􏼓ds􏼢 􏼣􏼠 􏼡exp −

y
2

2Δ2
􏼠 􏼡dy, (29)

where EQ[f(X1(T,ω))]<∞ and with

ξ(T) � e
− 􏽚

T

0
ρ(r(s))ds

� e
− π1ρ(1)+π2ρ(2)( )T

,

Δ2 � 􏽚
T

0
β2(r(s))ds � π1β

2
(1) + π2β

2
(2)􏽨 􏽩T.

(30)

(ii) If f ∈ C1(R), then the self-financing portfolio θ(t) �

(θ0(t), θ1(t)) needed to replicate the T-claim F(ω) �

f(X1(T,ω)) is given by

θ1(t) �
e
􏽒

T

0 ρ(r(s))ds
��������
2π(T − t)

􏽰 􏽚

R

f′ X1(t,ω)exp π1β(1) + π2β(2)( 􏼁x + 􏽚
T− t

0
ρ(r(s))􏼨􏼠

−
1
2
β2(r(s))􏼓ds􏼛 · exp π1β(1) + π2β(2)( 􏼁x + 􏽚

T− t

0
ρ(r(s)) −

1
2
β2(r(s))􏼒 􏼓ds􏼨 􏼩 · exp −

x
2

2(T − t)
􏼨 􏼩dx,

(31)
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and θ0(t,ω) is determined by

θ0(t) � V
θ
(0) + ξ(t)A(t) + 􏽚

t

0
ρ(r(s))ξ(s)ds, (32)

where A(t) � 􏽒
t

0 θ1(s)dX1(s) + θ1(t)X1(t) and
Vθ(0) � p.

Proof

(i) It is easy to observe that there exists a process u(t,ω)

which satisfies

β(r(t))X1(t)u(t,ω) � α(r(t))X1(t) − ρ(r(t))X1(t).

(33)

/en, equation (28) implies that

E exp
1
2

􏽚
T

0
u
2
(s,ω)ds􏼠 􏼡􏼢 􏼣<∞. (34)

Define the measure Q on FT by

dQ(ω) � exp − 􏽚
T

0
u(t,ω)dB(t) −

1
2

􏽚
T

0
u
2
(t,ω)dt􏼠 􏼡dP(ω). (35)

/en, Q ∼ P and by the Girsanov theorem II (see
[8, 11, 12]), the process

􏽥B(t) ≔ 􏽚
t

0
u(s,ω)ds + B(t). (36)

is a Q-Brownian motion. By /eorem 12.1.8 and
/eorem 12.2.5 of [8], the market is complete with

no arbitrage opportunity. /erefore, the price at t �

0 of the European option with payoff given by a
contingent T-claim F(ω) � f(X1(T,ω)) is

p(F) � EQ[ξ(T)F]. (37)

/at is,

p � ξ(T)EQ f x1 exp 􏽚
T

0
β(r(s))d􏽥B(s) + 􏽚

T

0
ρ(r(s)) −

1
2
β2(r(s))􏼒 􏼓ds􏼠 􏼡􏼠 􏼡􏼢 􏼣. (38)

By Lemma 1, under the measure Q, the random
variableY � 􏽒

T

0 β(r(s))d􏽥B(s) is normally distributed
with mean 0 and variance:

Δ2 � 􏽚
T

0
β2(r(s))ds � π1β

2
(1) + π2β

2
(2)􏽨 􏽩T. (39)

By the definition of the expectation of the function of
random variables, p can be expressed explicitly as
equation (29).

(ii) In terms of 􏽥B(t), we rewrite the second equation of
equation (16) as

dX1(t) � ρ(r(t))X1(t)dt + β(r(t))X1(t)d􏽥B(t). (40)

So, we seek the portfolio as

θ1(t,ω) � X0(t) β(r(t))X1(t,ω)( 􏼁
− 1ϕ(t,ω), (41)

where

ϕ(t,ω) ≔
z

zx
E

x
Q ξ(T − t)h0 X1(T − t)( 􏼁􏼂 􏼃x�X1(t)β(r(t))X1(t), (42)

with h0(y) � f(y) and

X1(t) � x1 exp 􏽚
t

0
β(r(s))d􏽥B(s) + 􏽚

t

0
ρ(r(s)) −

1
2
β2(r(s))􏼒 􏼓ds􏼨 􏼩

� x1 exp π1β(1) + π2β(2)( 􏼁􏽥B(t) + π1 ρ(1) −
1
2
β2(1)􏼒 􏼓 + π2 ρ(2) −

1
2
β2(2)􏼒 􏼓􏼔 􏼕t􏼚 􏼛.

(43)

Hence,
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θ1(t,ω) � exp 􏽚
t

0
ρ(r(s))ds􏼨 􏼩

z

zx
E

x1
Q exp 􏽚

T− t

0
ρ(r(s))ds􏼨 􏼩f X1(T − t)( 􏼁􏼢 􏼣

x�X1(t)

� exp 􏽚
t

0
ρ(r(s))ds􏼨 􏼩

z

zx
E

x1
Q f x1 exp 􏽚

T− t

0
β(r(s))d􏽥B(s)􏼨􏼠􏼢

+ 􏽚
T− t

0
ρ(r(s)) −

1
2
β2(r(s))􏼒 􏼓ds􏼩

x1�X1(t)

� exp 􏽚
t

0
ρ(r(s))ds􏼨 􏼩E

x1
Q f′ x1 exp 􏽚

T− t

0
β(r(s))d􏽥B(s)􏼨􏼠􏼢

+ 􏽚
T− t

0
ρ(r(s)) −

1
2
β2(r(s))􏼒 􏼓ds􏼩 exp 􏽚

T− t

0
β(r(s))d􏽥B(s)􏼨

+ 􏽚
T− t

0
ρ(r(s)) −

1
2
β2(r(s))􏼒 􏼓ds􏼩

x1�X1(t)

�
exp 􏽒

t

0 ρ(r(s))ds􏽮 􏽯
��������
2π(T − t)

􏽰 􏽚

R

f′ X1(t,ω)exp π1β(1) + π2β(2)( 􏼁x􏼈(

+ 􏽚
T− t

0
ρ(r(s)) −

1
2
β2(r(s))􏼒 􏼓ds􏼩

exp π1β(1) + π2β(2)( 􏼁x + 􏽚
T− t

0
ρ(r(s)) −

1
2
β2(r(s))􏼒 􏼓ds􏼨 􏼩exp −

x
2

2(T − t)
􏼨 􏼩dx,

(44)

which is assertion equation (31) and this completes
the proof. □

Considering the irreducible of the Markov chain r(t), we
can get

􏽚
T− t

0
ρ(r(s)) −

1
2
β2(r(s))􏼒 􏼓ds � π1 ρ(1) −

1
2
β2(1)􏼒 􏼓 + π2 ρ(2) −

1
2
β2(2)􏼒 􏼓􏼔 􏼕(T − t),

􏽚
T

0
ρ(r(s))ds � π1ρ(1) + π2ρ(2)( 􏼁T.

(45)

So, for the self-financing portfolio θ(t) of a market
described by a stochastic Black–Scholes model with

Markovian switching, we find a perfect result than assertion
equation (31) as

θ1(t) �
e

π1ρ(1)+π2ρ(2)( )T

��������
2π(T − t)

􏽰 􏽚

R

f′ X1(t,ω)exp π1β(1) + π2β(2)( 􏼁x􏼈(

+ π1 ρ(1) −
1
2
β2(1)􏼒 􏼓 + π2 ρ(2) −

1
2
β2(2)􏼒 􏼓􏼔 􏼕(T − t)􏼛

· exp π1β(1) + π2β(2)( 􏼁x + π1 ρ(1) −
1
2
β2(1)􏼒 􏼓 + π2 ρ(2) −

1
2
β2(2)􏼒 􏼓􏼔 􏼕(T − t)􏼚 􏼛 · exp −

x
2

2(T − t)
􏼨 􏼩dx.

(46)
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Remark 3. When ρ(1) � ρ(2) � ρ, α(1) � α(1) � α, and
β(1) � β(2) � β, /eorem 2 reduces to the classical sto-
chastic Black–Scholes formula. /e T-claim F(ω) is given in
/eorem 2 according to the movement ofMarkov chain./e
results indicated that T-claim F(ω) is dependent on the
randomness of Markov chain, which extends the classical
Black–Scholes model without Markovian switching.

Remark 4. Applications to the pricing and hedging of the
European call option: we know that the T-claims of the
European call option are

F(ω) � X1(T,ω) − K( 􏼁
+
, (47)

where the exercise price K> 0 is a constant./en, the price p

at time 0 is

p � x1Φ η +
1
2

π1β(1) + π2β(2)( 􏼁
��
T

√
􏼒 􏼓 − Ke

− π1ρ(1)+π2ρ(2)( )TΦ η −
1
2

π1β(1) + π2β(2)( 􏼁
��
T

√
􏼒 􏼓, (48)

where

η � π1β(1) + π2β(2)( 􏼁
− 1

T
− (1/2) ln

x1

K
+ π1ρ(1) + π2ρ(2)( 􏼁T􏼒 􏼓,

Φ(y) �
1
���
2π

√ 􏽚
y

− ∞
e

− (1/2)x2
dx, y ∈ R,

(49)

is the standard normal distribution function. Moreover, the
replicating portfolio θ(t) � (θ0(t), θ1(t)) for the claim F(ω)

in (47) is given by

θ1(t,ω) � Φ π1β(1) + π2β(2)( 􏼁
− 1

(T − t)
− 1/2 ln

X1(t)

K
+ π1ρ(1) + π2ρ(2)( 􏼁(T − t)􏼠􏼠

+
1
2

π1β(1) + π2β(2)􏼠 􏼡

3

(T − t).

(50)

θ1(t,ω)> 0, t ∈ [0, T] means that we can replicate the
European call without short selling. For the European put
options with T-claims F(ω) � (K − X1(T,ω))+, it should be
θ1(t,ω)< 0, t ∈ [0, T] which means that we have to short sell
to replicate the European put option.

In fact, the price p at time 0 given in equation (48)
follows by applying /eorem 2 to the function

f(x) � (x − K)
+
. (51)

It does not matter that the function f(x) is not C1

because an approximation argument shows that equation
(31) or (46) still holds if we represent f′ by

f′(x) � χ[K,∞)(x). (52)

To illustrate our theoretical results, we provide the
following example for the pricing, hedging, and an appro-
priate portfolio of a given attainable claim.

Example 1. Suppose that a market is (X0(t), X1(t)), where
X0(t) obeys that

dX0(t) � ρ(r(t))X0(t)dt, X0(0) � 1, (53)

and X1(t) is an Ornstein–Uhlenbeck process with Mar-
kovian switching as

dX1(t) � α(r(t))X1(t)dt + σ(r(t))dB(t), X1(0) � x1 > 0,

(54)

where r(t) is an irreducible Markov chain taking values in
S � 1, 2{ }. Let σ(1) � σ1, σ(2) � σ1, ρ(1) � ρ1, and ρ(2)

� ρ2. We can seek that the portfolio θ(t) � (θ0(t), θ1(t)) is

θ1(t,ω) � X0(t) σ(r(t))
− 1ϕ(t,ω)􏼐 , (55)

where ϕ(t,ω) and V(0) � z are uniquely given by

ξ(T)F(ω) � z + 􏽚
T

0
ϕ(t,ω)d􏽥B(t), (56)

and the attainable claim is

F(ω) � exp X1(T)( 􏼁 � ze
π1ρ1+π2ρ2( )T

+ 􏽚
T

0
ϕ0(t,ω)d􏽥B(t),

(57)
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with ϕ0(t,ω) � e(π1ρ1+π2ρ2)Tϕ(t,ω). /en, by /eorem 1, we
can find ϕ(t,ω) and the portfolio θ(t) explicitly.

In fact, we can rewrite equation (54) in terms of 􏽥B(t) as

dX1(t) � ρ(r(t))X1(t)dt + σ(r(t))dB(t), X1(0) � x1.

(58)

/en, the solution to equation (58) can be explicitly
expressed as

X1(t) � x1e
􏽚

t

0
ρ(r(s))ds

+ 􏽚
t

0
σ(r(s))e

􏽚
t

0
ρ(ξ(τ))dτ

d􏽥B(s)

� x1e
π1ρ1+π2ρ2( )t

+ π1σ1 + π2σ2( 􏼁 􏽚
t

0
e

π1ρ1+π2ρ2( )(t− s)d􏽥B(s).

(59)

From equation (59), we know that the solution to
equation (58) obeys the normal distribution for any t≥ 0.
/e mean of X(t) is

EX(t) � Exe
π1ρ1+π2ρ2( )t

� e
π1ρ1+π2ρ2( )t

Ex � 0, (60)

and the variance is

V(X(t)) � E X
2
(t)􏼐 􏼑 − [EX(t)]

2
� E X

2
(t)􏼐 􏼑 �

π1σ1 + π2σ2( 􏼁
2

2 π1ρ1 + π2ρ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
. (61)

So, X(t) obeys the normal distribution N(0, ((π1σ1
+π2σ2)

2/2|π1ρ1 + π2α2|)) if the initial value X(0) � x obeys
the normal distribution N(0, ((π1σ1+ π2σ2)

2/2|π1ρ1
+π2ρ2|)).

Now, if we choose h0(x1) � ex1 , we can get that

E
x1
Q h0 X1(T − t)( 􏼁􏼂 􏼃 � E

x1
Q exp X1(T − t)( 􏼁􏼂 􏼃

� EQ exp x1e
π1ρ1+π2ρ2( )(T− t)

+ π1σ1 + π2σ2( 􏼁 􏽚
T− t

0
e

π1ρ1+π2ρ2( )(T− t− s)d􏽥B(s)􏼨 􏼩􏼢 􏼣

� exp x1e
π1ρ1+π2ρ2( )(T− t)

+
π1σ1 + π2σ2( 􏼁

2

4 π1ρ1 + π2ρ2( 􏼁
e
2 π1ρ1+π2ρ2( )(T− t)[ ] − 1􏼒 􏼓􏼨 􏼩,

(62)

for π1ρ1 + π2ρ2 ≠ 0. So, /eorem 1 implies that

ϕ0(t,ω) �
d
dx1

E
x1
Q h0 X1(T − t)( 􏼁􏼂 􏼃x1�X1(t) π1σ1 + π2σ2( 􏼁

� π1σ1 + π2σ2( 􏼁e
π1ρ1+π2ρ2( )(T− t) exp X1(t)e

π1ρ1+π2ρ2( )(T− t)
􏼚

+
π1σ1 + π2σ2( 􏼁

2

4 π1ρ1 + π2ρ2( 􏼁
e
2 π1ρ1+π2ρ2( )(T− t)[ ] − 1􏼒 􏼓􏼩,

(63)

and from ϕ0(t,ω) � e(π1ρ1+π2ρ2)Tϕ(t,ω), we get the expres-
sion of ϕ(t,ω). /erefore,
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θ1(t) �

e
π1ρ1+π2ρ2( )(T− t) exp X1(t)e

π1ρ1+π2ρ2( )(T− t)
􏼚

+
π1σ1 + π2σ2( 􏼁

2

4 π1ρ1 + π2ρ2( 􏼁
e
2 π1ρ1+π2ρ2( )(T− t)[ ] − 1􏼒 􏼓􏼩,

if π1ρ1 + π2ρ2 ≠ 0,

exp X1(t) +
π1σ1 + π2σ2( 􏼁

2

2
(T − t)􏼨 􏼩, if π1ρ1 + π2ρ2 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(64)

Remark 5. We provide the results for the pricing and
hedging of a European T-claim defined by the Orn-
stein–Uhlenbeck process with Markovian switching in ex-
ample 2. If we let the generator of Markov chain r(t) be

Γ �
− 1 1
2 − 2􏼠 􏼡, then by solving linear equation (18), we have

the result π1 � 2/3 and π2 � 1/3 that is the unique stationary
(probability) distribution of r(t). Taking the values of ρ1, ρ2,
σ1, and σ2, we can explicitly get the expression of ϕ(t,ω) and
the portfolio θ(t) of T-claim F(ω).

4. Concluding Remarks

/is paper mainly studied the Black–Scholes model with
Markovian switching./e hedging of an attainable claim of a
European option defined by this model is discussed. Under
the assumption that Markov chain is irreducible, we ob-
tained the explicit formula ϕ(t,ω) and p and θ(t) when
T-claim F(ω) is given. An example of a market defined by an
Ornstein–Uhlenbeck process is used to illustrate our the-
oretical results.

A business cycle is often divided into two or more
different states, called “expansion” and “contraction” in fi-
nancial economics. In this paper, we used a regime switching
modulated by an irreducible Markov chain r(t) to describe a
business cycle. As described in the introduction, the ad-
justment of interest rates for the central bank will affect the
operation of the economy and produce large economic
fluctuations. For example, an interest rate increase will
prompt investors to move their capitals towards the bank
deposits. As a result, investments in stocks, options, and
bonds will fall off. In contrast, decreased interest rates will
cause capitals to flow into equities, options, and bonds. /is
will lead to the back-and-forth conversion of the option
pricing between several models./e regime switching can be
described by a Markov chain. For these reasons, it is nec-
essary to consider the hedging and replication of an option
pricing model under regime switching. /erefore, we carry
out the pricing and hedging of an attainable claim for the
European call options in a Black–Scholes model with
Markovian switching.

/e present paper is the first attempt, to our knowledge,
to investigate the stochastic option pricing model with re-
gime switching modulated by an irreducible Markov chain
r(t). We believe that parts of methods and results appearing
in this paper are also available for other option pricing
models, such as American option pricing model, Parisian

option pricing models, and currency option pricing models.
We leave this additional work for our future research.
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