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%is paper investigates a numerical method for solving fractional partial integro-differential equations (FPIDEs) arising in
American Contingent Claims, which follow finite moment log-stable process (FMLS) with jump diffusion and regime switching.
Mathematically, the prices of American Contingent Claims satisfy a system of d problems with free-boundary values, where d is
the number of regimes of the market. In addition, an optimal exercise boundary is needed to setup with each regime. %erefore, a
fully implicit scheme based on the penalty term is arranged. In the end, numerical examples are carried out to verify the obtained
theoretical results, and the impacts of state variables in our model on the optimal exercise boundary of American Contingent
Claims are analyzed.

1. Introduction

More and more researchers pay much attention to the
pricing problem of American Contingent Claims since the
pricing model is free-boundary problem and it is of great
academic value to solve this kind of model. Hence, we
consider the stock loan, which is a kind of famous American
contingent claim, in this paper. In fact, Xia and Zhou had
studied the stock loan with infinite maturity based on the
Black–Scholes framework in 2007 [1]. Following this con-
tribution, many scholars also consider the same topic by the
Black–Scholes model under other different conditions. For
instance, Chen et al. studied the stock loan with finite
maturity under the framework that risk-free interest rate
follows the Rednleman–Bartter model without drift term
[2]. Cai et al. investigated the value and optimal redemption
price of stock loan with infinite and finite maturity under the
framework of the hyperexponential jump diffusion model,
respectively [3]. Liang et al. provided the formulae of stock
loan with automatic termination clause, cap, and margin [4].

Prager and Zhang [5] considered the finite horizon loan
valuation under various stock models that include classical
aerometric Brownianmotion, mean-reverting, and two-state
regime switching with both mean-reverting and geometric
Brownian motion states.

Most models in literatures use a continuous-time
Brownian motion as their primary source of stochasticity.
%ese stock models include geometric Brownian motion
with stochastic interest rate and diffusion with hyper-
exponential jump. However, even if considering the actual
phenomenon, the continuous-time Brownian motion does
not fully reflect the stochastic nature of financial markets.
First of all, empirical evidence has showed that the distri-
bution of asset return can appear “leptokurtic distribution”
(see, e.g., [6–8]), which has a higher peak and two heavier
tails compared with the standard normal distribution.
Secondly, from an economic perspective, regime-switching
behavior captures the changing preferences and beliefs of
investors concerning stock prices as the state of financial
market changes.%e presence of regime-switching dynamics
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in financial market has been well acknowledged. A fre-
quently observed phenomenon is that a transition in a real
business cycle, expansion, and contraction usually leads to
significant changes of stock returns, interest rates, and fi-
nancial indices. %ese changes exhibit certain cyclic or
periodic patterns. Consequently, there is a need for more
realistic models that better capture asymmetric distribution,
phenomenon of jumps, and the dynamic changes of risk
asset. Naturally, the finite moment log-stable model with
jump diffusion and regime switching (FMLSJR) [9] is
employed to capture dynamical process of underlying asset
price.

Under framework of FMLSJR, the values of stock loan
follow a d-dimension coupled partial integral-differential
equations (PIDEs). And there are d-free boundaries in the
pricing model. Associated with each regime, there is a
function of optimal redemption prices and a space-fractional
partial integral-differential equation. And for the fractional
model, the problem of how to solve it has attracted the
interest of many researchers. For instance, Jumarie [10]
presented the solutions of time-fractional and space-frac-
tional BCS models about the European option by Fourier
transforms and Mittag-Leffler function. Liang et al. [4] used
the Laplace transform technique to obtain a completed
pricing formula of option in the case of the bifractional
Black–Scholes–Merton model. Following this work, Kumar
et al. [11] investigated the time-fractional BS European
option pricing model and obtained an analytical solution.
Under the framework of the FMLS model, Chen et al. [12]
considered the analytical solution of European option by
using a Fourier integral transform and Fox functions.
According to the literature review above, it appears that the
favored methods used to consider the analytical solution of
the fractional models of European option are via integral
transform methods. %e solutions obtained by means of
these methods usually take the form of a convolution of
some special functions, which make it difficult to compute.
Moreover, these integral transform methods may not be
effective for the American Contingent Claims. Hence,
studying the numerical approximate solutions of these
models appears to be a very practical and important research
objective.

%ere are a lot of recent publications investigating the
numerical method for the fractional models of European and
American Contingent Claims. For example, Cartea and del-
Castillo-Negrete [13] employed the shifted Grawld–Letnik
scheme to discrete the fractional derivatives and set an
implicit scheme to solve the pricing model of exotic option.
Marom and Momoniat [14] presented a comparison of
numerical solutions of the FMLS, KoBol, and CGMY
models. Li [15] considered a difference scheme with first-
order accuracy for a space-fractional BS model. By using a
wavelet technique, G. Hariharan [16] gave a numerical
scheme based on the wavelet technique to solve the time-
fractional BS model arising from European option pricing
problem. Chen [17] investigated a second-order finite dif-
ference method for the one-dimensional FMLS model
governing the valuation of European options and a power
penalty method for a space-fractional differential linear

complementarity problem arising in the valuation of
American options on a single asset and then extended the
above methods to the corresponding two dimensional
models arising in the valuation of European and American
options on two assets. %e author also gave the detailed
numerical analysis of the methods. Zhang et al. [18] con-
sidered the European double barrier option in the case of
tempered fractional Black–Scholes equation, and they
employed a fast biconjugate gradient stabilized method to
solve the linear system. Fan et al. [19] set a fully implicit
scheme with first-order accuracy based on the penalty
function for the stock loan pricing model, and their method
can be used to other pricing model of American Contingent
Claims. Zhou et al. [9] investigated the iterative Laplace
transform methods for system of fractional PDEs and PIDEs
arising in option pricing.

However, from the existing literature, it appears that
research on the numerical simulation of the coupled frac-
tional differential equations for American Contingent
Claims is also relatively limited. So, in this paper, we give a
numerical scheme based on penalty term and present a
technique to solve the coupled system.

%ere are two contributions of this paper. First of all, we
prove the lower bound of stock loan values at the case of
fractional order with jumps and mechanism transfer. Es-
pecially, the involvement of mechanism transfer increases
the difficulty of proof. Because of the existence of mechanism
transfer term, the objective equation in the model is coupled
by d partial differential equations. A skill is employed to
solve the nonlinear equation in this paper to avoid repeated
iteration. Secondly, we present a technique to solve the final
coupled system, which makes the numerical results more
accurate than the results calculated by the iterative
algorithm.

%e rest of the paper is organized as follows. In Section 2,
the completed pricing model is given. And we introduce our
numerical method by extending the penalty method and
prove the effectiveness of this method in Section 3. %e
numerical examples and analysis of parameter impact are
displayed in Section 4, and we give the conclusions in the
final section.

2. The Mathematical Model

Let (Ω,Ft,P) be a complete filtering probability space,
where t ∈ [0, T] and T> 0 is a fixed time expiration. Assume
that there exists an equivalent martingale measure Q, under
which the dynamics of the logarithmic price of the risky asset
xt � log(St) are given by the following stochastic differential
equation as in [9]:

dxt � (r(χ(t)) − ](χ(t)) − ξς)dt + σ(χ(t))dL
α,− 1
t + d 􏽘

Nt

i�1
Yi

⎛⎝ ⎞⎠,

(1)

where χ(t) is a continuous-timeMarkov chain with d− states
χk, k ∈ D: � 1, 2, . . . , d{ }. Assume that at each state χk, the
risk-free interest rate r(χk) � rk, σ(χk) � σk > 0, and the
convexity adjustment ](χk) � ]k � − σαksec(απ/2). %e term

2 Discrete Dynamics in Nature and Society



Lα,− 1
t is the maximally skewed Lévy process, and the tail

index α ∈ (1, 2). Nt is a Poisson process, which is char-
acterized by a jump intensity parameter ξ ≥ 0.
Yi, i � 1, 2, . . .􏼈 􏼉 is a sequence of independent and identi-
cally distributed hyperexponential random variables with
probability density function as follows:

fY(y) � 􏽘

m1

i�1

􏽢pi
􏽢θie

− 􏽢θiy1 y≥0{ } + 􏽘

m2

j�1

􏽥pj
􏽥θje

− 􏽥θjy1 y≤0{ }, (2)

where 􏽢pi ≥ 0, i � 1, 2, . . . , m1 and 􏽥pi ≥ 0, i � 1, 2, . . . , m2 are
the probabilities of different kinds of positive and negative
jumps, respectively. Moreover, it satisfies 􏽐

m1
i�1 􏽢pi+

􏽐
m2
j�1 􏽥pj � 1. Similarly, the parameters 􏽢θi > 1, i � 1, . . . , m1,

and 􏽥θj > 0, j � 1, . . . , m2, are magnitude parameters of
different types of upwards and downward random jumps,
respectively. %e average jump size is given as

ς � EQ exp Y1( 􏼁 − 1􏼂 􏼃 � 􏽘

m1

i�1

􏽢pi
􏽢θi

􏽢θi − 1
+ 􏽘

m2

j�1

􏽥pj
􏽥θj

􏽢θj + 1
− 1, (3)

where EQ is the expectation operator under probability
measure Q. Let the following be the generator matrix of the
Markov chain process:

Q �

− q11 q12 q13 · · · q1 d

q21 − q22 q23 · · · q2 d

⋮ ⋱ ⋱ ⋱ ⋮

qd− 1,1 qd− 1,2 · · · − qd− 1,d− 1 qd− 1,d

qd1 qd2 · · · qd,d− 1 − qd,d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

with constants qij ≥ 0, for all i, j, and

􏽘

d

j�1,j≠ k

qkj � qkk, k ∈ D. (5)

According to [9], the value V(k; x, t) of stock loans
satisfies the following coupled FPIDEs:

zV(k; x, t)

zt
+ rk − ]k − D − ξς( 􏼁

zV(k; x, t)

zx
+ ξ 􏽚

+∞

− ∞
V(k; x + y, t)fY(y)dy

+ ]k− ∞D
α
xV(k; x, t) + 􏽘

d

l�1,l≠ k

qklV(l; x, t) � rk + qkk + ξ( 􏼁V(k; x, t),

(6)

where 1< α< 2, x ∈ (− ∞, xf]. And,

− ∞D
α
xV(k; x, t) �

1
Γ(2 − α)

z
2

zx
2 􏽚

x

− ∞

V(k; z, t)

(x − z)
α− 1 dz, (7)

which is left-sided Riemann–Liouville fractional derivatives.
So, the boundary conditions of the mathematical model

can be obtained as follows ([2, 20, 21]):

lim
x⟶− ∞

V(k; x, t) � 0,

V k; xf,k, t􏼐 􏼑 � e
xf,k − Ke

ct
,

zV k; xf,k, t􏼐 􏼑

zx
� Sf,k � e

xf,k ,

V(k; x, T) � max e
x

− Ke
cT

, 0􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where Sf,k(exf,k ) denotes the optimal redeem price of stock
loan contract. For every k ∈ D, the model is a free-boundary
problem. Associated with each regime is an optimal exercise

and a FPIDE, and it is impossible to obtain the analytic
solution; therefore, the numerical method should be con-
sidered. Moreover, according to the conditions of stock loan
contract, the investor should continue to hold the contract if
the redemption value is less than the holding value.
%erefore, the function V(k; x, t) must satisfy the following
inequality:

V(k; x, t)≥max e
x

− Ke
ct

, 0􏼐 􏼑, (9)

for all x≤xf and 0≤ t≤T.

3. Fully Implicit Scheme Based on
Penalty Method

3.1.ModelTransformation. To avoid the effect of time-factor
ect in our model on the numerical results, we first introduce
a new variable system as follows:

z � x − ct,

U(k; z, t) � e
ct

V(k; x, t),

zf,k � xf,k − ct.

(10)
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By variable transformation (the details are displayed in
Appendix A), the pricing systems (6) and (8) can be written
as

zU(k; z, t)

zt
+ ak

zU(k; z, t)

zz
+ ξ 􏽚

+∞

− ∞
U(k; z + y, t)fY(y)dy

+ ]− ∞D
α
zU(k; z, t) + 􏽘

d

l�1,l≠ k

qklU(l; x, t) � bkU(k; z, t),

(11)

U k; zf, t􏼐 􏼑 � exp zf,k􏼐 􏼑 − K, (12)

zU k;f,k, t􏼐 􏼑

zz
� exp zf,k􏼐 􏼑, (13)

lim
z⟶− ∞

U(k; z, t) � 0, (14)

U(k; x, T) � max e
z

− K, 0( 􏼁, (15)

where ak � (rk − ]k − D − c − ξς) and bk � (rk+

qkk + ξ − c). And, inequality (9) should be rewritten as

U(k; z, t)≥max e
z

− K, 0( 􏼁, (16)

for all z≤ zf,k and 0≤ t≤T.
It is straightforward to obtain that the function U(k; z, t)

in system (11)–(15) can be viewed as an American call option
with strike price K and free-boundary ezf,k . %e analytic
solution of U(k; z, t) is laborious and even impossible to
achieve; therefore, we next employ a finite difference scheme
based on the penalty function to solve it.

Now, we extend the penalty method to model (11)–(15)
and develop an efficient numerical method via the imple-
mentation of a fully implicit scheme. So, we let 0< ϵ≪ 1 be a
small regularization parameter and C> 0 is a constant. By
adding the penalty terms [22],

εC
Uϵ(k; z, t) + ϵ − q(z)

, k ∈ D, q(z) � e
z

− K, (17)

to the corresponding equations in (11), we obtain the fol-
lowing system of nonlinear space-fractional partial integral-
differential equations on a fixed domain:

zUϵ(k; z, t)

zt
+ ak

zUϵ(k; z, t)

zz
+ ξ 􏽚

+∞

− ∞
Uϵ(k; z + y, t)fY(y)dy

+ 􏽘
d

l�1,l≠ k

qklUϵ(l; z, t) + ]k− ∞D
α
zUϵ(k; z, t) +

ϵC
Uϵ(k; z, t) + ϵ − q(z)

� bkUϵ(k; z, t),

(18)

Uϵ k; zmax, t( 􏼁 � e
zmax − K, (19)

lim
z⟶− ∞

Uϵ(k; z, t) � 0, (20)

Uϵ(k; z, T) � max e
z

− K, 0( 􏼁, (21)

where ezmax denotes the maximum stock price,
z ∈ (− ∞, zmax], and t ∈ [0, T]. According to the numerical
experiments conducted by Kandilarov and Valkov [23], the
maximum value of stock is equal to 3 or 4 times of strike
price, and we take ezmax � 3K in this paper. In addition, we will
omit the subscript ϵ of function Uϵ(k; z, t) for convenience.

3.2. Implicit Scheme. We first take Δz> 0 as spatial step, such
that MΔz � zmax, where M is a positive integer and then
place N + 1 uniform grids in the t direction, namely,
Δt � T/N. %at is,

xj � (j − 1)Δz,

ti � (i − 1)Δt,
(22)

where j �∞, . . . , − 1, 0, 1, . . . , M + 1; i � 1, 2, . . . , N + 1;
and U

i,j

k denotes the value of function U(k; xj, τi) at point
(xj, τi) and k state.

For the integral term, the trapezoidal formula is used to
discrete it at grid point (zj, ti) (see [9]) as follows:

􏽚
+∞

− ∞
U k; zj + y, ti􏼐 􏼑fY(y)dy � 􏽘

M

ι�0
ρM
ι− j U

ι,i
k + U

ι+1,i
k􏽨 􏽩 + R

i,j

k , (23)
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where

ρM
j �

1
2

􏽚
(j+1)Δz

jΔz
fY(y)dy

�

1
2

􏽘

m1

ℓ�1

􏽢pℓ e
− 􏽢θℓjΔz − e

− 􏽢θℓ(j+1)Δz
􏼒 􏼓, j≥ 0,

1
2

􏽘

m2

ℓ�1

􏽥pℓ e
􏽥θℓ(j+1)Δz

− e
􏽥θℓjΔz􏼒 􏼓, j≤ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(24)

R
i,j

k � 􏽚
+∞

zM+1− zj

e
zj+y

− Ke
rkti􏼐 􏼑fY(y)dy

� e
xj 􏽘

m1

ℓ�1

􏽢pℓ
􏽢θℓ

􏽢θℓ − 1
e

1− 􏽢θℓ( 􏼁 zmax− zj( 􏼁

− Ke
rkti 􏽘

m1

ℓ�1

􏽢pℓe
− 􏽢θℓ xmax− xj( 􏼁

� e
zmax − Ke

rkti􏼐 􏼑 􏽘

m1

ℓ�1

􏽢pℓ
􏽢θℓ

e
− 􏽢θℓ xmax− xj( 􏼁

.

(25)

In addition, the left-hand Riemann–Liouville fractional
derivative can be approximated by the first-order
Grünwald–Letnikov formula as follows (see [12, 24]):

− ∞D
α
zU

i,j

k �
1

(Δz)
α 􏽘

∞

ι�0
gιU

i,j− ι+1
k , (26)

where gι are the fractional difference coefficients given as
follows:

gι � (− 1)
ι

α

ι
⎛⎝ ⎞⎠,

α

ι
⎛⎝ ⎞⎠ �

α(α − 1) · · · (α − ι + 1)

ι!
.

(27)

Using the discretization and applying the fully implicit
method, it leads to a nonlinear algebraic equation:

U
i+1,j

k − U
i,j

k

Δt
+ ak

U
i,j

k − U
i,j− 1
k

Δz
+

]
(Δz)

α 􏽘

∞

ι�0
gιU

i,j+1− ι
k +

ϵH
U

i,j

k + ϵ − qj

+ 􏽘

M

ℓ�0
ρM
ℓ− j U

i,ℓ
k + U

i,ℓ+1
k􏽨 􏽩 + 􏽘

d

l�1,l≠ k

qklU
i,j

l + R
i,j

k − bkU
i,j

k � 0,

(28)

with the boundary and terminal conditions as follows:

lim
j⟶− ∞

U
i,j

k � 0,

U
i,M+1
k � e

xmax − K,

U
N+1,j

k � max e
xj − K, 0( 􏼁.

(29)

For our proposed difference scheme, we have a discrete
analogue form of the important property inherited by the
stock loan model. Prior to presenting the proof, we need the
following lemma of [24].

Lemma 1. 4e coefficients gι satisfy
g0 � 1,

g1 � − α,

0≤ · · · ≤g3 ≤g2 ≤ 1,

􏽘

∞

ι�0
gι � 0,

(30)

for 1< α< 2.

Lemma 2. Both the coefficients ρM
j in equation (24) and R

i,j

k

in equation (25) are bounded, and

􏽘

M

j�− ∞
ρM

j ≤
1
2
,

R
i,j

k ≤ e
zmax − K.

(31)

Proof. From the fact that fY(y) is the density function of
hyperexponential random variables Y, it follows that

􏽘

M

j�− ∞
ρM

j � 􏽐
M

j�− ∞

1
2

􏽚
(j+1)Δz

jΔz
fY(y)dy≤

1
2

􏽚
+∞

− ∞
fY(y)dy �

1
2
.

(32)

In addition, 􏽢pi ≥ 0, 􏽢θi > 1 and exp(zmax) � 3K or 4K, so it
is straightforward to obtain

R
i
j,k � e

zmax − Ke
rkti􏼐 􏼑 􏽘

m1

ℓ�1

􏽢pℓ
􏽢θℓ

e
− 􏽢θℓ zmax− xj( 􏼁

≤ e
zmax − Ke

rkti􏼐 􏼑 􏽘

m1

ℓ�1

􏽢pℓ

≤ e
zmax − K.

(33)

□
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Theorem 1. If the time step Δt≤ 1/|qkk − bk − 2􏽐
M
ℓ�0 ρ

M
ℓ− j0

|

and

C≥ bk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌e

zmax + ak

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌e

zmax
e

zmax − 1
zmax

+ 4 e
zmax − K( 􏼁 + ]

e
zmax − 1( 􏼁

α

zmax( 􏼁
α ,

(34)

then the approximate stock loan values U
i,j

k􏽮 􏽯 generated by the
scheme (28) satisfy

U
i,j

k ≥max qj, 0􏼐 􏼑, (35)

for j � − ∞, . . . , − 2, − 1, 0, . . . , M + 1, i � N + 1, N, . . . , 1,
and k ∈ D.

Proof. First, we prove U
i,j

k ≥ qj. Let

u
i,j

k � U
i,j

k − qj, (36)

for all i, j, and k. It is straightforward to obtain
u

N+1,j

k � U
N+1,j

k − qj ≥ 0. Hence, by substituting u
i,j

k into (28)
and after simplification, it yields

1 + Δtbk −
akΔt
Δz

􏼢 􏼣u
i,j

k � u
i+1,j

k +
]Δt

(Δz)
α 􏽘

∞

ι
gιu

i,j− ι+1
k +

ϵΔtC
u

i,j

k + ϵ − qj

−
aΔt
Δz

u
i,j− 1
k + 􏽘

M

ℓ�0
ρM
ℓ− j u

i,ℓ
k + u

i,ℓ+1
k􏼐 􏼑Δt + Δt 􏽘

M

l�1
qklu

i,j

k − ΔtE(j, k),

(37)

where

E(j, k) � bkqj −
ak

Δz
qj− 1 − qj􏼐 􏼑 −

]
(Δz)

α 􏽘

∞

ι�0
gιqj− ι+1

− 􏽘

M

ℓ�0
ρM
ℓ− j qℓ + qℓ+1􏼂 􏼃 − 􏽘

M

l�1
qklqj − R

i,j

k

� be
zj −

ak

Δz
e

zj− 1 − e
zj( 􏼁 −

]
(Δz)

α 􏽘

∞

ι�0
gιqj− ι+1 − K)

− 􏽘
M

ℓ�0
ρM
ℓ− j e

zℓ + e
zℓ+1 − 2K􏼂 􏼃 − qkkqj − R

i,j

k .

(38)

From |((eΔz − 1)/Δz)|≤ ((ezmax − 1)/zmax) and
􏽐
∞
ι�0 gι � 0, we have that

|E(j, k)≤ bke
zj

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

]
(Δz)

α 􏽘

∞

k�0
gk e

j− k+1
− K􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

a

Δz
e

zj− 1 − e
zj( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

+ 􏽘
M

ℓ�0
ρM
ℓ− j e

zℓ + e
zℓ+1 − 2K􏼂 􏼃

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ R

i
j,k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + e
zj − K

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌qkk

≤ bk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌e

zmax + ak

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌e

zmax
e

zmax − 1
zmax

+ R
i
j,k + 3 e

zmax − K( 􏼁

+
]

(Δz)
α 􏽘

∞

k�0
gke

j− k+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(39)

From the fact 􏽐
∞
ι�0 gιe

zj− ι+1 � ezj+1 􏽐
∞
ι�0 gιe

− ιΔz and
according to [14], (1 − z)α � 􏽐

∞
ι�0 gιz

− ι when |z|≤ 1.
%erefore, we obtain that

]
(Δz)

α 􏽘

∞

ι�0
gιe

− ιΔt
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� ]

1 − e
− Δx

􏼐 􏼑
α

(Δz)
α

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ]

e
zmax − 1( 􏼁

α

zmax( 􏼁
α . (40)
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To sum up, combining Lemma 2, it is straightforward to
obtain

|E(j, k)|≤ bk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌e

zmax + ak

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌e

zmax
e

zmax − 1
zmax

+ 4 e
zmax − K( 􏼁 + ]

e
zmax − 1( 􏼁

α

zmax( 􏼁
α . (41)

Define

u
i

� min
j,k

u
i,j

k􏽮 􏽯, (42)

and let (k0, j0) be a pair of indices, such that ui � u
i,j0
k0
. So,

from (28), it follows that

1 + Δtbk −
akΔt
Δz

􏼢 􏼣u
i ≥ u

i+1,j0
k0

+
]Δt

(Δz)
α 􏽘

∞

ι
gιu

i
+
ϵΔtC
u

i
+ ϵ

−
akΔt
Δz

u
i
+ 􏽘

M

ℓ�0
ρM
ℓ− j u

i
+ u

i
􏼐 􏼑Δt + Δt 􏽘

M

l�1
qklu

i
− ΔtE j0, k0( 􏼁.

(43)

To reduce the form of inequality (43), we obtain that

1 − qkk − bk − 2􏽘

M

ℓ�0
ρM
ℓ− j0

⎛⎝ ⎞⎠Δt⎡⎢⎢⎣ ⎤⎥⎥⎦u
i
−
ϵΔtC
u

i
+ ϵ

+ ΔtE j0, k0( 􏼁≥

u
i+1,j0
k0
≥ u

i+1
.

(44)

On the other hand,

Δt≤
1

qkk − bk − 2􏽐
M
ℓ�0 ρ

M
ℓ− j0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
. (45)

Hence, it is straightforward to obtain that

1 − qkk − bk − 2􏽘
M

ℓ�0
ρM
ℓ− j0

⎛⎝ ⎞⎠Δt≥ 0. (46)

Let

A � 1 − c − rk − ξ − 2􏽘
M

ℓ�0
ρM
ℓ− j

⎛⎝ ⎞⎠Δt⎡⎢⎢⎣ ⎤⎥⎥⎦. (47)

Define a function

f(x) � Ax −
εΔtC
x + ε

+ ΔtE(j, k). (48)

So, if ui+1 ≥ 0, we can obtain

f u
i

􏼐 􏼑≥ 0. (49)

From

f(0) � Δt(E(j) − C)≤ 0, (50)

it follows that

f′(x) � A +
ϵΔtC

(x + ϵ)2
> 0. (51)

Based on the condition u
N+1,j

k ≥ 0, we can obtain ui ≥ 0.
Naturally, u

i,j

k ≥ 0. Consequently,

U
i,j

k ≥ qj, (52)

for all i, j, and k.
Next, we prove that U

i,j

k ≥ 0 for all i, j, and k. Following
the idea above, define

U
i

� min
j,k

U
i,j

k , (53)

and let (k0, j0) be a pair of indices, such that U
i,j0
k0

� Ui. It
follows from (28) that

1 + bkΔt −
akΔt
Δz

􏼢 􏼣U
i ≥U

i+1,j0
k0

+
]Δt

(Δz)
α 􏽘

∞

ι
gιU

i
+
ϵΔtC

U
i
+ ϵ − qj

−
akΔt
Δz

U
i
+ 􏽘

M

ℓ�0
ρM
ℓ− j U

i
+ U

i
􏼐 􏼑Δt + Δt 􏽘

M

l�1
qklU

i
+ R

i,j

k .

(54)

By simple calculation, the following equality holds:

1 − qkk − bk − 2􏽘
M

ℓ�0
ρM
ℓ− j

⎛⎝ ⎞⎠Δt⎡⎢⎢⎣ ⎤⎥⎥⎦U
i
−
ϵΔtC

U
i
+ ϵ − qj0

≥U
i+1,j0
k0
≥U

i+1
.

(55)

From above, the inequalities U
j,i

k ≥ qj for all i, j, and k are
verified. So,

1 − qkk − bk − 2􏽘
M

ℓ�0
ρM
ℓ− j

⎛⎝ ⎞⎠Δt⎡⎢⎢⎣ ⎤⎥⎥⎦U
i ≥U

i+1
. (56)

Notice that 1 − (qkk − bk − 2􏽐
M
ℓ�0 ρ

M
ℓ− j)Δt≥ 0, then

U
i ≥U

i+1
. (57)

In addition, UN+1,j

k � max(exp(zj) − K, 0)≥ 0 for all j, k.
Namely, UN+1 ≥ 0. %erefore, it yields that

U
i,j

k ≥ 0, (58)

for all i, j, and k, which completes the proof. □

3.3. Implementation of Numerical Method. In practice, to
implement the numerical scheme (28), the semi-infinite
domain [− ∞, zmax] × [0, T]􏼈 􏼉 must be truncated into a finite
domain:
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zmin, zmax􏼂 􏼃 ×[0, T]􏼈 􏼉. (59)

Here, we take zmin � ln(0.01). %en, we can check that
U(zmin, t) � 0. In such a case, we redefine the space step
Δz � (zmax − zmin)/M, and

zj � zmin +(j − 1)Δz, j � 1, 2, . . . , M + 1. (60)

Let

ηk �
akΔt
Δz

,

βk � 1 −
akΔt
Δz

+ Δtbk,

λk � −
Δt]k

(Δz)
α,

W
M
j � ρM

j + ρM
j− 1, j � 0, ± 1, ± 2, . . . , ±(M − 1),

(61)

then the matrix form of numerical scheme (28) can be
written as follows:

βkI + Bk + Ak − ΔtW( 􏼁Ui
k − F Ui

k􏼐 􏼑

− Δt 􏽘
d

l�1,l≠ k

qlkU
i
k � Ui+1

k − Ei
k − ΔtRi

k, k � 1, 2, . . . , d,

(62)

where Ui
k � (Ui,2

k , Ui,3
k , . . . , Ui,M

k )τ , F(Ui
k) � (f(Ui,2

k ),

f(Ui,3
k ), . . . , f(Ui,M

k )), and

f U
i,j

k􏼐 􏼑 �
ΔtϵC

U
i,j

k + ϵ − qj

. (63)

I denotes the (M − 1) × (M − 1) identity matrix.

W �

W
M
0 W

M
1 · · · W

M
M− 2 W

M
M− 1

W
M
− 1 W

M
0 · · · W

M
M− 3 W

M
M− 2

W
M
− 2 W

M
− 1 · · · W

M
M− 4 W

M
M− 3

⋮ ⋱ ⋱ ⋮ ⋮

W
M
2− M W

M
3− M · · · W

M
0 W

M
1

W
M
1− M W

M
2− M · · · W

M
− 1 W

M
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bk � ηk

0 · · · 0 0

1 · · · 0 0

⋮ ⋮ ⋮ ⋮

0 · · · 0 0

0 · · · 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ak � λk

g1 g0 · · · 0

g2 g1 · · · 0

g3 g2 · · · 0

⋮ · · · ⋱ ⋮

gM− 1 gM− 2 · · · g1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(64)

Ri
k � (Ri,2

k , Ri,3
k , . . . , Ri,M

k )τ , Ei � (0, 0, . . . , ϱ)τM− 1, and

ϱ � − η2g0 − Δt 􏽘
M− 1

ℓ�0
ρℓ − Δtqkk

⎛⎝ ⎞⎠U
i
M+1. (65)

In fact, system (62) is a coupling nonlinear equation so
that it is very hard to obtain the numerical solution. Hence,
we let
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Ui
� Ui

1,U
i
2, . . . ,Ui

d􏽨 􏽩
τ
,

A �

M1 Δtq12I · · · Δq1 dI

Δtq21I M2 · · · Δtq2 dI

⋮ ⋮ ⋮ ⋮

Δtqd1I Δtqd2I · · · Md

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
(66)

where

Mk � βkI + Bk + Ak − ΔtW, k � 1, 2, . . . , d,

F Ui
􏼐 􏼑 � F Ui

1􏼐 􏼑, F Ui
2􏼐 􏼑, . . . , F Ui

d􏼐 􏼑􏽨 􏽩
τ
,

Ei
� Ei

1,E
i
2, . . . ,Ei

d􏼐 􏼑
τ
,

Ri
� Ri

1,R
i
2, . . . ,Ri

d􏼐 􏼑
τ
.

(67)

%en, (62) can be written as the following nonlinear
system:

AUi
− F Ui

􏼐 􏼑 � Ui+1
− Ei

− ΔtRi
. (68)

Note that system (68) cannot be solved directly since the
penalty function F(Ui) is nonlinear with respect to Ui. In
the following, Newton iteration approach is employed to
solve

A − JF ωl− 1
􏼐 􏼑􏽨 􏽩δωl

� Ui+1
− Ei

− ΔtRi
+ F ωl− 1

􏼐 􏼑 − Aωl− 1
, ωl

� ωl− 1
+ κ ωl

− ωl− 1
􏼐 􏼑, (69)

where l � 1, 2, . . . and κ ∈ (0, 1) is a damping parameter.%e
initial value ω0 � Ui+1 for each time level is the given initial
guess and δωl � ωl − ωl− 1. JF is a Jacobian matrix with
column vector F(ωl). We choose Ui � ωl. %e condition
‖ωl − ωl− 1‖∞ ≤ θ is the stopping criterion, where the positive
control θ is a sufficiently small tolerance number. In this
paper, we take κ � 0.2, θ � 10− 4, and ε � 10− 5.

4. Numerical Examples and Discussion

4.1. Discussion on the Numerical Method. In this part, we
provide some numerical examples to support the theoretical
results that we have obtained in this paper.

%e model parameters are set to be r1 � 0.05, r2 � 0.04,
σ1 � 0.20, σ2 � 0.24,D � 0.8, c � 0.6, ξ � 0.01, 􏽢p � 0.02, and
􏽢θ � 1.2. All contracts of stock loan have maturity T � 2 years
and principal K � 20. First of all, to verify the conclusion
that inequality U

i,j

k ≥max(qj, 0) holds in %eorem 1, we
show the mesh surface of U

i,j

k − max(qj, 0) in Figure 1 for
different time and stock price in two states. As shown in
Figure 1, it is straightforward to conclude that the present
difference scheme conserves the inequality U

i,j

k −

max(qj, 0)≥ 0 for all i, j, and k. In Figure 2, the values of
U(k; x, t) as a function of both stock price St and time t over
the rectangular domain [Smin, 60] × [0, 2] under difference
economic state are displayed. It can be observed from
Figure 2 that our numerical method produces smooth and
stable approximation solutions.

In fact, the function U(k; z, t) in models (18)–(21) can be
recognized as an American call option with strike K and
optimal exercise boundary, exp(zf,k). %en, the values of
U(k; z, t) are not less than the payoff function
max(ez − K, 0), and the function exp(zf,k) is increasing with
respect to the duration in every state. Figures 3 and 4 show
these two facts, respectively.

In Ref. [9], for solving the coupled equations resulted by
regime switch, the authors proposed the iteration algorithm.
Hence, we use this idea to solve system (62), and the
consumed CPU time to run our method and the iteration
algorithm for different k andM and fixed N � 50 is dis-
played in Table 1. All numerical computations were carried
out by using MATLAB on the Lenovo S5 laptop with
configuration as follows: Intel(R) Core(TM) i5-6300HQ,
2.30GHz. We solve the linear systems by Matlab operator
A∖b. In Table 1, CPU − time1 and CPU − time2 denote
consumed CPU time of the iteration algorithm and our
method, respectively. According to the results in Table 1, we
can obtain that our method is more effective, and the ad-
vantages of our method become more obvious with the
increase in k.

4.2. Impact of Parameters. In this subsection, we discuss
some interesting implications by considering the two-state
regime-switching model in pricing stock loans. Moreover,
we compare the result with the optimal redemption prices
obtained by using the framework without regime switching.

In Figure 5, there are four different curves of optimal
redemption prices under different parameters, and the
horizontal axis denotes the time to expiration.%e black and
blue curves are obtained by the models without regime
switching as (Q � 0). In the case of r1 � 0.05 or r1 � 0.04,
the optimal redemption prices calculated by our model are
bigger than those obtained by the model without regime
switching, whichmeans the investors should choose a higher
price to redeem stock when there is uncertainty in the fi-
nancial market. However, as the maturity closes to zero, the
uncertainty should be disappeared such that the holder
should exercise the stock loan contract at the price level of
KecT as shown in Figure 5.
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As shown in Figure 6, the introduction of regime
switching produces higher optimal redemption prices
than those calculated by the framework without regime
switching (Q � 0). %is phenomenon is the same as an
American option, of which the optimal exercise values are
monotonically increasing functions of volatility. %e
difference between blue line and green line (red line and
black line) reflects the extra values of having a certain

positive probability that the stock should stay at the
economy state with higher risk. However, as the maturity
of stock loan contract approaches, the expected amount of
time spent on other economy state also decreases, which
can result in the extra value due to decreasing regime
switching. In addition, as time approaches to the expi-
ration, the investor should redeem stock at price level of
KecT as shown in Figure 6.
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Figure 1: Mesh surface of U
i,j

k − max(qj, 0) with M � 26 andN � 100: (a) State 1 and (b) State 2.
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Figure 2: Mesh surface of function U(k; x, t) with M � 26 andN � 100.
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5. Conclusions

In this paper, we investigate the pricing model of stock loan
under the FMLS model with jump diffusion process in a
d-state regime-switching economy, which was formulated as
a d-dimension coupling fractional partial integro-differen-
tial equations.We first introduce a penalty term to transform
the original model into one with fixed domain in every state.
Secondly, a fully nonlinear implicit difference scheme is
proposed, and we prove the numerical solution following the
constraint V(k, x, t)≥max(ex − Kect, 0) inherited by the
stock loan. Moreover, our numerical examples show an
important phenomenon that the uncertainty coming from
the regime switching should raise the optimal redemption
prices of stock loans. And the results in this paper can be
used to do research studies on other types of American
Contingent Claims.
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Figure 3: %e values of function U(k; z, t) with
M � 26 andN � 100.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
20

22

24

26

28

30

32

34

Time to expiry 

O
pt

im
al

 ex
ec

ut
io

n 
bo

un
da

ry
 S

f

k = 1
k = 2

Figure 4: Optimal exercise price exp(zf,k) under parameters with
M � 210 andN � 100.

Table 1: %e comparison between our method and the method by
using the iteration algorithm.

M CPU − time1 CPU − time2

k � 2

27 1.2010 1.2299
28 3.9672 3.5100
29 18.5601 15.6900
210 87.9564 61.9984

k � 3

27 8.2316 1.9246
28 39.9109 4.2981
29 205.1201 19.4887
210 513.8906 81.3718

k � 4

27 15.7801 9.4871
28 79.3102 15.7110
29 429.3648 35.9314
210 1012.3243 121.6666
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Figure 5: Optimal redemption prices exp(zf,k) with σ1 � σ2 �

0.24, D � 0.8, c � 0.6, ξ � 0.01, 􏽢p � 0.02, 􏽢θ � 1.2, T � 2, and
K � 20.
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Figure 6: Optimal redemption prices exp(zf,k) with r1 � r2 �

0.04, D � 0.8, c � 0.6, ξ � 0.01, 􏽢p � 0.02, 􏽢θ � 1.2, T � 2, and
K � 20.
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In fact, during the process of solving the coupling linear
equation, the values of objective function in different eco-
nomical state are calculated simultaneously rather than
obtained through iteration, respectively; therefore, our
method is more efficient. Under the same accuracy, our
method is more effective than the iteration algorithm as
shown the results of simulation in Table 1.

In future research, first of all, one could expand the
number of underlying assets, which is also meaningful.
Secondly, the investor can terminate the contract by paying
liquidated damages. Finally, the fractional derivatives and
the coupled term usually result in a full or dense coefficient
matrix, which has significant computational and storage
requirements; therefore, one could improve the computing
speed of our method.

Appendix

If
z � x − ct,

U(k; z, t) � e
ct

V(k; x, t),

zf,k � xf,k − ct,

(A.1)

then
zV(k; x, t)

zt
� ce

ct
U(k; z, t) + e

ctzU(k; z, t)

zt

− ce
ctzU(k; z, t)

zz
,

(A.2)

zV(k; x, t)

zx
� e

ctzU(k; z, t)

zz
, (A.3)

− ∞D
α
xV(k; x, t) �

1
Γ(2 − α)

d2

dx
2 􏽚

x

− ∞

V(k; y, t)

(x − y)
α− 1 dy

�
1
Γ(2 − α)

d2

dz
2 􏽚

z+ct

− ∞

V(k; y, t)

(z + ct − y)
α− 1 dy.

(A.4)
Let s � y − ct, then

− ∞D
α
xV(k; x, t) �

e
ct

Γ(2 − α)

d2

dz
2 􏽚

z

− ∞

e
− ct

V(k; s + ct, t)

(z − s)
α− 1 ds

�
e

ct

Γ(2 − α)

d2

dz
2 􏽚

z

− ∞

U(k; s, t)

(z − s)
α− 1 ds,

� e
ct

− ∞D
α
zU(k; z, t).

(A.5)

Now, substituting equations (A.1)–(A.5) into equation
(6) and boundary conditions (8), we can obtain models
(11)–(15).
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