
Research Article
A Family of Integrable Differential-Difference
Equations: Tri-Hamiltonian Structure and Lie Algebra of
Vector Fields

Ning Zhang1 and Xi-Xiang Xu 2

1Public Course Teaching Department, Shandong University of Science and Technology, Taian 271019, China
2College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China

Correspondence should be addressed to Xi-Xiang Xu; xixiang_xu@sohu.com

Received 1 April 2021; Accepted 14 August 2021; Published 30 August 2021

Academic Editor: Rigoberto Medina

Copyright © 2021 Ning Zhang and Xi-Xiang Xu. (is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Starting from a novel discrete spectral problem, a family of integrable differential-difference equations is derived through discrete
zero curvature equation. And then, tri-Hamiltonian structure of the whole family is established by the discrete trace identity. It is
shown that the obtained family is Liouville-integrable. Next, a nonisospectral integrable family associated with the discrete
spectral problem is constructed through nonisospectral discrete zero curvature representation. Finally, Lie algebra of isospectral
and nonisospectral vector fields is deduced.

1. Introduction

Over the past three decades, the integrable nonlinear dif-
ferential-difference systems (INDDEs) have received con-
siderable attention. Many INDDEs have been proposed and
studied [1–15]. Finding new INDDEs is still an important
and difficult work. (e discrete zero curvature representa-
tion is one of the most significant tools to generate the
INDDEs. Furthermore, the Hamiltonian structure of the
INDDEs can be established by discrete trace identity or
discrete variational identity [4, 5]. For a family of INDDEs

utm
� K

(m)
n un( , m≥ 0, (1)

one of the interesting problems in the theory of lattice
soliton and integrable systems is to look for a Hamiltonian
operator J and a sequence-conserved functional
H

(m)

n , (m≥ 0) so that equation (1) may be represented as the
following Hamiltonian form:

un,tm
�
δ H

(m)

n

δun

, (2)

where the Hamiltonian functional is
H

(m)

n � n∈ZH(m)
n (m≥ 0). (e variational derivative is

δ H
(m)

n /δun � n∈ZE− m(δH(m)
n /(δun + m)), (m≥ 0). If we

can discover infinitely many involutive conserved func-
tionals for a family of discrete Hamiltonian system, the
Liouville integrability of the the discrete Hamiltonian system
(2) is proved [9–16].

For a lattice function fn � f(n), the shift operator E and
the inverse of E are defined by

Efn � fn+1,

E
− 1

fn � fn− 1, n ∈ Z.
(3)

In this paper, we introduce the following spectral
problem:

Eφn � Un un, λ( φn, Un un, λ(  �
0 rnλ

− snλ rnsnλ
2

− 1
 ,

(4)

where φn � (φ1
n,φ2

n) is the eigenfunction vector, λ is the
spectral parameter and λt � 0, (rn, sn)Tis the potential vector,
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and rn � r(n, t), sn � s(n, t) depend on integer n ∈ Z and real
t ∈ R. Starting from spectral problem (4), a novel family of
INDDEs are deduced. We are going to prove that the obtained
family has a triple Hamiltonian structure (tri-Hamiltonian
structure). Furthermore, its Louville integrability is presented.
It should be pointed out that, in the theory of lattice soliton and
integrable systems, the integrable families, which possess
concise tri-Hamiltonian structure, are very rare [12–18]. Also,
the symmetrical algebraic structure of equations is an im-
portant research direction for INDDEs [19–24]. Furthermore,
the research of nonisospectral INDDEs has been widespread
concern, the algebraic structure of isospectral and non-
isospectral vector fields is established in [16–18], and the key of
the theory is to derive the corresponding nonisospectral family
of INDDEs.

(is paper is organized as follows. In Section 2, starting
from the matrix spectral problem (4), by means of the discrete
zero curvature representation, we derive a family of INDDEs.
In Section 3, we establish a triple Hamiltonian structure (tri-
Hamiltonian structure) for the obtained integrable family
through the discrete trace identity [4]. Infinitely many com-
muting symmetries and infinitely many commuting conserved
functionals for the obtained family are given. (e Louville
integrability of the obtained family is demonstrated. In Section
4, a nonisospectral integrable family associated with the ob-
tained family is deduced by solving an initial nonisospectral
discrete zero curvature equation and the corresponding
characteristic operator equation. Lie algebra of isospectral and
nonisospectral vector fields is presented. Finally, in Section 5,
there will be some conclusions and remarks.

2. The Family of Integrable Differential-
Difference Equations

In this section, we shall derive a family of integrable dif-
ferential-difference equations associated with eigenvalue
problem (4). To this end, we first solve the following sta-
tionary discrete zero curvature equation:

Eχn( Un − Unχn � χn+1Un − Unχn � 0. (5)

Upon setting

χn �
An Bn

Cn − An

 , (6)

we find that equation (5) becomes

An+1 − An( λ2 �
rnCn+1 + snBn

rnsn

λ +
An+1 − An

rnsn

,

Bn+1λ
2

� −
An+1 + An( 

sn

λ +
Bn+1

rnsn

,

Cnλ
2

�
An+1 + An

rn

λ +
Cn

rnsn

.

(7)

Substituting expansions

An � 
∞

m�0
A

(m)
n λ− 2m

,

Bn � 
∞

m�0
B

(m)
n λ− 2m+1

,

Cn � 
∞

m�0
C

(m)
n λ− 2m+1

,

(8)

into (7) and comparing each power of λ in the equations of
(7), we obtain the initial conditions:

A
(0)
n+1 − A

(0)
n  � 0,

B
(0)
n+1 � 0,

C
(0)
n � 0,

(9)

and the recursion relations:

A
(m+1)
n+1 − A

(m+1)
n � −

B
(m+1)
n

rn

+
C

(m+1)
n+1
sn

+
A

(m)
n+1 − A

(m)
n

rnsn

, m≥ 0,

B
(m+1)
n+1 � −

A
(m)
n + A

(m)
n+1

sn

+
B

(m)
n+1

rnsn

, m≥ 0,

C
(m+1)
n �

A
(m)
n + A

(m)
n+1

rn

+
C

(m)
n

rnsn

, m≥ 0.

(10)

Proposition 1. If the initial values are chosen by

A
(0)
n �

− 1
2

,

B
(0)
n � 0,

(11)

then A(m)
n , B(m)

n , andC(m)
n (m≥ 0), which are solved by

equation (10), are all local, and they are just rational func-
tions in the two dependent variables rn and sn.

Proof. On the basis of second and third equations in
equation (10), we see that B(m+1)

n and C(m+1)
n can be solved

locally by A(m)
n , B(m)

n , and C(m)
n (m≥ 0). In order to obtain

A(m+1)
n (m≥ 0) from the first equation in the equation (10),

we need to use operator D− 1 � (E − 1)− 1 to solve the cor-
responding difference equation. In the following, we are
going to show that A(m+1)

n (m≥ 1) may be deduced through
an algebraic method rather than by solving the difference
equations. From (5), we know that

(E − 1)tr χ2n  � 2(E − 1) A
2
n + BnCn  � 0. (12)

(is tells us (A2
n + BnCn) � c(t), where c(t) is an ar-

bitrary function of time variable t only [10, 14]. Further-
more, we select c(t) � 0. (en, we obtain a recursion
relation for A(m)

n :

A
(m+1)
n � 

m

j�1
A

(j)
n A

(m− j+1)
n − 

m

j�1
B

(j)
n C

(m− j+1)
n , m≥ 1.

(13)
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(erefore, A(m+1)
n (m≥ 1) can be determined locally by

A(m)
n , B(m)

n , and C(m)
n (m≥ 0), and then

A(m)
n , B(m)

n , andC(m)
n (m≥ 0) are all local and they are just

rational functions in the two dependent variables rn and sn.
(e proof is completed.
In particular, we have

A
(1)
n � −

1
rnsn− 1

, B
(1)
n �

1
sn− 1

, C
(1)
n � −

1
rn

, . . . . (14)

Set

χ(m)
n �



m

i�0
A

(i)
n λ2m− 2i



m

i�0
B

(i)
n λ2m− 2i+1



m

i�0
C

(i)
n λ2m− 2i+1

− 
m

i�0
A

(i)
n λ2m− 2i

+ A
(m)
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (15)

Let us introduce the following auxiliary spectral prob-
lems associated with the spectral problem (4):

φntm
� χ(m)

n φn, m≥ 0. (16)

(en, the compatibility condition of (4) and (16)

Eφn( tm
� E φn( tm( , (17)

is equivalent to the discrete zero curvature equations

Untm
� Eχ(m)

n Un − Unχ
(m)
n , m≥ 0, (18)

which give rise to the family of integrable differential-dif-
ference equations:

rntm
� − rnsnB

(m+1)
n+1 − rnA

(m)
n ,

sntm
� − rnsnC

(m+1)
n + snA

(m)
n+1 ,

m≥ 0.
⎧⎪⎨

⎪⎩
(19)

When m � 0, (19) becomes a trivial linear system:

rnt0
� −

rn

2
,

snt0
�

sn

2
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(20)

And, when m � 2, we obtain the first INDDE in family
(19) as follows:

rnt1
� −

rn

rn+1sn

−
1
sn

,

snt1
�

1
rn

+
sn

rnsn− 1
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(21)

3. Tri-Hamiltonian Structure

Next, we shall establish a tri-Hamiltonian structure for
integrable family (19). First, we introduce some concepts.
(e variational derivative, the Gateaux derivative, and the
inner product are defined, respectively, by

δHn

δun

� 
m∈Z

E
(− m) zHn

zun+m

 ,

J′ un(  vn  �
z

zε
J un + εvn( |ε�0,

〈fn, gn〉 � 
n∈Z

fn, gn( R2,

(22)

where fn andgn are required to be rapidly vanished at in-
finity and (fn, gn)R2 denotes the standard inner product of
fn and gn in the Euclidean space R2. (e adjoint operator J∗

of J is defined by 〈fn, J∗gn〉 � 〈Jfn, gn〉. If an operator J

has the property J∗ � − J, then J is said to be skew-sym-
metric. If a skew-symmetric operator J meets the Jacobi
identity, i.e.,

〈J′ un(  Jfn gn, hn〉 + Cycle fn, gn, hn(  � 0, (23)

then operator J is called a Hamiltonian operator. Based on a
given Hamiltonian operator J, we can define a Poisson
bracket [4]:

fn, gn J �〈
δfn

δun

, J
δgn

δun

〉 � 
n∈Z
〈
δfn

δun

, J
δgn

δun

〉R2, (24)

(1 − E)
− 1

�
1
2



∞

k�0
E

k
− 

− 1

k�− ∞
E

k⎛⎝ ⎞⎠,

1 − E
− 1

 
− 1

�
1
2



− 1

k�− ∞
E

k+1
− 
∞

k�0
E

k+1⎛⎝ ⎞⎠.

(25)

Following [4], we set

Sn � χn Un( 
− 1

�

snBnλ + An rnsnλ
2

− 1 

rnsnλ
2 −

An

snλ

− snAnλ + Cn rnsnλ
2

− 1 

rnsnλ
2 −

Cn

snλ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(26)

〈Y, Z〉 is defined as Tr(YZ), where Y and Z are the some
order square matrices. Hence,
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〈Rn,
zUn

zλ
〉 � −

Cn 1 + rnsnλ
2

 

snλ
2 ,

〈Rn,
zUn

zrn

〉 � −
snAnλ + Cn

rnsnλ
,

〈Rn,
zUn

zsn

〉 �
An − rnλCn

sn

.

(27)

(en, the discrete trace identity becomes

δ
δrn


n∈Z
〈Sn,

zUn

zλ
〉 � λ− ε z

zλ
λε〈Sn,

zUn

zrn

〉,

δ
δsn


n∈Z
〈Sn,

zUn

zλ
〉 � λ− ε z

zλ
λε〈Sn,

zUn

zsn

〉.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(28)

Substituting expansions An � 
∞
m�0 A(m)

n λ− 2m,

Bn � 
∞
m�0 B(m)

n λ− 2m+1, andCn � 
∞
m�0 C(m)

n λ− 2m+1 into (28)
and comparing the coefficients of λ− 2m− 1, we arrive at

δ
δrn

δ
δsn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


n∈Z

H
(m)
n � (ε − 2m)

−
snA

(m)
n + C

(m)
n

rnsn

−
snA

(m)
n+1 + C

(m)
n

s
2
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

When m � 0 in equation (29), through a direct calcu-
lation, we find that ε � 0. (us, equation (29) can be written
as

δ
δrn

δ
δsn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

H
(m)

n �

−
snA

(m)
n + C

(m)
n

rnsn

−
snA

(m)
n+1 + C

(m)
n

s
2
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, m≥ 1, (30)

where

H
(m)

n � 
m

j�0
−

rnsnC
(m)
n + C

(m+1)
n

sn

 , m≥ 1. (31)

Moreover, we have

untm
�

rntm

sntm

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ �

− rnsnB
(m+1)
n+1 − rn A

(m)
n + A

(m)
n+1 ,

rnsnC
(m+1)
n + sn A

(m)
n + A

(m)
n+1 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � Θ

−
snA

(m+1)
n + C

(m+1)
n

rnsn

−
snA

(m+1)
n+1 + C

(m+1)
n

s
2
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� J

−
snA

(m)
n + C

(m)
n

rnsn

−
snA

(m)
n+1 + C

(m)
n

s
2
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� K

−
snA

(m− 1)
n + C

(m− 1)
n

rnsn

−
snA

(m− 1)
n+1 + C

(m− 1)
n

s
2
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, m≥ 1,

(32)

where

4 Discrete Dynamics in Nature and Society



Θ �
Θ11 Θ12
Θ21 Θ22

 , (33)

where

Θ11 � rn(1 − E)
− 1

rnEsn 1 − E
− 1

 
− 1

rn − rn(1 − E)
− 1

· snE
− 1

rn 1 − E
− 1

 
− 1

rn + rn(1 − E)
− 1

r
2
nsn − r

2
nsn 1 − E

− 1
rn 

− 1
,

Θ12 � rn(1 − E)
− 1

rnEsn(1 − E)
− 1

sn − rn(1 − E)
− 1

· snE
− 1

rn(1 − E)
− 1

sn − rn(1 − E)
− 1

rns
2
n − rns

2
n(1 − E)

− 1
sn,

Θ21 � sn 1 − E
− 1

 
− 1

rnEsn 1 − E
− 1

 
− 1

rn − sn 1 − E
− 1

 
− 1

· snE
− 1

rn(1 − E)
− 1

rn − sn 1 − E
− 1

 
− 1

r
2
nsn − rns

2
n 1 − E

− 1
 

− 1
rn,

Θ22 � sn 1 − E
− 1

 
− 1

rnEsn(1 − E)
− 1

sn − sn 1 − E
− 1

 
− 1

snE
− 1

rn

· 1 − E
− 1

 
− 1

rn − sn 1 − E
− 1

 
− 1

r
2
nsn + r

2
nsn(1 − E)

− 1
sn,

J �
0 − rnsn

rnsn 0
 ,

K �
K11 K12

K21 K22
 ,

(34)

with

K11 � − rn 1 − E
− 1

 
− 1 1

sn

E
1
rn

(1 − E)
− 1

rn + rn 1 − E
− 1

 
− 1

·
1
rn

E
− 1 1

sn

(1 − E)
− 1

rn −
1
sn

(1 − E)
− 1

rn + rn 1 − E
− 1

 
− 1 1

sn

,

K12 � − rn 1 − E
− 1

 
− 1 1

sn

E
1
rn

1 − E
− 1

 
− 1

sn + rn 1 − E
− 1

 
− 1 1

rn

E
− 1

·
1
sn

1 − E
− 1

 
− 1

sn −
1
sn

1 − E
− 1

 
− 1

sn − rn 1 − E
− 1

 
− 1 1

rn

,

K21 � − sn(1 − E)
− 1 1

sn

E
1
rn

(1 − E)
− 1

rn + sn(1 − E)
− 1

·
1
rn

E
− 1 1

sn

(1 − E)
− 1

rn +
1
rn

(1 − E)
− 1

rn + sn(1 − E)
− 1 1

sn

,

K22 � − sn(1 − E)
− 1 1

sn

E
1
rn

1 − E
− 1

 
− 1

sn + sn(1 − E)
− 1 1

rn

E
− 1

·
1
sn

1 − E
− 1

 
− 1

sn +
1
rn

1 − E
− 1

 
− 1

sn − sn(1 − E)
− 1 1

rn

.

(35)

For three arbitrary constants α, β, and c, it is easy to
verify that the operator M(α, β, c) � αΘ + βJ + cK is a
skew-symmetric operator, i.e.,M(α, β, c) � − M(α, β, c)∗.
Furthermore, by a straightforward and lengthy calcula-
tion, we can prove that the operator M(α, β, c) fulfills the
Jacobian identity (22). So, we can get the following
proposition.

Proposition 2. For all values of three arbitrary constants
α, β, and c, M(α, β, c) � αΘ + βJ + cK is a Hamiltonian
operator.

Furthermore, we can obtain that integrable family (19)
possesses tri-Hamiltonian structure

Θ
δ H

(m+1)

n

δun

� J
δ H

(m)

n

δun

� K
δ H

(m)

n

δun

, m≥ 1. (36)

Moreover, from (7), we find the recursion relation

δ H
(m+1)

n

δun

� G
δ H

(m)

n

δun

, (37)

where

G �
G11 G12

G21 G22

⎛⎝ ⎞⎠,

G11 � −
1
rn

(1 − E)
− 1 1

sn

E
1
rn

(1 − E)
− 1

rn +
1
rn

(1 − E)
− 1

·
1
rn

E
1
sn

(1 − E)
− 1

rn +
1
rn

(1 − E)
− 1 1

sn

+
1

r
1
nsn

(1 − E)
− 1

rn,

G12 � −
1
rn

(1 − E)
− 1 1

sn

E
1
rn

1 − E
− 1

 
− 1

sn +
1
rn

(1 − E)
− 1 1

rn

E
− 1

·
1
sn

1 − E
− 1

 
− 1

sn −
1
rn

(1 − E)
− 1 1

rn

+
1

r
2
nsn

(1 − E)
− 1

rn,

G21 �
1
sn

1 − E
− 1

 
− 1 1

sn

E
1
rn

(1 − E)
− 1

rn −
1
sn

1 − E
− 1

 
− 1 1

rn

· E
− 1 1

sn

(1 − E)
− 1

rn −
1
sn

1 − E
− 1

 
− 1 1

sn

+
1

r
2
nsn

(1 − E)
− 1

rn,

G22 �
1
sn

1 − E
− 1

 
− 1 1

sn

E
1
rn

1 − E
− 1

 
− 1

sn −
1
sn

1 − E
− 1

 
− 1 1

rn

· E
− 1 1

sn

1 − E
− 1

 
− 1

sn +
1
sn

1 − E
− 1

 
− 1 1

rn

+
1

rns
2
n

1 − E
− 1

 
− 1

sn,

(38)

where Φ � G∗ is a recursion operator. By means of the op-
erator G, we have

untm
� J

δ H
(m)

n

δun

� JG
δ H

(m− 1)

n

δun

� JG
2δ H

(m− 2)

n

δun

� · · · � JG
mδ H

(0)

n

δun

� ΦJ
δ H

(m− 1)

n

δun

� · · · � Φm
J
δ H

(0)

n

δun

⎛⎝ ⎞⎠.

(39)

Now, we would like to prove the Liouville integrability of
the discrete Hamiltonian systems (36). It is crucial to show
the existence of infinite involutive conserved functionals.
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Proposition 3. H
(m)

n 
∞

m�0
are conserved functionals of the

whole family (19). And, they are in involution in pairs with
respect to the Poisson bracket (24).

Proof. A direct calculation shows

(JG)
∗

� K
∗

� − K � − JG, (40)

that is,

G
∗
J � JG. (41)

So,

H
(m)

n , H
(l)

n 
J

�〈
δ H

(m)

n

δun

, J
δ H

(l)

n

δun

〉 �〈Gm− 1δ H
(1)

n

δun

, JG
l− 1δ H

(1)

n

δun

〉

�〈Gm− 1δ H
(1)

n

δun

, G
∗
JG

l− 2δ H
(1)

n

δun

〉 �〈Gmδ H
(1)

n

δun

, JG
l− 2δ H

(1)

n

δun

〉

� H
(m+1)

n , H
(l− 1)

n 
J

� · · · � H
(m+l− 1)

n , H
(1)

n 
J
.

(42)

Repeating the above argumentation, we can get that

H
(l)

n , H
(m)

n 
J

� H
(m+l− 1)

n , H
(1)

n 
J
. (43)

(en, combining the above two equations, we have

H
(m)

n , H
(l)

n 
J

� 0, m, l≥ 1,

H
(m)

n 
tl

�〈
δ H

(m)

n

δun

, utl
〉 �〈

δ H
(m)

n

δun

, J
δ H

(l)

n

δun

〉 � H
(m)

n , H
(l)

n 
J

� 0, m, l≥ 1.

(44)

(e proof is finished.
Based on system (39) and Proposition 3, we can obtain

the following theorem.

Theorem 1. Each INDDE in family (19) is Liouville-inte-
grable discrete Hamiltonian system and has tri-Hamitonian
structure (36).

4. Lie Algebraic Structure of Vector Fields

In Section 2, we have discussed the spectral problem (4) in
the isospectral case, namely, dλ/dtm � 0. Next, we shall
investigate the spectral problem (4) in the nonisospectral
case. Now, let us suppose that dλ/dtm � λ2m+1 in (4). First,
we shall derive a nonisospectral integrable family using the
method proposed in [23, 24]. (e nonisospectral initial zero
curvature equation

EV
(0)
n Un − UnVn � Un

′ σ(0)
n  + λ

zUn

zλ
, (45)

is presented. In this equation, the corresponding solutions
are easily solved as follows:

σ(0)
n �

− rn

− sn

 ,

V
(0)
n �

1 0

0 1
 .

(46)

Now, we introduce the operator equation:

EΩn(X)( Un − UnΩn(X) � Un
′(ΦX) + λ2

zUn

zλ
, X � X

(1)
n , X

(2)
n 

T
,

(47)

In the above equation

Ωn(X) �
Ω(11)

n Ω
(12)
n

Ω(21)
n Ω

(22)
n

⎛⎝ ⎞⎠, (48)

here, Ω(ij)
n (1≤ i, j≤ 2) is the undetermined function. (is

(47) is called a characteristic operator equation [23, 24].
(rough a straightforward computation, the following re-
sults are obtained:
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Ω(11)
n (X) � − (1 − E)

− 1 X1

r
2
nsn

− (1 − E)
− 1 X2

rns
2
n

− (1 − E)
− 1 1

sn

· E
1
rn

1 − E
− 1

 
− 1X1

rn

+
1
rn

1 − E
− 1

 
− 1X2

sn

−
X2

rnsn

  − (1 − E)
− 1

·
1
rn

E
− 1 1

sn

(1 − E)
− 1X1

rn

+
1
sn

(1 − E)
− 1X2

sn

+
X1

rnsn

 ,

Ω(12)
n (X) � − E

− 1
−
1
sn

(1 − E)
− 1X1

rn

−
1
sn

(1 − E)
− 1X2

sn

+
X1

rnsn

 λ,

Ω(21)
n (X) �

1
rn

1 − E
− 1

 
− 1X1

rn

+
1
rn

1 − E
− 1

 
− 1X2

sn

−
X2

rnsn

 λ,

Ω(22)
n (X) � − λ2 (1 − E)

− 1X1

rn

+(1 − E)
− 1X2

sn

 .

(49)

Let us set

σ(m)
n � Φmσ(0)

n , m≥ 1,

V
(m)
n � λ2m

V
(0)
n + 

m

j�1
λ2m− 2jΩn σ(j− 1)

n , m≥ 1.
(50)

(en, we obtain that

EV
(m)
n Un − UnV

(m)
n � λ2m

EV
(0)
n Un − UnV

(0)
n 

+ 
m

j�1
λ2m− 2j

EΩ σ(j− 1)
n  Un − Un Ω σ(j− 1)

n   

� λ2m
Un
′ σ(0)

n  + λ
zUn

zλ
  + 

m

j�1
λ2m− 2j

Un
′ Φ σ(j− 1)

n   − λ2Un
′ Φ σ(j− 1)

n   

� λ2m
Un
′ σ(0)

n  + λ
zUn

zλ
  + 

m

j�1
λ2m− 2j

Un
′ σ(j)

n  − λ2Un
′ Φ σ(j− 1)

n   

� Un
′ σ(m)

n  + λ2m+1zUn

zλ
.

(51)

(us, we get a integrable family of nonisospectral (λt �

λm+1) discrete evolution equations

untm
� σ(m)

n , m≥ 0, (52)

and based on (51), the integrable family has the following
nonisospectral (λt � λ2m+1) zero curvature representation

Untm
� EV

(m)
n Un − UnV

(m)
n , m≥ 0. (53)

Following [23, 24], let K and S be vector fields; X andY

be matrix operators; and f andg be smooth functions, then
the following Lie bracket can be defined by

[[(K, X, f), (S, Y, g)]] � ([K, S], [[X, Y]], [[f, g]]), (54)

where
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[K, S] � K′[S] − S′[K], K′[S] �
d
dϵ

|ϵ�0K(u + ϵS),

[V, W] � V′[S] − W′[K] +[V, W] + gVλ − fWλ, [V, W]

� VW − WV, [[f, g]](λ) � f′(λ)g(λ) − f(λ)g′(λ).

(55)

We start our calculation as follows:

χ(m)
n | rn,sn( )�(∞,∞) � λ2m

− 1
2

0

0
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

V
(m)
n | rn,sn( )�(∞,∞) � λ2m

1 0

0 1
⎛⎝ ⎞⎠,

K
(m)
n | rn,sn( )�(∞,∞) � 0, ρ(l)

n | rn,sn( )�(∞,∞) � Φl
,

ρ(0)
n | rn,sn( )�(∞,∞) � 0, l, m≥ 1,

χ(m)
n,λ | rn,sn( )�(∞,∞) � 2mλ2m− 1

− 1
2

0

0
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

V
(m)
n,λ � 2mλ2m− 1

1 0

0 1
⎛⎝ ⎞⎠.

(56)

By the above results, we can get

χ(m)
n , χ(l)

n  | rn,sn( )�(∞,∞) � 0,

χ(m)
n , V

(l)
n  | rn,sn( )�(∞,∞) � 2mχ(m+l)

n | rn,sn( )�(∞,∞),

V
(m)
n , V

(l)
n  | rn,sn( )�(∞,∞) � 2(m − l)V

(m+l)
n | rn,sn( )�(∞,∞).

(57)

Moreover, it is easy to find that Un
′ is an injective map.

Using the above Lie algebra relations, we can arrive at the Lie
algebra of vector fields for the isospectal and nonisospectal
families (19) and (52) as follows:

K
(m)
n , K

(l)
n  � 0, (58)

K
(m)
n , ρ(l)

n  � 2mK
(m+l)
n , (59)

ρ(m)
n , ρ(l)

n  � 2(m − l)ρ(m+1)
n . (60)

From equations (58) and (59), we obtain

K
(m)
n , K

(m)
n , ρ(l)

n   � 0, m, l≥ 1. (61)

Hence, ρ(l)
n (l≥ 0) are all the master symmetries of

un,tm
� K(m)

n (m≥ 0). Furthermore, the vector field

τml � t[K(m)
n , ρ(l)

n ] + ρ(l)
n (m, l≥ 0) is the symmetries of

utl
� K(m)

m . Here,

K
(m)
n , τml, m, l≥ 0, (62)

constitute a symmetry algebra of Witt type.

5. Conclusions and Remarks

In this paper, we have deduced a family of integrable dif-
ferential-difference equations through the discrete zero
curvature equation. With the help of discrete zero curvature
equations, we derive a family of INDDEs. A triple Hamil-
tonian structure (tri-Hamiltonian structure) for the obtained
integrable family is established by the discrete trace identity.
Louville integrability of the obtained family is proved. (en,
a nonisospectral integrable family associated with the ob-
tained family is derived by solving an initial nonisospectral
discrete zero curvature equation and the corresponding
characteristic operator equation. Ultimately, Lie algebra of
isospectral and nonisospectral vector fields is obtained. In
addition, there are other problems worth further investi-
gation for the integrable family (9). For example, the inverse
scattering transformation, Hamiltonian structures, binary
nonlinearization of Lax pairs, and integrable coupling sys-
tems by semidirect sums of Lie algebra.
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