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/ere have been heated debates about the role of stock index futures in the financial market, especially during the crash periods. In
this paper, a multiagent spot-futures market model is developed to analyze the micromechanism of shock transfer across spot and
futures markets. We assume that there are two stocks and one stock index futures contract in the spot-futures market. Agents are
heterogeneous, including fundamentalists, chartists, noise traders, and arbitragers. /e spot market and the futures market are
linked by arbitragers. /e simulation results show that our spot-futures market model can reproduce various important stylized
facts, including the price co-movement between stock index prices and index futures prices and the fat-tailed distribution of the
returns of risky assets and the basis. Further analysis shows that when we introduce an exogenous fundamental shock to one of the
stocks, the backwardation phenomenon appears in the futures market and the shock is widespread across the whole market by
means of index futures. Moreover, the backwardation gradually disappears when the number of arbitragers increases. Besides,
when there are few arbitragers or when there are sufficient arbitragers, shocks cannot be transferred to other stocks via the futures
market, while an intermediate level of arbitrage will amplify the shock transfer and hurt market stability. /ese findings un-
derscore that arbitragers play an important role in spot-futures market interaction and shock transfer, and adequate arbitrage
trading during crises may help eliminate the positive basis and halt the further spread of the crises.

1. Introduction

In 2015, China’s stock market experienced a roller coaster
ride. From mid-July 2014 to mid-June 2015, the CSI 300
index climbed almost 150%, reaching a seven-year high of
5380. /e bubble, however, broke on June 12, 2015, and
the stock market collapse began. Within a month,
A-shares lost about a third of their value. Following that,
large aftershocks occurred around “Black Monday” on
July 27 and August 24, 2015. From mid-June to mid-
September, more than 1,000 stocks plummeted by the
daily limit of 10% every four trading days on average.
Selling index futures was blamed for the crash. Stock index
futures are cash-settled future contracts on the value of

stock index. On 16 April 2010, the CSI 300 index futures,
known as the first stock index futures contract in China,
were launched. During the market crises in 2015, the daily
turnover in CSI 300 index futures rocketed up to 2 million.
Besides, during this crash, stock index futures prices
dropped lower than stock index prices and this back-
wardation anomaly persisted for a long time.

It has been debated for a long time about the role of stock
index futures in the financial markets, especially during the
crash period. After the October 1987 stock market crash, the
well-known Brady Commission report stated that the in-
teraction of index arbitrage and portfolio insurance across
the spot and futures markets was the cause of this collapse.
As stock prices sank, the portfolio insurance programs sold
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index futures to limit losses, resulting in the backwardation.
/is backwardation encouraged arbitragers to sell stocks and
purchase index futures, further depressing spot prices. /is
view has become known as the cascade theory. However,
opponents argue that there is no direct evidence that the
futures market should be responsible for this crash, and
measures such as increasing margin requirements and the
circuit breaker mechanism could not play a preventive role
(see Miller et al. [1]; Becketti and Roberts [2]; and Antoniou
and Garrett [3]). /e controversy still remains.

2. Literature Review

/ere is a series of empirical studies focusing on the impact
of the index futures on the underlying assets but drawing
inconsistent conclusions (see Edwards [4]; Wade [5]; Bal-
dauf and Santoni [6]; Pericli and Koutmos [7]; Darrat et al.
[8]; Antoniou and Holmes [9]; Antoniou et al. [10]; Fan and
Du [11]; and Gulen andMayhew [12]). In the futures market,
all transactions are conducted through leverage trading.
Advocates believe that the futures market’s high liquidity
can facilitate the flow of information into the stock market,
hence improving the market’s pricing efficiency and sta-
bility, while opponents argue that excessive speculation in
futures market might introduce unstable elements into the
stock market, thereby impairing market efficiency. Antoniou
et al. [13] asserted that empirical studies’ conflicting findings
are attributable to the fact that the proportion of feedback
traders differs amongmarkets./is conclusion is compatible
with the theoretical research results of Weller and Yano [14].

/ere are also some works focusing on the back-
wardation anomaly, which frequently happens and plays an
important role during crises, as cascade theory described. It
is a widely accepted principle that, considering the carry
cost, the spot price should not be persistently higher than the
futures price in the frictionless market; otherwise, buying a
futures contract and selling spot would yield a profit. But a
series of empirical studies observed the mispricing phe-
nomenon in financial markets around the world, including
the United States, Europe, Japan, and India (see Chung [15];
Klemkosky and Lee [16]; Yadav and Pope [17]; Białkowski
and Jakubowski [18]; Marcinkiewicz et al. [19]; and Kada-
pakkam and Kumar [20]). Further research showed that the
mispricing phenomenon in futures markets may result from
stock dividends, short selling restrictions, illiquidity, market
sentiment, and so on (see Modest and Sundaresan [21];
Marcinkiewicz [19]; Gay and Jung [22]; Kempf [23]; Fung
and Draper [24]; Fung and Jiang [25]; Roll et al. [26]; and
Kadapakkam and Kumar [20]).

Most of the studies above are empirical research studies,
which have limited ability to analyze cross-market risk from
micromechanisms such as cross-market traders’ behavior.
Meanwhile, the theoretical models based on traditional
economic and finance theory are always established under
some unrealistic assumptions, such as the rational expec-
tations of traders. /e theoretical models of King and
Wadhwani [27]; Yuan [28]; and Gromb and Vayanos [29]
provide us with a framework for understanding the
micromechanism of risk transfer but ignore some important

features of real-world financial market. For example, the
investors are heterogeneous and have bounded rationality.
/e agent-based modelling method, which is a hot topic and
has been used in multiple fields and disciplines in recent
years (see Li et al. [30]; Li et al. [31]; Sena et al. [32]; Zhao
et al. [33]; Rupnik et al. [34]; Fragapane et al. [35]; and Yang
et al. [36]), provides us with an alternative approach. Agent-
basedmodelling is a bottom-up approach withmore realistic
bottom settings and can produce much more stylized facts
than theoretically oriented models.

Recently, there have been several studies using the agent-
based modelling method to analyze the interaction between
spot and futures markets. Ohi et al. [37] built an agent-based
multimarket model to simulate the spot-futures market and
found out that the two-market model performed better in
terms of reproducing the typical statistical properties of
Nikkei 225 index futures prices than one-market model.
Torii et al. [38] investigated shock transfer through multiple
assets caused by arbitragers and the effect of circuit breakers.
Besides, Wei et al. [39, 40] built a multiagent model based on
empirical data in the CSI 300 index futures market and,
respectively, examined the tick size effect and position limit
effect in stock index futures market. Xu et al. [41] con-
structed an artificial spot-futures market model with cross-
market traders and successfully reproduced the typical
characteristics of Chinese stock market and the CSI 300
index futures market. After that, Xiong et al. [42]; Liang et al.
[43], and Xiong et al. [44] did further research based on the
model of Xu et al. [41]. Xiong et al. [42] focused on the price
limits level in futures market and found that enhancing or
removing price limits could both hurt market stability. Liang
et al. [43] analyzed the effects of T+ 1 trading rule on futures
market. Xiong et al. [44] evaluated the trading strategies in
stock index futures market based on their artificial cross-
market platform. Moreover, there are also some agent-based
simulation platforms, such as the SumWEB in Cappellini
[45] and the U-Mart in Shiozawa et al. [46], combining the
simulation platform with real financial market so that hu-
man agents can trade with machine agents on these
platforms.

Torii et al. [38] established a spot-futures market model
with multiassets that has some similarities to our model.
/eir work, however, is more focused on how fundamental
weight and chartist weight impact on the shock transfer
progress, and they assume that every local agent uses a
strategy that blends three components (fundamentalist,
chartist, and noisy). Instead, we set the traders in our model
to be fully fundamentalist or chartist as Chiarella et al. [47]
and change the experiment environments by changing the
number of different types of agents, which is more intuitive
and realistic. We have proved that our model can reproduce
some important stylized facts in the real financial market.
Moreover, we not only analyze the micromechanism of
market risk diffusion but also analyze how the number of
arbitragers impacts the risk diffusion process. As far as we
know, the existing relevant agent-based research pays more
attention to whether regulatory measures, such as price
limits and circuit breakers, are effective to maintain market
stability or halt the further spread of the crisis. But due to the
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fact that regulatory measures affect market quality by
influencing trader’s investment behavior, we believe it is
certainly worth checking how different types of traders,
especially arbitragers, who are cross-market traders and may
play an important role in the risk diffusion process, influence
market first. Hence, we change the number of arbitragers in
our artificial spot-futures market and conduct simulations to
figure out whether arbitrage trading should be encouraged
or restricted during crises, which can offer some meaningful
suggestions for policy formulation at the qualitative level.

/is paper is organized as follows. Section 3 introduces
the spot-futures market model. In Section 4, we provide an
analysis of the simulation results of the model. Finally, in
Section 5, we present our conclusion.

3. The Model

Inspired by Ohi et al. [37] and Torii et al. [38], we built an
order-driven cross-market model based on the same
framework as Chiarella et al. [47]. /e salient features of the
model of Chiarella et al. [47] can be briefly outlined as
follows: heterogeneous agents trade based on a funda-
mentalist or chartist strategy or noise trading strategy oc-
casionally in the continuous double auction stock market
where only one stock is traded. With a realistic market
microstructure, their model can reproduce plenty of stylized
facts in stock market, including the fat-tailed distribution of
the stock’s returns and the volatility clustering. In order to
analyze how shocks to a single stock spread throughout the
entire stock market by futures market and figure out the role
of stock index futures during the crash periods, we extended
the single-asset single-market model of Chiarella et al. [47]
to a multiasset multimarket model and introduced cross-
market traders into our artificial spot-futures markets. Most
of the model structure is retained from the model of
Chiarella et al. [47] in terms of fundamentalists, chartists,
and noise traders’ trading strategies. /e detailed structure
of our model is shown in Figure 1.

Firstly, there exist a futures market where the stock index
futures are traded and a spot market (also called the stock
market) where the stocks are traded. We suppose there are
two stocks (marked as stock 1 and stock 2) in the spot
market, giving a minimal multiasset model. Besides, there
exists a stock index (also called the stock market index),
which is a collection of stocks and gives an overview of how
the spot market performs. In the futures market, there is one
stock index futures contract (marked as asset f) whose
underlying asset is the stock index. Each risky asset has its
own fundamental value, which is different from its market
price. /e former reflects the present value of a risky asset’s
future cash flows and is considered to be the true value, while
the latter is determined by transactions and reflects traders’
perception of the risky asset’s value. /e fundamental values
are exogenous given in our model, while the market prices
are determined by the transactions between the traders in
our artificial spot-futures market.

Secondly, the trading mechanism in our artificial spot-
futures market is continuous double auction (CDA),
which is widely used in modern financial exchanges

around the world, including China. In a CDA market,
traders can enter the market and submit orders at any time
during the trading periods. Traders in the CDA markets
usually submit limit orders. A limit order is a type of order
to buy (sell) a specified quantity of security at a specified
price or lower (higher). Hence, a limit order (H, l, q)

consists of three elements: the order direction (i.e., buy or
sell) H, the limit price l, and the order volume q. /e
orders in the CDA market are executed based on price-
time priority. /e details of the CDA trading mechanism
and the limit order can be found in Chiarella et al. [47] and
our previous work (Zhou and Li [48]).

/irdly, we consider each trading step t in our model as a
trading day. During each trading day, all traders enter the
market randomly and can only submit one order into the
spot market or/and the futures market. In the following, we
suppose a trader i enters the market at time τ(t< τ < t + 1),
which is an intraday time subscript that will be used with
variables that can assume different values in the same trading
day, such as the price of a risky asset traded in any con-
tinuous auction. For example, pa,tτ is the last market price of
asset a when the trader enters the market at time τ. Traders
submit orders according to their heterogeneous trading
strategies. We classify traders into four types by their trading
strategies: fundamentalists, chartists, noise traders, and ar-
bitragers. Fundamentalists, chartists, and noise traders are
local traders who can only trade on one specific asset, while
arbitragers are cross-market traders who submit orders both
in the spot market and the futures market. /e spot market
and the futures market can be linked through arbitragers’
trading behaviors.

Finally, in the spot market, short selling and buying on
margin are forbidden, while in the futures market, all
transactions are executed through margin trading (also
called leverage trading). Hence, traders are subject to dif-
ferent degrees of wealth constraints in the spot market and
the futures market./e details of our multiasset multimarket
model are described as follows.

3.1. Assets in Spot-Futures Market

3.1.1. Stocks in Spot Market. Following the assumption in
Chiarella et al. [47], the fundamental value of stock 1 and
stock 2 p∗s,t(s ∈ 1, 2{ }) of trading day t in our model is set to
evolve as

p
∗
s,t � p

∗
s,t−1 exp σsvt( 􏼁, (1)

where vt ∼ N(0, 1) is subject to the standard normal dis-
tribution and σs ≥ 0 is the constant volatility of the funda-
mental returns.

3.1.2. Stock Index in Spot Market. In spot market, the
stock index cannot be traded directly, and its price is
calculated as a weighted sum of the market prices of
underlying stocks (see Hull [49]). Given a set of un-
derlying stocks s ∈ S, the price-weighted stock index Itτ
can be calculated as
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Itτ �
1

|S|
􏽘
s∈S

ps,tτ , (2)

where ps,tτ is the market price of stock s at time τ in trading
day t. In our model, the number of stocks is set to be 2 and
s ∈ 1, 2{ }. Hence, the price of stock index is

Itτ �
1
2

p1,tτ + p2,tτ􏼐 􏼑. (3)

Similarly, the fundamental value of the stock index I∗t can
be calculated in the same manner of the price-weighted stock
index, using the fundamental value of the underlying stocks:

I
∗
t �

1
2

p
∗
1,t + p

∗
2,t􏼐 􏼑. (4)

3.1.3. Stock Index Futures in Futures Market. Stock index
futures are future contracts to buy or sell stock index on a
future date at a specific price. According to the spot-futures
parity theorem (see Hull [49]), the theoretical price of index
futures equals the underlying stock index’s current price,
adjusted for time plus carrying costs and benefits during the
delivery period. Since stock dividends are not considered in
our spot-futures market, the index futures’ theoretical price
pf,tτ can be calculated as the underlying stock index’s
current price, adjusted for time plus carrying costs:

pf,tτ � e
r(T− t)

Itτ , (5)

where T is the delivery time of the futures contract and r is
the risk-free interest rate.

Similarly, we calculate the fundamental value of stock
index futures p∗f,t in the same manner as we do for the
theoretical price, using the stock index’s fundamental value:

p
∗
f,t � e

r(T− t)
I
∗
t . (6)

3.2. Trading Strategies of Heterogeneous Traders. As men-
tioned at the beginning of Section 3, in a CDAmarket, traders
usually submit limit orders (H, l, q). In this section, we will
introduce how a trader decides whether to buy or sell (i.e., the
order direction H), the limit price l, and the desired order
volume q according to his trading strategy. We will further
introduce how to determine the practical order volume q in
Section 3.3 (q≤ q: the desired order volume q is the order
volume a trader wants to submit despite the wealth constraint;
hence, the practical order volume q, which is the order volume
a trader can submit considering his wealth constraints, is
generally less than or equal to the desired order volume).

3.2.1. Fundamentalist. Fundamentalists are informed traders
who know the assets’ latest fundamental value p∗a,t(a ∈ 1,{

2, f}). In the financial market, fundamentalists are usually
institutional investors. /ey pay costs to get the information
about the asset’s fundamental value and believe that the asset’s
market price will revert to its fundamental value.

Following the assumption in Chiarella et al. [47] that if
asset’s market price pa,tτ is higher (lower) than its funda-
mental value p∗a,t, fundamentalists consider this asset to be
overestimated (underestimated) and tend to submit sell
(buy) orders, we determine the order direction Ha,itτ(a ∈ 1,{

2, f}) for fundamentalist i as

Ha,itτ � sgn p
∗
a,t − pa,tτ􏼐 􏼑, (7)

where sgn denotes the sign function and Ha,itτ � 1(−1)

means that the fundamentalist tends to submit buy (sell)

SPOT MARKET

Local traders Local traders Local traders

FUTURES MARKET

Asset 1: stock 1 Asset 2: stock 2 Asset f : index futures

:Fundamentalist
:Noise trader

:Chartist
:Arbitrager

Heterogeneous traders

Cross-market traders

 Fundamental value p∗

1,t  Fundamental value p∗

2,t Fundamental value p∗

f,t

Market Price p1,tτ Market Price p2,tτ Market Price pf,tτ
Stock index

2
1Itτ = (p1,tτ + p2,tτ)

Figure 1: /e multiasset multimarket model: stocks and stock index in spot market, stock index futures in futures market, and het-
erogeneous traders.
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limit order. As for the limit price, simplifying the as-
sumptions in Chiarella et al. [47] and Ohi et al. [37], the limit
price la,itτ(a ∈ 1, 2, f􏼈 􏼉) is assumed to be close to the asset’s
latest market price:

la,itτ � pa,tτ 1 + Δztτ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌Ha,itτ􏼐 􏼑, (8)

where ztτ ∼ N(0, 1) and Δ> 0 is a constant, which describe
the limit price’s aggressive level. A large Δmeans the traders
tend to submit aggressive limit orders with particularly high
ask prices or low sell prices, while a small Δ will drive the
limit prices very close to the latest market prices. Finally, we
assume that the order volume the fundamentalist i wants to
submit, i.e., the desired order volume qa,itτ(a ∈ 1, 2, f􏼈 􏼉), is
proportional to the spread between the market price pa,tτ
and fundamental value p∗a,t:

qa,itτ � α p
∗
a,t − pa,tτ􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼖 􏼗, (9)

where α> 0 is a constant measuring the trader’s sensitivity to
the spread (in the model of Chiarella et al. [47], traders can
only submit orders with the order volume of one unit, and
the probability of a trader submitting an order is assumed to
increase when the price spread is large, while in our model,
traders can submit limit orders with order volume of
multiple units; inspired by the assumption in Chiarella et al.
[47], we define the traders’ desired order volume as pro-
portional to the price spread, and this setup has been used in
our previous work [48]). A bigger value of α means facing
the same spread, the trader will submit a larger order.

3.2.2. Chartist. Chartists are technical analysts and make
trading decisions based on asset’s moving average prices.
/emoving average (MA) price, one of the most widely used
technical analysis indicators, is the average value of the last
Di days’ closing prices:

ma,it �
􏽐

Di

j�1 p
close
a,t−j

Di

, (10)

where a ∈ 1, 2, f􏼈 􏼉 and Di > 0 is the trader’s individual
length of time window, and the closing price pclose

a,t−j is the last
transaction price in day t − j.

As in Chiarella et al. [47], chartist believes that if the
asset’s market price pa,tτ is higher (lower) than its moving
average price ma,it, the market price will rise (fall) further;
hence, he will submit buy (sell) order. /erefore, the order
direction for the chartist Ha,itτ(a ∈ 1, 2, f􏼈 􏼉) can be defined
as

Ha,itτ � sgn pa,tτ − ma,it􏼐 􏼑. (11)

Besides, similar to the assumption of the fundamentalist,
the limit price of a chartist’s order is close to the asset’s latest
market price pa,tτ , and the order volume a chartist wants to
submit is proportional to the spread between the market
price pa,tτ and the moving average price ma,it. Hence, the
limit price la,itτ(a ∈ 1, 2, f􏼈 􏼉) and desired order volume
qa,itτ(a ∈ 1, 2, f􏼈 􏼉) of a chartist’s limit order can be deter-
mined as follows:

la,itτ � pa,tτ 1 + Δztτ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌Ha,itτ􏼐 􏼑,

qa,itτ � α pa,tτ − ma,it􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼖 􏼗.
(12)

3.2.3. Noise Trader. We also introduce some noise traders
with zero intelligence into our model to provide market
liquidity. /e noise traders are all local traders and submit
buy orders (Ha,itτ � 1) and sell orders (Ha,itτ � −1) into the
market with the same probability. /e limit price is close to
the asset’s latest market price:

la,itτ � pa,tτ 1 + Δztτ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌Ha,itτ􏼐 􏼑. (13)

Also, the desired order volume is random between 3 and
10, i.e., qa,itτ ∈ 3, 4, . . . , 10{ }, where a ∈ 1, 2, f􏼈 􏼉.

3.2.4. Arbitrager. Arbitragers are cross-market traders and
carry out arbitrage trading between the two markets to earn
the risk-free profit. Usually, arbitragers sell (buy) the futures
and buy (sell) the spots when the futures’ market price is
higher (lower) than its theoretical price and realize profit
later through closing positions in both markets when the
price spread disappears.

Following the assumption in Ohi et al. [37], we introduce
a threshold δ into our model and suppose that arbitragers
engage in arbitrage trading only when the ratio of the spread
between the market price pf,tτ and the theoretical price pf,tτ
to the theoretical price pf,tτ is greater than the threshold’s
value (in actuality, costs such as the transaction fees and the
impact costs will prohibit arbitragers from completely
eradicating mispricing and bringing the futures market price
pf,tτ to parity with the theoretical price pf,tτ ; hence, arbi-
tragers often arbitrage between twomarkets when the spread
is sufficiently large and close positions to profit when the
spread becomes sufficiently narrow)./us, arbitragers’ order
direction can be defined as follows:

Hs,itτ �

1,
pf,tτ − pf,tτ

pf,tτ
> δ􏼠 􏼡,

−1,
pf,tτ − pf,tτ

pf,tτ
< − δ􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Hf,itτ � −Hs,itτ ,

(14)

where s ∈ 1, 2{ }. Besides, similar to the assumptions of fun-
damentalists and chartists, the limit price of an arbitrager’s
order is close to the asset’s latest market price, and the desired
order volume is proportional to the spread between the fu-
tures’ market price and its theoretical price. /e limit prices
and the desired order volumes in spot market and futures
market for arbitragers can be determined as follows:

la,itτ � pa,tτ 1 + Δztτ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌Ha,itτ􏼐 􏼑,

qs,itτ � ⌊ α pf,tτ − pf,tτ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⌋,

qf,itτ � 􏽘
2

s�1
qs,itτ ,

(15)
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where a ∈ 1, 2, f􏼈 􏼉 and s ∈ 1, 2{ } (in the spot market, the
stock index cannot be traded directly, so arbitragers typically
trade a basket of underlying stocks, which is to buy or sell the
same shares of stock 1 and stock 2 in our model (i.e.,
q1,itτ � q2,itτ), to track the stock index, and trade the index
futures with the same shares as the stock portfolio in futures
market (i.e., qf,itτ � 􏽐

2
s�1 qs,itτ), in the opposite direction (i.e.,

Hf,itτ � −Hs,itτ)).
It should be noted that when the spread becomes narrow,

namely, |pf,tτ − pf,tτ |≤ δpf,tτ , the arbitrage opportunity
disappears and the arbitrager submits market orders in both
markets to close his positions and realize profits.

3.3. Margin Trading and Order Volume. /is section dis-
cusses how to calculate the practical order volume q for
traders in the spot market and in the futures market. Due to
the different leverage ratios in the spot market and the
futures market, traders are subject to different degrees of
wealth constraints, in these two markets. Short selling and
buying on margin are prohibited in spot market, which
means traders cannot enlarge their demand or supply by
margin trading. However, in the futures market, all trans-
actions are conducted via margin (leverage) trading and
traders only need to deposit a proportionate amount of cash
into their credit accounts as margin in accordance with the
initial margin ratio (see Hull [49]). Assume that the amount
of stocks s that trader i holds when he enters the market on
the trading day t is Ss,it(s ∈ 1, 2{ }), and his liquid cash (not
including the cash deposited in the credit account) is Cit.
Additionally, the initial margin ratio in futures market is set
to be β ∈ (0, 1). /e practical order volume q for traders in
the spot and futures markets can be calculated as follows.

3.3.1. Order Volume in the Spot Market. In the spot market,
short selling and buying on margin are forbidden. Hence,
traders cannot submit sell limit orders with the order volume
beyond their stock holdings S. Similarly, if a trader submits a
buy limit order with limit price l and order volume q into the
spot market, he has to pay cash as much as lq, which cannot
exceed the liquid cash holdings C, i.e., lq≤C; otherwise, he
cannot afford it. Hence, considering the order volume
should be a positive integer, the order volume of a buy limit
order cannot exceed the upper limit as ⌊C/l⌋. /erefore, the
order volume in the spot market qs,itτ(s ∈ 1, 2{ }) is calculated
as

qs,itτ �

min qs,itτ , ⌊
Cit

ls,itτ
⌋􏼠 􏼡, Hs,itτ � 1􏼐 􏼑,

min qs,itτ , Ss,it􏼐 􏼑, Hs,itτ � −1􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

where qs,itτ is the desired order volume and ls,itτ is the limit
price of the limit order for stock s.

3.3.2. Order Volume in the Futures Market. When opening
positions in the futures market, traders only need to pay a
corresponding proportion of cash as margin according to

the initial margin ratio β. Hence, if a trader submits a limit
order (H, l, q) into futures market, he has to pay βql as
margin into his credit account, which should not exceed the
liquid cash holdings C, i.e., βql≤C; otherwise, he cannot
afford. Considering the order volume should be a positive
integer, the order volume of the limit order in futures market
cannot exceed the upper limit as 􏼄C/βl􏼅. Hence, the order
volume in futures market qf,itτ is calculated as

qf,itτ � min qf,itτ , ⌊
Cit

βlf,itτ
⌋􏼠 􏼡, (17)

where qf,itτ is the desired order volume and lf,itτ is the limit
price of the limit order for index futures.

3.3.3. Maintenance Margin Requirement in the Futures
Market. It should be noted that in futures market, traders’
credit accounts are marked to market daily, namely, the
floating profit and loss are accounted at the end of each
trading day according to the stock index futures’ closing
price and their position changes. Moreover, at the end of
each trading day, the maintenance margin requirement, i.e.,
the minimum amount of cash deposited that must be
maintained in credit account to hold the open positions, will
be checked (see Hull [49]). Suppose the cash deposited in the
credit account of the trader i at the end of trading day t is
C
close
it and his futures position is Fclose

it ∈ Z (F> 0 represents
long positions, and F< 0 represents short positions). Be-
sides, the index futures’ closing price of day t is pclose

f,t and the
maintaining margin ratio in futures market is βm ∈ (0, β)

(generally, the maintenance requirement is lower than the
initial requirement; otherwise, the trader may get a margin
call immediately after his initial transaction as the price
moves against the margin (see Hull [49])). For every trader
who holds positions in futures market, the ratio of the cash
deposited to the current market value of his futures’ posi-
tions must be no less than the maintaining margin ratio:

C
close
it

F
close
it

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌p
close
f,t

≥ βm. (18)

Otherwise, if the maintenance margin requirement
cannot be met, this trader will get a margin call and be
required to addmoney into his credit account or be forced to
close his position (see Hull [49]).

3.4. Timeline. A typical trading day t develops as described
in Figure 2. Assume that there are N traders trading on asset
a. At time t− , the end of trading day (t − 1), the closing price
pclose

a,t−1 and the moving average price ma,it for asset a are both
available, and fundamentalists get the latest fundamental
value p∗a,t of trading day t. At time t+, the beginning of
trading day t, all traders enter the market at random times
t< τi < t + 1, submitting orders based on their strategies.
Match the new submitted order against the limit orders on
the order book based on the CDA trading mechanism. Once
transaction happens, the market price of asset a changes. At
time (t + 1)− , the end of trading day t, the closing price pclose

a,t
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is given, and traders can compute their profits and losses. In
futures market, the margin requirement will be examined for
each trader who has positions in futures market. If the
requirement cannot be met, even after adding all the money
into his credit account, this trader will be forced to submit
market orders to close all his positions in the next trading
day t + 1. At the end of each trading day, the order book will
be cleared.

4. Simulation Results

4.1. Parameter Settings. We introduce 300 fundamentalists,
150 chartists, and 150 noise traders into our artificial spot-
futures market, and these local traders invest on each asset
with same probability, namely, there are 100 fundamen-
talists, 50 chartists, and 50 noise traders trading on each
risky asset. Besides, we also introduce 70 arbitragers who
trade both in the spot market and futures market into our
basic model. For simplicity, we consider the risk-free in-
terest rate r to be 0. Under this assumption, the stock
index’s fundamental value is equal to the index futures’
fundamental value, i.e., p∗f,t � I∗t , and the index futures’
theoretical price is equal to the stock index’s market price,
i.e., pf,tτ � Itτ . /e closing prices pclose

a,0 at time t � 0 are all
set to be 1000, while the initial fundamental prices p∗a,0 are
all set to be 990. Besides, the stock index futures’ delivery
date T � 1200 is set to be the last trading period for each
simulation. In order to initialize the moving average prices
ma,it, we set the first 240 time periods’ closing prices of each
risky asset to be close to the fundamental value:

p
close
a,t � p

∗
a,t + ψ, (19)

where t � 1, 2 . . . , 240 and ψ ∼ U(−10, 10) obeys uniform
distribution between −10 and 10. We remove the first 480
observations while doing simulations to avoid transitory
effects. Additionally, the initial margin ratio is set to be 20%
because the initial margin ratio for CSI 300 index futures
range from 10% to 40% since launched. Other parameter
settings are described in Table 1. /e choice of most of the
parameters is guided by the values used in Chiarella et al.
[47] but still needs some trial and error to get realistic time
series, as in most time series analysis of agent-based models.

4.2. Stylized Facts. Firstly, we run 50 repeated simulations of
our spot-futures model and compare the simulation results
with the empirical results to verify the reproduction of
stylized facts, including price co-movement and fat-tailed
distributions.

4.2.1. Price Co-Movement. /e price co-movement between
stock index and index futures is a vital stylized fact in spot-
futures markets. In Figure 3, we compare the stock index and
index futures’ daily closing prices of one simulation, as a
representative of the 50 trials, to the daily closing prices of CSI
300 index and index futures for the period from22 June 2018 to
22 June 2021. As illustrated in Figure 3(a), the daily index
futures’ prices (red line) and the stock index’s prices (blue line)
move in lockstep, corresponding with the co-movement
characteristic of the CSI 300 index and index futures in
Figure 3(b). Besides, we compare the 50 times repeated sim-
ulation results to the empirical results and find that the median
and mean correlation coefficients between stock index prices
and index futures prices are 0.9908 and 0.9519, respectively,
while the correlation coefficient between the prices of CSI 300
index and index futures is 0.9780./e results indicate that both
simulation and empirical data exhibit a significant degree of
price co-movement, as illustrated in Figure 3.

4.2.2. Fat-Tailed Distribution. Fat-tail distribution of basis is
also a significant stylized fact in spot-futures market. In
Figure 4, we present the distributions of the basis (the basis is
usually defined as spot price minus futures price (see Hull
[49]), but the alternative definition as future price minus
spot price is also used; in this paper, we chose the former
definition, which is the stock index’s closing prices minus
index futures’ closing prices), namely, the price spread
between stock index and index futures, using simulated data
from one trail and empirical data from CSI 300. It is obvious
that the simulation basis and empirical basis both obey a
peak and fat-tailed distribution rather than a normal dis-
tribution. Besides, we calculate the kurtosis of the basis’
distributions for the 50 times repeated simulations and the
CSI 300 data and compare the simulated results with em-
pirical results. /e statistical values are shown in the second
column of Table 2. We can see that the median and mean
values of the kurtosis of the repeated simulations’ basis’
distribution are 4.1078 and 14.1841, respectively, while the
empirical result based on CSI 300 data is 5.5282. It is clear
that both the simulation results and empirical results exceed
3, showing a similar feature of the basis’ fat-tail distribution.

t t +1

p∗

a,t , pa,t-1 , ma,it 

τ1,τ2,τ3, ... τN 

close
close pa,t , profit and loss are

computed, and margin
requirement is examined.are known.

Figure 2: Schematic representation of the unfolding of a trading
day.

Table 1: Parameters used in the simulations.

Parameter Value Description

Ss,i0
{20, 21, . . .,

30}
Initial stock holdings for traders

(s ∈ 1, 2{ })
Ci0 1000Ss,i0 Initial cash holdings for traders
Fi0 0 Initial position of futures for traders
Ci0 0 Initial credit account for traders

σs 0.001 Volatility of stocks’ fundamental
value

r 0 Risk-free interest rate
α 1 Reaction coefficient for traders
Di {1, 2, . . ., 240} Length of MA windows
Δ 0.001 Aggressiveness parameter
δ 0.001 /reshold for arbitrage trading
β 0.2 Initial margin ratio
βm 0.75∗ β Maintenance margin ratio
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Furthermore, we focus on the fat-tail distribution of the
returns of risky assets, which is one of the stylized facts in
financial market./e last two columns of Table 2 provide the
results of the repeated simulations and the empirical data.
According to the third column of Table 2, the median and
mean values of the kurtosis of stock index’s returns for
simulation data are 3.3995 and 3.5414, respectively, whereas
the empirical result based on CSI 300 data is 6.2580. Both the
simulated and empirical values exceed 3, showing a similar

feature of the fat-tail distribution. /e returns of index
futures, as seen in the final column of Table 2, are similar to
those of stock indexes.

/e results above indicate that our cross-market model is
capable of reproducing a number of significant stylized facts,
including high correlations between stock index and index
futures prices and fat-tailed distributions of basis and
returns. /us, the model can be applied to further studies of
the interaction between spot and futures markets, the ar-
bitrager investing behavior based on the basis, and the cross-
market risky diffusion mechanisms.

4.3. Shock Transfer by Arbitragers. In order to analyze how
shock transfers by futures market, we introduce an exog-
enous shock to stock 1 by dropping its fundamental value
p∗1,t at time step t � 720 by 20% and observe the price
changes of stock 2 and the index futures. We conduct
simulations with the exogenous shock under the same
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Figure 3:/e time series of stock index and index futures’ closing prices: (a) the simulation data for the last 720 trading days; (b) the CSI 300
data from 22 June 2018 to 22 June 2021.
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Figure 4:/e density distribution of basis (with a normal distribution with the samemean and variance): (a) the simulation data for the last
720 trading days; (b) the CSI 300 data from 22 June 2018 to 22 June 2021.

Table 2: Comparison of kurtosis of basis and returns distribution.

Basis Stock index’s
return

Index futures’
return

Simulation
(median) 4.1078 3.3995 3.6836

Simulation
(mean) 14.1841 3.5414 7.0978

CSI 300 5.5282 6.2580 9.0946

8 Discrete Dynamics in Nature and Society



parameter settings 50 times and record the time series of
stock index futures and stock 2’s closing prices. /e median
results of the time series data after the shock are shown in
Figure 5. For narrative convenience, in the following
context, the market price of the trading day t refers to its
closing price, i.e., pa,t � pclose

a,t . Figure 5(a) shows the result
of the price changes of stock 2 after the shock. It can be seen
that after the shock to stock 1 at time step t � 720, the
market price of stock 2 (red line) falls below its funda-
mental value (blue dashed line) and the undervaluation
persists for a while. Meanwhile, from Figure 5(b), we can
find that the index futures’ price (red line) falls below the
stock index price (blue line) after the shock and the
backwardation (i.e., the positive basis) persists for a long
time, which is consistent with the empirical studies’ ob-
servation we mentioned in Section 2.

To figure out the mechanism of shock transfer, we
conduct additional analysis on the price data and fun-
damental value of stock 1, as well as the relationship
between index futures’ fundamental value and closing
price. /e results are shown in Figure 6. From Figure 6(a),
we can see that as the fundamental value of stock 1 drops,
its market price falls as well, which is an expected result.
When fundamental value decreases, fundamentalists re-
ceive the signal and submit sell orders according to the
fundamental strategy, resulting in a decrease in the market
price of stock 1. Additionally, We can see in Figure 6(a)
that the market price (red line) goes below its fundamental
value (blue dashed line) and swiftly returns to fundamental
value. /is is because market price decline illuminates
chartists’ willingness to sell, which can drive the market
price to drop through fundamental value, but the fun-
damentalists in stock market can submit buy orders and
pull the market price back to fundamental value in time.
Figure 6(b) shows the result of fundamental value and
market price of index futures after the shock of stock 1. We
can see from Figure 6(b) that the fundamental value of
index futures also drops after the fundamental shock on
stock 1, which is because the fundamental value of index
futures is determined by the fundamental value of stock 1
(see equations (4) and (6)). Additionally, the index futures
market price declines following the decline in fundamental
value but does not recover to the fundamental value
swiftly, owing to the fact that the traders in futures market
can enlarge their supplies through leverage trading and
submit more sell orders.

Comparing the results in Figures 6(a) and 6(b), we can
infer that the backwardation phenomenon in Figure 5(b) is
due to the fact that traders in futures market, who can trade
with leverage, react to the fundamental shock faster and
more furious than the traders in stock market. Furthermore,
arbitragers sell stocks and buy futures as the futures price
falls below the spot price, hence lowering the price of stock 2,
as illustrated in Figure 5(a). Besides, the arbitrage intensity is
insufficient to reduce the price disparity between stock index
and index futures in time, resulting in the persistent
backwardation in Figure 5(b). To sum up, we illustrate the
mechanism of shock transfer and the backwardation phe-
nomenon as follows:

(1) /e initial decline of the fundamental value of stock 1
causes fundamentalists (informed traders) to sell
stock 1, which makes the market price of stock 1 fall.
/e chartists sell the fall, further depressing the price
of stock 1.

(2) /e fundamental value of stock index and index
futures declines when the fundamental value of stock
1 declines. Hence, similar to what happens in the
stock 1 market, the fundamentalists and chartists in
futures market both sell index futures. Due to the
leverage trading in futures market, traders submit
aggressive sell orders pushing the price of index
futures below the price of the underlying stock index,
resulting in the backwardation phenomena.

(3) Arbitragers submit buy orders into futures market
and sell orders into spot market to seize the arbitrage
opportunity, causing the price of stock 2 to decrease.
/erefore, the shock of one stock has been trans-
ferred to another stock market by the index futures.

4.4. Influence of Arbitrage Intensity. In this section, we focus
on the role of cross-market traders, i.e., arbitragers, during
crises and analyze whether arbitrage trading should be
encouraged or restricted during crises. We increase the
number of arbitragers Na in our artificial spot-futures
market from 50 to 100 and conduct simulations with shocks
of each experiment 50 times. Figure 7 shows the box plot for
the average spread between stock 2’s market price and its
fundamental value and the average spread between index
futures’ price and stock index’s price of the 150 trading days
after the shock to stock 1.

From Figure 7(a), we can see that as the number of
arbitragers increases, the spread between stock 2’s market
price p2,t and its fundamental value p∗2,t expands and then
narrows, indicating that the impact of stock 1’s fundamental
shock on stock 2 is greatest when the arbitrage intensity is at
an intermediate level. To a certain extent, this result is
consistent with the findings of the theoretical models of Kyle
and Xiong [50] and Xiong [51] that when the wealth of
convergence traders, who are sometimes referred to as ar-
bitragers, is at an intermediate level, the price volatility is the
greatest. Moreover, Figure 7(b) shows that the price spread
between index futures pf,t and stock index It becomes
narrow, indicating that the backwardation will gradually
disappear as the number of arbitragers increases. /is
finding is consistent with the common sense that arbitrage
trading can eliminate the spread between spot market and
futures market.

By comparing the results in Figures 7(a) and 7(b), we can
deduce that when there are few arbitragers in the market,
shocks cannot be transferred to the market of stock 2 by
futures market due to a lack of cross-market traders.
However, when there are enough arbitragers, the shock can
be absorbed by the futures market, and the backwardation
will disappear immediately. /erefore, the arbitragers will
not continue to transfer the shock into the market of stock 2
by buying futures and selling stocks.
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5. Conclusions

We model a multiagent multiasset spot-futures market
based on the CDA trading mechanism and focus on the
micromechanism of shock transfer across spot and futures
markets. In our model, the spot market where two under-
lying stocks are traded and the futures market where the
index futures are traded are linked through the cross-market
traders’ trading behavior. We conduct simulations of our
basic model and produce some important stylized facts such
as the co-movement between stock index prices and index
futures prices and the fat-tailed distributions of the basis and
the returns of risky assets, demonstrating the effectiveness of
our model.

Further analysis shows that when an external shock is
applied to stock 1, the futures market exhibits back-
wardation, and the shock is transmitted through the entire
stock market via the futures market. Additionally, to de-
termine the effect of arbitrage intensity on the formation of
backwardation anomalies and the process of market risk
diffusion, we increase the number of arbitragers in our
model and observe that backwardation gradually vanishes
while the spread between stock 2’s market price and fun-
damental value expands and then narrows. From the results,
we conclude that an increase in arbitrage intensity could
help eliminate the positive basis. Besides, when there are few
arbitragers or when there are sufficient arbitragers, shocks
cannot be transferred to other stocks by the futures market.
/e former is because cross-market traders are absent,
whereas the latter is because arbitragers eliminate the price
differential in time, preventing the formation of back-
wardation. /ese findings underscore that adequate arbi-
trage trading during crises may help eliminate the positive
basis and halt the further spread of the crises, but an in-
termediate level of arbitrage will amplify the shock diffusion
and hurt market stability. Hence, during the crisis, market
liquidity supply for arbitrage trading could probably prevent
risk diffusion. However, if adequate arbitrage cannot be
achieved, an outright ban on arbitrage trading may be a
second alternative to stop risk diffusion.

Generally, this model provides some meaningful results,
and we will extend themodel to conduct more analysis in the
spot-futures market, such as the effects of introducing the
circuit breaker regulatory measures and so on.
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vol. 26, no. 5, pp. 1486–1491, 2019.

[35] G. I. Fragapane, C. Zhang, F. Sgarbossa, and
J. O. Strandhagen, “An agent-based simulation approach to

model hospital logistics,” International Journal of Simulation
Modelling, vol. 18, no. 4, pp. 654–665, 2019.

[36] S. Yang, Z. Xu, G. Li, and J. Wang, “Assembly transport
optimization for a reconfigurable flow shop based on a dis-
crete event simulation,” Advances in Production Engineering
& Management, vol. 15, no. 1, 2020.

[37] T. Ohi, Y. Hashimoto, Y. I. Chen, and H. Ohashi, “Simulation
of futures and spot markets by using an agent-based multi-
market model,” Journal of Advanced Computational Intelli-
gence and Intelligent Informatics, vol. 15, no. 2, pp. 204–211,
2011.

[38] T. Torii, K. Izumi, and K. Yamada, “Shock transfer by arbi-
trage trading: analysis using multi-asset artificial market,”
Evolutionary and Institutional Economics Review, vol. 12,
no. 2, pp. 395–412, 2015.

[39] L. Wei, W. Zhang, X. Xiong, and Y. Zhao, “A multi-agent
system for policy design of tick size in stock index futures
markets,” Systems Research and Behavioral Science, vol. 31,
no. 4, pp. 512–526, 2014.

[40] L. Wei, W. Zhang, X. Xiong, and L. Shi, “Position limit for the
CSI 300 stock index futures market,” Economic Systems,
vol. 39, no. 3, pp. 369–389, 2015.

[41] H. C. Xu, W. Zhang, X. Xiong, and W. X. Zhou, “An agent-
based computational model for China’s stock market and
stock index futures market,” Mathematical Problems in En-
gineering, vol. 2014, Article ID 563912, 10 pages, 2014.

[42] X. Xiong, D. Nan, Y. Yang, and Z. Yongjie, “Study on market
stability and price limit of Chinese stock index futures market:
an agent-based modeling perspective,” PLoS one, vol. 10,
no. 11, p. 605, Article ID e0141, 2015.

[43] J. Liang, Y. Cui,W. Zhang, and Y. Zhang, “Analysis of the spot
markets t+ 1 trading system effects on the stock index futures
market,” Eurasia Journal of Mathematics, Science and Tech-
nology Education, vol. 13, no. 12, pp. 7679–7693, 2017.

[44] X. Xiong, Y. Cui, X. Yan, J. Liu, and S. He, “Cost-benefit
analysis of trading strategies in the stock index futures
market,” Financial Innovation, vol. 6, no. 1, pp. 1–17, 2020.

[45] A. N. Cappellini, “Sumweb: stock market experiment envi-
ronment for natural and artificial agents,” Swarm Fest, vol. 2,
2004.

[46] Y. Shiozawa, Y. Nakajima, H. Matsui, Y. Koyama,
K. Taniguchi, and F. Hashimoto, Artificial Market Experi-
ments With =e U-Mart System, Vol. 4, Springer Science &
Business Media, Berlin, Germany, 2008.

[47] C. Chiarella, X. Z. He, and P. Pellizzari, “A dynamic analysis of
the microstructure of moving average rules in a double
auction market,” Macroeconomic Dynamics, vol. 16, no. 4,
pp. 556–575, 2012.

[48] X. Zhou and H. Li, “Buying on margin and short selling in an
artificial double auction market,” Computational Economics,
vol. 54, no. 4, pp. 1473–1489, 2019.

[49] J. C. Hull, Options, Futures, and Other Derivatives, Pearson,
London, UK, 2017.

[50] A. S. Kyle and W. Xiong, “Contagion as a wealth effect,” =e
Journal of Finance, vol. 56, no. 4, pp. 1401–1440, 2001.

[51] W. Xiong, “Convergence trading with wealth effects: an
amplification mechanism in financial markets,” Journal of
Financial Economics, vol. 62, no. 2, pp. 247–292, 2001.

[52] X. Zhou, Q. Kuang, and H. Li, “Spot-futures market inter-
action and the impact of arbitrage: an agent-based modelling
method,” in Proceedings of the IEIS 2020: 7th International
Conference on Industrial Economics Systems and Industrial
Security Engineering, pp. 259–271, Springer Nature, Beijing,
China, May 2021.

12 Discrete Dynamics in Nature and Society


