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+is study is devoted to investigating the stabilization to exponential input-to-state stability (ISS) of a class of neural networks with
time delay and external disturbances under the observer-based aperiodic intermittent control (APIC). Compared with the general
neural networks, the state of the neural network investigated is not yet fully available. Correspondingly, an observer-based APIC is
constructed, and moreover, neither the observer nor the controller requires the information of time delay. +en, the stabilization
to exponential ISS of the neural network is realized severally by the observer-based time-triggered APIC (T-APIC) and the
observer-based event-triggered APIC (E-APIC), and corresponding criteria are given. Furthermore, the minimum activation time
rate (MATR) of the observer-based T-APIC and the observer-based E-APIC is estimated, respectively. Finally, a numerical
example is given, which not only verifies the effectiveness of our results but also shows that the observer-based E-APIC is superior
to the observer-based T-APIC and the observer-based periodic intermittent control (PIC) in control times and the minimum
activation time rate, and the function of the observer-based T-APIC is also better than the observer-based PIC.

1. Introduction

Neural network, a mathematical model for information
processing, can better simulate the working mechanism of
the brain and plays a crucial role in artificial intelligence.+e
research on the dynamic behaviors of the neural network is
the premise of the successful application of the neural
network in many fields, such as associative memory, opti-
mization problems, image recognition, different learning
tasks, and so on [1–7]. In recent years, the research on the
dynamic behaviors of the neural network mainly includes
synchronization, stability, periodicity, and other dynamic
behaviors, and some new and excellent results are emerging
continuously [2, 8–11].

As an important dynamic behavior of the neural net-
work, stability has always been concerned by scholars. At
present, the research on stability mainly includes asymptotic

stability, exponential stability, Lagrange stability, and other
stabilities [12–18]. Exponential stability has attracted much
attention due to its advantages of fast convergence speed and
fast achieving the expected goal in practical application. By
using a new multiple Lyapunov function and linear matrix
inequalities, Lian and Zhang [14] discussed the exponential
stability of a class of uncertain switched Cohen–Grossberg
neural networks with interval time-varying, distributed
delay, and average dwell time. In [16], a class of hybrid
neural networks with inertia term and mixed time-varying
delays has been noticed. +en, by establishing appropriate
Lyapunov functionals and inequality technique, some suf-
ficient conditions have been given to implement exponential
stability of the system.

For one thing, as a result of the limitations of existing
technical means, the switching speed of hardware devices is
limited, which leads to the time delay phenomenon
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ubiquitous and inevitable in all kinds of engineering ap-
plication. +e existence of time delay is often one of the
important factors affecting the stability of dynamic systems.
For another, the systemwill inevitably be affected by external
disturbances in practical application. For example, the
communication signals will be interfered by other signals in
the process of transmission, the machine will be affected by
vibration in the process of operation, etc. +erefore, it is
more practical to study the stability of neural networks with
time delay and external disturbances. Halanay inequality
and the generalization of Halanay-type inequality [8] are
commonly used in the study of time delay systems. Input-to-
state stability has attracted much attention because it can
describe the impact of external disturbances on the dynamic
system. In other words, input-to-state stability means that
the system is probably asymptotically stable without dis-
turbances, and when the input of the system is bounded, the
response of the system is also bounded. In [19], the input-to-
state stability, a class of delayed dynamical systems with
bounded disturbances, was concerned. +e input-to-state
stability analysis of a class of impulsive stochastic Cohen–
Grossberg neural networks with mixed delays was discussed
in [20]. Based on stochastic analysis theory, impulse theory,
Itô formula, Dynkin formula, and so on, the mean square
exponential input-to-state stability of systems with/without
impulsive control was obtained.

In order to ensure the stable operation of the system, it is
frequently necessary to exert external control on the system.
It is a remarkable fact that the control in some practical
applications is frequently discontinuous, such as vehicle
control, the management of wind power generation, re-
frigeration system of a refrigerator, and the orbit adjustment
of spacecraft. In some practical applications, as mentioned
above, discontinuous control is not only less costly but also
more practical than continuous control. Intermittent control
and impulsive control belong to discontinuous control.
Intermittent control and impulsive control are similar but
different. Intermittent control is executed in some time
intervals, while impulsive control is activated at instants. At
present, numerous researchers have studied the impulsive
control based on the stability of the impulsive system and
achieved good results [21–25]. Yet, in some practical ap-
plications, it may be difficult to complete a control task in a
flash, for example, vehicle acceleration and deceleration
control, where the control is intermittent rather than in-
stantaneous. If not, the movement of the vehicle will bump
and shock. In this situation, intermittent control is obviously
better than impulsive control. As far as we know, compared
with impulsive control, the research results of intermittent
control are relatively few.

In this study, we will consider studying the ISS of the
neural network by intermittent control. In recent years,
periodic intermittent control has been gradually used to
realize some common dynamic behaviors of the neural
network [26]. However, in some practical applications,
demand of periodicity is unnecessary and unreasonable,
such as the wind power generation mentioned above. +e

aperiodic intermittent control has the characteristics that the
duration of each control and the time interval of two ad-
jacent controls are not fixed, so its flexibility is better and
practicability is stronger. Apparently, in order to eliminate
the limitation of periodicity, aperiodic intermittent control
is a better choice. What is noteworthy is that multitudinous
scholars focus on the synchronization problem of the system
under aperiodic intermittent control [27–29], while the
research on the stability is relatively less. Using the condition
of converse average dwell time, Liu et al. [30] designed a
time-triggered aperiodic intermittent controller to realize
exponential input-to-state stability of the continuous-time
system. In addition, to reduce the conservatism existing in
the time-triggered aperiodic intermittent controller, Liu
et al. proposed the event-triggered aperiodic intermittent
control. It is worth noting that the state of the system
discussed in [30] is measurable, and the controllers use the
real state of the system to control. However, due to some
physical limitations or measurement technology limitations,
the state of the system is often not completely obtained,
which will lead to the failure of the feedback control based on
the state of the system. Inspired by [30], it is very interesting
to study the exponential ISS of the neural network by using
the aperiodic intermittent control when the system state is
not measurable. Building a state observer is one of the
common methods to solve the problem of unmeasurable
system state, and many excellent and interesting results have
been obtained in many fields [31–33]. Furthermore, as far as
we know, almost no scholars use aperiodic intermittent
control to achieve the exponential ISS of neural networks
with time delay and external disturbances when the system
state is unmeasurable.

According to the above elaboration, this study mainly
focuses on exponential input-to-state stability of a class of
neural networks with time delay and external disturbances
under observer-based aperiodic intermittent control. +e
main work of this study is summarized as follows:

(1) A state observer independent of time delay infor-
mation is constructed, which is more practical be-
cause time delay information is often not and is not
easy to obtain completely in some practical
applications

(2) Combining the time-triggered mechanism with the
aperiodic intermittent control based on the state
observer, an observer-based time-triggered con-
troller is put forward. +en, the activation time and
control duration of the controller are designed by
using the infimum of the single activation time rate
of the controller and the converse average dwell time
method to guarantee the exponential ISS of the
neural network. Furthermore, the minimum acti-
vation time rate of the controller is estimated.

(3) In order to reduce the conservatism existing in the
observer-based time-triggered aperiodic intermittent
control, an observer-based event-triggered control
mechanism is proposed. Meanwhile, the criterion to
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ensure the exponential input-to-state stability of the
studied network is given, and the minimum acti-
vation time rate of the controller is evaluated.

+e arrangement of the rest of this study is as follows.
+e second part is the symbol description and the con-
struction of neural networks. +e third and fourth parts are
the derivation of the results obtained in this study. In the
fifth part, a numerical example is given to verify the effec-
tiveness of the results.+e conclusion and prospect are given
in the sixth part.

2. Preliminaries

Let R and Rn denote the set of real numbers and the
n-dimensional real vector space, respectively. I represents
the identity matrix, R+ � [0,∞), and N � 0, 1, . . . , n{ }.
λmax(Q) stands for the maximum eigenvalue of the sym-
metric matrix Q. For a matrix A � (aij)n×m, its norm is
defined as ‖A‖ � [λmax(ATA)](1/2). Denoted by C(

[− τ, 0],Rn), the Banach space composed of all continuous
vector-valued functions φ: [− τ, 0]⟶ Rn.

+e symbol L∞,loc represents the set of Lebesgue mea-
surable functions, which are composed of locally essentially
bounded functions ι: R+⟶ Rn. For ι ∈ L∞,loc, set
‖ι‖[s1 ,s2] � ess sups1≤t≤s2 ‖ι(t)‖{ } and ‖ι‖∞ � ess supt∈R+

‖ι(t)‖{ }.
In this study, we discuss the following neural network

model with time delay and external disturbances.
_x(t) � − Cx(t) + Af(x(t)) + Bg(x(t − τ)) + u1(t) + ω(t), t≥ t0,

x t0 + θ( 􏼁 � φ(θ) ∈ C [− τ, 0],R
n

( 􏼁,
􏼨

(1)

where x(t) � (x1(t), x2(t), . . . , xn(t))T ∈ Rn is the state
vector of the neural network; x(t0 + θ) � φ(θ), θ ∈ [− τ, 0] is
the initial value condition of (1); f(x(t)) � (f1(x1(t)),

f2(x2(t)), . . . , fn(xn(t)))T and g(x(t − τ)) � (g1(x1 (t −

τ)), g2(x2(t − τ)), . . . , gn(xn(t − τ)))T are the activation
functions at time t and delay time t − τ; C � diag c1,􏼈

c2, . . . , cn} is the real diagonal matrix, where ci > 0, i � 1, 2,

. . . , n; A, B are the weight matrices with corresponding
dimensions; the control input of the neural network is
represented by u1(t); ω(t) ∈ L∞,loc is the external distur-
bances; τ > 0 is a transmission delay.

Suppose that (1) with u � 0 is not ISS.+e purpose of this
study is to design the APIC to ensure that (1) is exponential
ISS. Furthermore, considering that, in a great deal of en-
gineering applications, due to some physical limitations or
other reasons, the system state may be extremely difficult or
almost impossible to obtain completely, which leads to the
malfunction of feedback control based on the real state of the
system. +erefore, we construct a state observer (2):

_􏽥x(t) � − C􏽥x(t) + Af(􏽥x(t)) + Bg(􏽥x(t)) + u2(t), t≥ t0,

􏽥x t0( 􏼁 � ψ ∈ Rn
,

⎧⎨

⎩

(2)

where 􏽥x(t) ∈ Rn is the estimation of state x(t);
􏽥x(t0) � ψ ∈ Rn is the initial value condition of (2).

Remark 1. Because the state value is unknown, it is very
likely that the time delay cannot be known, so it is uncertain
whether to adopt time-varying delay, distributed constant
delay, or other time-delay in the observer system. +us, the
time delay information is not used to design an observer to
estimate the state of (1). According to this, we consider the
above state observer. Moreover, when the time delay is
measurable, it can be similar to the following discussion
about the unmeasurable time delay. +erefore, the study
only considers the case where the delay information is
unmeasurable.

Let ti denote the starting instant of the controller and ϑi

represent the control duration of the controller. +en, u2(t)

and u1(t) are designed as

u2(t) �
K2􏽥x(t), ti ≤ t< ti + ϑi,

0, ti + ϑi ≤ t< ti+1,
􏼨 (3)

u1(t) �
K1􏽥x(t), ti ≤ t< ti + ϑi,

0, ti + ϑi ≤ t< ti+1,
􏼨 (4)

where K2 and K1 are the control gain matrices.

Remark 2. Considering the immeasurability of system
state, the real state of the system cannot be used as
feedback control; hence, we consider to regulate and
control observer (2) and real system (1) by the observation
value. Furthermore, the control input u1(t) of (1) is APIC.
Hence, in order to construct a proper error system, the
control input u2(t) of observer (2) is also designed to be
APIC.

Remark 3. Compared with the periodic intermittent control
(PIC) proposed in [26], where

u(t) �
Kx(t), iT≤ t< iT + ϑ,

0, iT + ϑ≤ t<(i + 1)T,
􏼨 (5)

the time span of each control in APIC is more flexible. In the
above formula, T> 0 stands for the period of control and
0< ϑ<T denotes activation time of u(t).

Combining (2) and (3), observer (2) can be rewritten as

_􏽥x(t) � − C − K2( 􏼁􏽥x(t) + Af(􏽥x(t)) + Bg(􏽥x(t)), ti ≤ t< ti + ϑi,

_􏽥x(t) � − C􏽥x(t) + Af(􏽥x(t)) + Bg(􏽥x(t)), ti + ϑi ≤ t< ti+1, i ∈ N,

􏽥x t0( 􏼁 � ψ ∈ Rn
.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

Similarly, combining (1) and (4), system (1) becomes the
following form:

Discrete Dynamics in Nature and Society 3



_x(t) � − Cx(t) + K1􏽥x(t) + Af(x(t)) + Bg(x(t − τ)) + ω(t), ti ≤ t< ti + ϑi,

_x(t) � − Cx(t) + Af(x(t)) + Bg(x(t − τ)) + ω(t), ti + ϑi ≤ t< ti+1, i ∈ N,

x t0 + θ( 􏼁 � φ(θ) ∈ C [− τ, 0],R
n

( 􏼁.

⎧⎪⎪⎨

⎪⎪⎩
(7)

Let e(t) � x(t) − 􏽥x(t) denote the error between neural
network (1) and observer (2); then, the dynamic of the error
system can be described as

_e(t) � − Ce(t) + A[f(x(t)) − f(􏽥x(t))] + K1 − K2( 􏼁􏽥x(t) + B[g(x(t − τ)) − g(􏽥x(t))] + ω(t), ti ≤ t< ti + ϑi,

_e(t) � − Ce(t) + A[f(x(t)) − f(􏽥x(t))] + B[g(x(t − τ)) − g(􏽥x(t))] + ω(t), ti + ϑi ≤ t< ti+1,

e t0 + θ( 􏼁 � 􏽥ϕ(θ) � φ(θ) − ψ ∈ C [− τ, 0],R
n

( 􏼁,

⎧⎪⎪⎨

⎪⎪⎩
(8)

where i ∈ N.
It is noteworthy that the real system (1) can be stable

when both the observation system (2) and error system (8)
are stable. Hence, we consider realizing the stability of (1) by

realizing the stability of the augmented system composed of
(2) and (8).

Let z(t) � (􏽥xT(t), eT(t))T and z(t0 + θ) �

Φ(θ) � (ψT, 􏽥ϕT
(θ))T ∈ C([− τ, 0],R2n). +en, combining

(6) and (8), the following argument system can be obtained:

_z(t) � C1z(t) + A1F(t) + B1G(t − τ) + W(t), ti ≤ t< ti + ϑi,

_z(t) � C2z(t) + A1F(t) + B1G(t − τ) + W(t), ti + ϑi ≤ t< ti+1, i ∈ N,

z t0 + θ( 􏼁 � Φ(θ) ∈ C [− τ, 0],R
2n

􏼐 􏼑,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

where

W(t) � 0,ωT
(t)􏼐 􏼑

T
,

F(t) � f
T
(􏽥x(t)), f

T
(x(t)) − f

T
(􏽥x(t))􏼐 􏼑

T
,

G(t) � g
T
(􏽥x(t)), g

T
(x(t − τ)) − g

T
(􏽥x(t))􏼐 􏼑

T
,

A1 �
A 0

0 A

⎡⎣ ⎤⎦,

B1 �
B 0

0 B

⎡⎣ ⎤⎦,

C1 �
− C + K2 0

K1 − K2 − C

⎡⎣ ⎤⎦,

C2 �
− C 0

0 − C

⎡⎣ ⎤⎦.

(10)

Assume that z(t) � z(t, t0,Φ) is the solution of (9) with
the initial condition z(t0 + θ) � Φ(θ) ∈ C([− τ, 0],R2n).

Definition 1. [30]. System (1) is exponential input-to-state
stable via observer-based APIC (4) if system (9) is expo-
nentially ISS with respect toω(t), i.e., there exist M> 0, r> 0,
and function Ψ ∈K∞, such that the solution z(t) of (9)
satisfies

‖z(t)‖≤M z t0( 􏼁
����

����e
− r t− t0( ) + Ψ ‖ω‖ t0 ,t[ ]􏼒 􏼓, t≥ t0. (11)

Now, we give the following assumptions and lemmas
which are extremely necessary for our follow-up derivation.

Assumption 1. Functions f(·), g(·) ∈ Rn with f(0) � 0, and
g(0) � 0 are Lipschitz continuous, that is, ∀xi, yi ∈ R; there
exist l1i > 0,􏽥l2i > 0 satisfy

fi xi( 􏼁 − fi yi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ l1i xi − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, i � 1, 2, . . . , n,

gi xi( 􏼁 − gi yi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤􏽥l2i xi − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, i � 1, 2, . . . , n.

(12)

According to Assumption 1, let l1 � max l11, l12, . . . , l1n􏼈 􏼉

and l2 � max 􏽥l21,
􏽥l22, . . . ,􏽥l2n􏽮 􏽯.

Assumption 2. Suppose there are matrices K1, K2 and
positive constants g1, g2 that satisfy the following
conditions:

C1 + C
T
1 + A1A

T
1 + B1B

T
1 + l

2
1 + 3l

2
2 + g1􏼐 􏼑I≤ 0, (13)

2C2 + A1A
T
1 + B1B

T
1 + l

2
1 + 3l

2
2 − g2􏼐 􏼑I≤ 0. (14)

Lemma 1 (see [34]). For any X,Y ∈ Rn, we have

X
T
Y + Y

T
X≤ εXT

X + ε− 1
Y

T
Y, (15)

where ε is any positive constant.
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Lemma 2. Let V: [t0 − τ, +∞)⟶ [0, +∞) and
E: [t0, +∞)⟶ [0, +∞). If the derivative of V with respect
to t satisfies the following inequality:

_V(t)≤ αV(t) + βV(t − τ) + E(t), t≥ t0, (16)

where α ∈ R and β> 0, τ > 0, then, for any t≥ t0, the following
result can be obtained:

V(t)≤ V t0( 􏼁 + 􏽚
t

t0

e
− r s− t0( )E(s)ds􏼠 􏼡e

r t− t0( ), (17)

when − r + α + βmax e− rτ , 1{ }≤ 0.

Proof. Let

V(t) �
V(t), t ∈ t0 − τ, t0􏼂 􏼁,

V(t)e
− r t− t0( ), t≥ t0.

⎧⎨

⎩ (18)

From (16) and (18), it follows that

_V(t) � _V(t)e
− r t− t0( ) − rV(t)e

− r t− t0( ) ≤ (α − r)V(t)e
− r t− t0( ) + βV(t − τ)e

− r t− t0( ) + e
− r t− t0( )E(t), t≥ t0. (19)

(19) is discussed as follows: (a) If t − τ ∈ [t0 − τ, t0), then V(t − τ) � V(t − τ),
t − t0 ∈ [0, τ), and we have

_V(t)≤ (α − r)V(t) + βV(t − τ)max e
− rτ

, 1􏼈 􏼉 + e
− r t− t0( )E(t), t≥ t0. (20)

(b) If t − τ ∈ [t0, +∞), then

_V(t)≤ (α − r)V(t) + βV(t − τ)e
− r t− τ− t0( )e

− rτ
+ e

− r1 t− t0( )E(t)≤ (α − r)V(t) + βV(t − τ)max e
− rτ

, 1􏼈 􏼉 + e
− r t− t0( )E(t), t≥ t0.

(21)

Hence, for any t≥ t0, we get
_V(t) ≤ (α − r)V(t) + βmax e

− rτ
, 1􏼈 􏼉V(t − τ) + e

− r t− t0( )E(t).

(22)

Let

U(t) �

V(t), t ∈ t0 − τ, t0􏼂 􏼁,

V(t) − 􏽚
t

t0

e
− r s− t0( )E(s)ds, t≥ t0,

⎧⎪⎪⎨

⎪⎪⎩

(23)

then, for any t≥ t0,
_U(t)≤ (α − r)V(t) + βmax e

− rτ
, 1􏼈 􏼉V(t − τ)

≤ α − r + βmax e
− rτ

, 1􏼈 􏼉( 􏼁sup V(t), V(t − τ)􏼈 􏼉

≤ 0,

(24)

since − r + α + βmax e− rτ , 1{ }≤ 0. +erefore, it follows that

U(t)≤U t0( 􏼁 � V t0( 􏼁, (25)

for any t≥ t0. +en, combining (23), for any t≥ t0, we have

V(t) − 􏽚
t

t0

e
− r s− t0( )E(s)ds≤V t0( 􏼁 � V t0( 􏼁, (26)

and so

V(t)≤V t0( 􏼁 + 􏽚
t

t0

e
− r s− t0( )E(s)ds, (27)

which means (17) holds. +e deducing procedure is
finished. □

Remark 4. Lemma 2 obtained the variation of V(t) in the
interval [t0, +∞) on the premise that the derivative of V(t)

satisfies condition (16). For the variation of V(t) in the
interval [t0 − τ, t0), it is clear that
V(t)≤ supζ∈[− τ,0]V(t0 + ζ). Moreover, the value of V(t) in
the interval [t0 − τ, t0) can be regarded as the initial value of
differential equation (16). Because the initial value is ar-
bitrary and is predetermined, it is not necessary to know
the variation of V(t) exactly when t ∈ [t0 − τ, t0). Instead,
we should pay attention to the variation of V(t) when t≥ t0,
and the function V(t) satisfies a certain differential
equation.
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For the stability of system (9) under the observer-based
APIC (K1, K2, ti􏼈 􏼉, ϑi􏼈 􏼉), let K1 and K2 satisfy (13) and (14)
first. +e next step is how to construct ti􏼈 􏼉 and ϑi􏼈 􏼉.

To begin with, ensure that the observer-based APIC
(K1, K2, ti􏼈 􏼉, ϑi􏼈 􏼉) is designed with the following
characteristics:

(1) No Zeno behavior
(2) +e controller works intermittently

ti􏼈 􏼉 should satify the following condition:

ti < ti+1, ∀i ∈ N;

lim
i⟶∞

ti �∞.
(28)

+e duration of control ϑi should satify

0< ϑi <Δi ≜ ti+1 − ti, ∀i ∈ N, (29)

and let ϑmin � mini∈N ϑi􏼈 􏼉> 0, ϑmax � maxi∈N ϑi􏼈 􏼉<∞.

+erefore, the problem of stabilization to ISS by ob-
server-based APIC formulated the issue of minimum acti-
vation time rate (MATR):

Rmin � min
ti{ }, ϑi{ }

lim
i⟶∞

inf
􏽐

i
j�0 ϑj

􏽐
i
j�0 Δj

⎧⎨

⎩

⎫⎬

⎭, (30)

where ti satisfies (28) and ϑi satisfies (29). Additionally, for a
controller, if the duration of each control is ϑi, then the
activation time rate of the controller during [t, s) is defined
as R(t) � (􏽐

N− 1
i�0 ϑi/(s − t)) × 100%, where the notation N

signifies the number of times the controller is activated
during the period.

3. Stabilization toExponential ISS viaObserver-
Based T-APIC

In this section, we devote ourselves to achieving exponential
ISS of system (1) via the observer-based T-APIC and

consider the following two cases to design the observer-
based T-APIC.

Case 1. ti􏼈 􏼉 is given to satisfy (28). Here, we design the
observer-based time-triggered aperiodic intermittent con-
trol by using infimum of single activation time rate
cinf ≜ inf i∈N ϑi/Δi􏼈 􏼉 and the converse average dwell time,
respectively, and give the criterion of exponential input-to-
state stability of neural network (1) under the control. In
addition, we estimate the minimum activation time rate Rmin
of the control.

Theorem 1. Suppose that ti􏼈 􏼉 is given to satisfy (28) and
Assumptions 1 and 2 hold. Moreover, there exist 􏽥r1 < 0 and
r2 > 0, such that

− 􏽥r1 − g1 − ε1( 􏼁 + 4l
2
2e

− 􏽥r1τ ≤ 0, (31)

− r2 + g2 + ε2( 􏼁 + 4l
2
2 ≤ 0, (32)

where ε1 and ε2 are the appropriate constants satisfying
0< ε1 <g1 and 0< ε2 <g2. Cen, system (1) can achieve
stabilization to exponential ISS under observer-based T-APIC
(4), if ϑi􏼈 􏼉 satisfies (29) and the following condition:

R
∗
u �

r2
r1 + r2
< cinf � inf

i∈N

ϑi

Δi

􏼨 􏼩< 1, (33)

where r1 � |􏽥r1|. In addition, we have

Rmin >R
∗
u. (34)

Proof. Let V(z(t)) � zT(t)z(t).
For any ti ≤ t< ti + ϑi, computing the derivative of

V(z(t)) with respect to the time t, we get that

_V(z(t)) � 2z
T
(t) _z(t)

� 2z
T
(t)C1z(t) + 2z

T
(t)A1F(t) + 2z

T
(t)B1G(t − τ) + 2z

T
(t)W(t).

(35)

According to Assumption 1 and Lemma 1, it can deduce
that

2z
T
(t)A1F(t) � A

T
1 z((t))􏼐 􏼑

T
F(t) + F

T
(t) A

T
1 z(t)􏼐 􏼑

≤ z
T
(t)A1A

T
1 z(t) + F

T
(t)F(t)

≤ z
T
(t)A1A

T
1 z(t) + l

2
1z

T
(t)z(t).

(36)

Analogously, we have that
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2z(t)
T
B1G(t − τ) � B

T
1 z(t)􏼐 􏼑

T
G(t − τ) + G

T
(t − τ) B

T
1 z(t)􏼐 􏼑

≤ z
T
(t)B1B

T
1 z(t) + G

T
(t − τ)G(t − τ)

≤ z
T
(t)B1B

T
1 z(t) + l

2
2‖􏽥x(t)‖

2
+ 􏽘

n

i�1
l
2
2i xi(t − τ)

􏼌􏼌􏼌􏼌 − 􏽥xi(t)
􏼌􏼌􏼌􏼌
2

≤ z
T
(t)B1B

T
1 z(t) + l

2
2‖􏽥x(t)‖

2
+ 􏽘

n

i�1
2l

2
2i xi(t − τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 􏽥xi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑

≤ z
T
(t)B1B

T
1 z(t) + 3l

2
2‖􏽥x(t)‖

2
+ 􏽘

n

i�1
2l

2
2i xi(t − τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

≤ z
T
(t)B1B

T
1 z(t) + 3l

2
2‖􏽥x(t)‖

2
+ 􏽘

n

i�1
4l

2
2i ei(t − τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 􏽥xi(t − τ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑

≤ z
T
(t) B1B

T
1 + 3l

2
2I􏼐 􏼑z(t) + 4l

2
2z

T
(t − τ)z(t − τ),

(37)

2z(t)
T
W(t) � z

T
(t)W(t) + W

T
(t)z(t)

≤ ε1z
T
(t)z(t) + ε− 1

1 W(t)
T
W(t).

(38)

Applying Assumption 2 and combining with (35)–(38),
we get that

_V(t)≤ z
T
(t) C1 + C

T
1 + A1A

T
1 + B1B

T
1􏽨 + l

2
1 + 3l

2
2 + g1􏼐 􏼑I􏽩z(t) − g1 − ε1( 􏼁z

T
(t)z(t) + 4l

2
2z

T
(t − τ)z(t − τ) + ε− 1

1 W
T
(t)W(t)

≤ − g1 − ε1( 􏼁V(z(t)) + 4l
2
2V(z(t − τ)) + ε− 1

1 ‖ω‖
2

ti,t[ ].

(39)

Let h(t) � ε− 1
1 ‖ω‖2[ti,t]

. From Lemma 2, for any
ti ≤ t< ti + ϑi, the following inequality

V(z(t)) ≤ V z ti( 􏼁( 􏼁 + 􏽚
t

ti

e
− 􏽥r1 s− ti( )h(s)ds􏼢 􏼣e

􏽥r1 t− ti( )

� V z ti( 􏼁( 􏼁 + 􏽚
t

ti

e
r1 s− ti( )h(s)ds􏼢 􏼣e

− r1 t− ti( ),

(40)

holds. On account of the continuity of V(z(t)), one has

V z ti + ϑi( 􏼁( 􏼁≤V z ti( 􏼁( 􏼁e
− r1ϑi + e

− r1ϑi 􏽚
ti+ϑi

ti

e
r1 s− ti( )h(s)ds

≤V z ti( 􏼁( 􏼁e
− r1ϑi + ε− 1

1 r
− 1
1 ‖ω‖

2
ti ,ti[ ]+ϑi

.

(41)

Similarly, for any ti + ϑi ≤ t< ti+1, we have

_V(z(t)) � 2z
T
(t) _z(t)

� 2z(t)
T
C2z(t) + 2z(t)

T
A1F(t) + 2z(t)

T
B1G(t − τ) + 2z(t)

T
W(t)

≤ z
T
(t) 2C2 + A1A

T
1 + B1B

T
1􏽨 + l

2
1 + 3l

2
2 − g2􏼐 􏼑I􏽩z(t) + g2 + ε2( 􏼁z

T
(t)z(t) + 4l

2
2z

T
(t − τ)z(t − τ) + ε− 1

2 W
T
(t)W(t)

≤ g2 + ε2( 􏼁V(z(t)) + 4l
2
2V(z(t − τ)) + ε− 1

2 ‖ω‖
2

ti+ϑi ,t[ ].

(42)

Let 􏽥h(t) � ε− 1
2 ‖ω‖2[ti+ϑi ,t]

. By Lemma 2, for any
ti + ϑi ≤ t< ti+1, we get

V(z(t)) ≤ V z ti + ϑi( 􏼁( 􏼁 + 􏽚
t

ti+ϑi

e
− r2 s− ti− ϑi( )􏽥h(s)ds􏼢 􏼣 × e

r2 t− ti − ϑi( ).

(43)
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Since V(z(t)) is continuous, substituting (41) into (43),
one has

V z ti+1( 􏼁( 􏼁≤V z ti + ϑi( 􏼁( 􏼁e
r2 ti+1− ti − ϑi( ) + e

ti+1− ti− ϑi( ) 􏽚
ti+1

ti+ϑi

e
− r2 s− ti − ϑi( )􏽥h(s)ds

≤V z ti + ϑi( 􏼁( 􏼁e
r2 ti+1− ti − ϑi( ) + ε− 1

2 r
− 1
2 e

r2 ti+1− ti− ϑi( )‖ω‖
2

ti+ϑi ,ti+1[ ]

≤V z ti( 􏼁( 􏼁e
− r1+r2( )ϑi+r2 ti+1− ti( ) + ε− 1

1 r
− 1
1 + ε− 1

2 r
− 1
2􏼐 􏼑e

r1ϑi− r1+r2( )ϑi+r2 ti+1 − ti( )‖ω‖
2

ti ,ti+1[ ].

(44)

Let η � ε− 1
1 r− 1

1 + ε− 1
2 r− 1

2 , η1 � ε− 1
1 r− 1

1 , and ρij(t)≜ − (r1 +

r2)􏽐
i− 1
k�jϑk + r2(t − tj).

By using (44), we get

V z ti( 􏼁( 􏼁≤V z ti− 1( 􏼁( 􏼁e
− r1+r2( )ϑi− 1+r2 ti − ti− 1( ) + ηe

r1ϑi− 1− r1+r2( )ϑi− 1+r2 ti − ti− 1( )‖ω‖
2

ti− 1 ,ti[ ]

≤V z ti− 2( 􏼁( 􏼁e
− r1+r2( ) ϑi− 2+ϑi− 1( )+r2 ti − ti− 2( ) + η e

r1ϑi− 2− r1+r2( ) ϑi− 2+ϑi− 1( )+r2 ti− ti− 2( )􏼔 +e
r1ϑi− 1− r1+r2( )ϑi− 1+r2 ti− ti− 1( )􏼕‖ω‖

2
ti− 2 ,ti[ ]

≤V z ti− 3( 􏼁( 􏼁e
− r1+r2( ) ϑi− 3+ϑi− 2+ϑi− 1( )+r2 ti − ti− 3( ) + η e

r1ϑi− 3− r1+r2( ) ϑi− 3+ϑi− 2+ϑi− 1( )+r2 ti − ti− 3( )􏼔 + e
r1ϑi− 2− r1+r2( ) ϑi− 2+ϑi− 1( )+r2 ti − ti− 2( )

+ e
r1ϑi− 1− r1+r2( )ϑi− 1+r2 ti− ti− 1( )􏼕‖ω‖

2
ti− 3 ,ti[ ]

· · ·

≤V z t0( 􏼁( 􏼁e
ρi,0 ti( ) + η􏽘

i− 1

j�0
e

r1ϑj+ρi,j ti( )‖ω‖
2

t0 ,ti[ ].

(45)

Similar to the reasoning process of (44) and combined
with (43) and (45), for any ti + ϑi ≤ t< ti+1, the following
inequality

V(z(t)) ≤V z t0( 􏼁( 􏼁e
ρi+1,0(t)

+ η􏽘
i

j�0
e

r1ϑj+ρi+1,j(t)
‖ω‖

2
t0 ,t[ ],

(46)

holds.
Combining (40) and (45), for any ti ≤ t< ti + ϑi, we get

V(z(t)) ≤V z ti( 􏼁( 􏼁e
− r1 t− ti( ) + ε− 1

1 r
− 1
1 ‖ω‖

2
ti ,t[ ]

≤V z ti( 􏼁( 􏼁 + ε− 1
1 r

− 1
1 ‖ω‖

2
ti ,t[ ]

≤V z t0( 􏼁( 􏼁e
ρi,0(t)

+ η1 + η􏽘
i− 1

j�0
e

r1ϑj+ρi,j(t)⎛⎝ ⎞⎠‖ω‖
2

t0 ,t[ ].

(47)

From (46) and (47), one can see that the stabilization
relies largely on ρij(t). Hence, it is utterly momentous to
evaluate ρij(t).

By (33), there exists λ ∈ (0, r1), such that

cinf � inf
i∈N

ϑi

Δi

􏼨 􏼩 �
λ + r2

r1 + r2
, (48)

thus,

λ + r2

r1 + r2
Δi ≤ ϑi, i ∈ N. (49)

By using (49) and the expression of ρi,j(t), for any
ti ≤ t< ti + ϑi and i> j, we get

ρij(t)≤ − λ + r2( 􏼁 􏽘

i− 1

k�j

Δk + r2 t − tj􏼐 􏼑

� − λ + r2( 􏼁 ti − tj􏼐 􏼑 + r2 t − tj􏼐 􏼑

≤ − λ t − tj􏼐 􏼑 + λ + r2( 􏼁ϑi.

(50)

For any ti + ϑi ≤ t< ti+1, i≥ j. Based on the definition of
ρij(t) and the derivation of (50), we have

ρi+1,j(t)≤ ρi+1,j ti+1( 􏼁≤ − λ ti+1 − tj􏼐 􏼑. (51)

Combining (47) and (50), for any ti ≤ t< ti + ϑi, we
obtain that
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V(z(t)) ≤V z t0( 􏼁( 􏼁e
− λ t− t0( )+ λ+r2( )ϑi + η1 + η􏽘

i− 1

j�0
e

r1ϑj+ r2+λ( )ϑi− λ t− tj( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦ ×‖ω‖
2

t0 ,t[ ]

≤V z t0( 􏼁( 􏼁e
− λ t− t0( )+ λ+r2( )ϑmax + η1 + η􏽘

i

j�1
e

r1+r2+λ( )ϑmax− jλϑmin⎡⎢⎢⎣ ⎤⎥⎥⎦ ×‖ω‖
2

t0 ,t[ ]

≤V z t0( 􏼁( 􏼁e
− λ t− t0( )+ λ+r2( )ϑmax + η 1 +

e
r1+r2+λ( )ϑmax

1 − e
− λϑmin

⎡⎢⎣ ⎤⎥⎦‖ω‖
2

t0 ,t[ ].

(52)

Similarly, combining (46) and (51), for any
ti + ϑi ≤ t< ti+1, one has

V(z(t)) ≤V z t0( 􏼁( 􏼁e
− λ ti+1− t0( ) + η􏽘

i

j�0
e

r1ϑj− λ ti+1− tj( 􏼁
‖ω‖

2
t0 ,t[ ]

≤V z t0( 􏼁( 􏼁e
− λ t− t0( ) + η􏽘

i+1

j�1
e

r1ϑmax− jλϑmin‖ω‖
2

t0 ,t[ ]

≤V z t0( 􏼁( 􏼁e
− λ t− t0( ) + η

e
r1ϑmax

1 − e
− λϑmin

‖ω‖
2

t0 ,t[ ].

(53)

From (52) and (53), for any t≥ t0, we have

V(z(t))≤ ξ1V z t0( 􏼁( 􏼁e
− λ t− t0( ) + ξ2‖ω‖

2
t0 ,t[ ], (54)

where ξ1 � e(λ+r2)ϑmax and ξ2 � η[1 + (e(r1+r2+λ)ϑmax /1
− e− λϑmin)].

Hence, for any t≥ t0,

‖z(t)‖ ≤
��

ξ1
􏽱

z t0( 􏼁
����

����e
− (λ/2) t− t0( ) +

��

ξ2
􏽱

‖ω‖ t0 ,t[ ], (55)

which means that neural network (1) is the stabilization to
exponential ISS under observer-based T-APIC (4).

In addition, from (49), one has

λ + r2

r1 + r2
􏽘

i

j�0
Δj ≤ 􏽐

i

j�0
ϑj, i ∈ N. (56)

+erefore, we get

R
∗
u �

r2

r1 + r2
<
λ + r2

r1 + r2
≤Rmin. (57)

+e deducing procedure is finished. □

Remark 5. Assume ϑi􏼈 􏼉 satisfies (29), and for any i ∈ N, the
following inequality,

λ + r2

r1 + r2
Δi ≤ ϑi <Δi, (58)

holds, where λ is a sufficiently small constant satisfying
0< λ< r1; then, we can deduce (33), and so,+eorem 1 is still
true.

Because (9) is a switched system under observer-based
APIC K1, K2, ti􏼈 􏼉, ϑi􏼈 􏼉􏼈 􏼉, we will next give a sufficient

condition for the exponential ISS of (9) by using the con-
verse average dwell time.

Set notation N[s, t) represents the control times of the
observer-based APIC during [s, t).

Theorem 2. Assume that ti􏼈 􏼉 is given to satisfy (28) and the
converse average dwell time condition for appropriate ϖ> 0,
d≥ 0, 􏽥i≥ 1, and for any ti ≤ t< ti+1, i≥􏽥i,

N[s, t)≥
t − s

ϖ
− d, t≥ s≥ t0. (59)

Under Assumptions 1 and 2, (9) can realize stabilization
to exponential ISS via observer-based T-APIC K1, K2,􏼈

ti􏼈 􏼉, ϑi􏼈 􏼉}, if ϑi􏼈 􏼉 satisfies (29) and

R
∗
u �

r2
r1 + r2
<
ϑmin

ϖ
< 1, (60)

where r1 and r2 are the same as those in +eorem 1.
Moreover, we get

Rmin >R
∗
u. (61)

Proof. Likewise, let V(z(t)) � zT(t)z(t). +e definition of
function ρij(t) is same as that in +eorem 1. Meanwhile, by
Assumptions 1 and 2 and the reasoning process of +eorem
1, we still get (40)–(47).

From (60), there is λ satisfying 0< λ< r1 and the fol-
lowing equation:

r1 + r2
λ + r2

ϑmin � ϖ. (62)

+en, converse average dwell time condition (59) can be
rewritten as, for any ti ≤ t< ti+1, i≥􏽥i,

N[s, t)≥
t − s

r1 + r2( 􏼁/ λ + r2( 􏼁ϑmin
− d, t≥ s≥ t0. (63)

Let d1 � ϑmin(r1 + r2)d + (λ + r2)Δmax, where Δmax �

max Δi􏼈 􏼉 � max ti+1 − ti􏼈 􏼉, i ∈ N. When i≥􏽥i and for any
ti ≤ t< ti+1, tj + ϑj ≤ s< tj+1 satisfying i> j, one has
N[s, t) � i − j. Similar to +eorem 1, we now need to es-
timate ρij(t).

For any ti ≤ t< ti + ϑi, by using (63), we have
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ρij(t) � − r1 + r2( 􏼁 􏽘

i− 1

k�j

ϑk + r2 t − tj􏼐 􏼑

≤ − r1 + r2( 􏼁(i − j)ϑmin + r2 t − tj􏼐 􏼑

≤ − (t − s) λ + r2( 􏼁 + ϑmin r1 + r2( 􏼁d + r2 t − tj􏼐 􏼑

� − t − tj + tj − s􏼐 􏼑 λ + r2( 􏼁 + ϑmin r1 + r2( 􏼁d + r2 t − tj􏼐 􏼑

≤ − λ t − tj􏼐 􏼑 + λ + r2( 􏼁Δj + ϑmin r1 + r2( 􏼁d

≤ − λ t − tj􏼐 􏼑 + d1.

(64)

For any ti + ϑi ≤ t< ti+1, from the definition of ρi,j(t) and
the reasoning process of (64), we get

ρi+1,j(t)≤ ρi+1,j ti+1( 􏼁≤ − λ ti+1 − tj􏼐 􏼑 + d1. (65)

When i≥􏽥i, for any ti ≤ t< ti + ϑi, based on (47), (64), and
the derivation of (47), we deduce

V(z(t)) ≤ e
d1V z t0( 􏼁( 􏼁e

− λ t− t0( ) + η 1 +
e

r1ϑmax+d1

1 − e
− λϑmin

􏼠 􏼡‖ω‖
2

t0 ,t[ ].

(66)

Analogously, combining (46) and (65), we get

V(z(t))≤ e
d1V z t0( 􏼁( 􏼁e

− λ t− t0( ) + η
e

r1ϑmax+d1

1 − e
− λϑmin

‖ω‖
2

t0 ,t[ ],

(67)

for any ti + ϑi ≤ t< ti+1.
Hence, ∀t≥ t􏽥i ; from (66) and (67), one has

V(z(t)) ≤ e
d1V z t0( 􏼁( 􏼁e

− λ t− t0( ) + η 1 +
e

r1ϑmax+d1

1 − e
− λϑmin

􏼠 􏼡‖ω‖
2

t0 ,t[ ].

(68)

+en, we analyse the case of t0 ≤ t< t􏽥i .
According to (40), (46), (47), and the definition of ρij(t),

it follows that

(1) When t0 ≤ t< t0 + ϑ0,

V(z(t))≤V z t0( 􏼁( 􏼁e
− r1 t− t0( ) + e

− r1 t− t0( ) 􏽚
t

t0

e
r1 s− t0( )h(s)ds

≤V z t0( 􏼁( 􏼁e
− r1 t− t0( ) + η1‖ω‖

2
t0,t[ ]

≤V z t0( 􏼁( 􏼁e
− λ t− t0( ) + η1‖ω‖

2
t0 ,t[ ].

(69)

(2) When t0 + ϑ0 ≤ t< t1,

V(z(t))≤V z t0( 􏼁( 􏼁e
ρ1,0(t)

+ ηe
r1ϑ0+ρ1,0(t)

‖ω‖
2

t0 ,t[ ]

≤V z t0( 􏼁( 􏼁e
− r1+r2( )ϑmin+r2 t− t0( ) + η 1 + e

r1ϑmax+r2 t1− t0( )− r1+r2( )ϑmin􏼒 􏼓‖ω‖
2

t0 ,t[ ].
(70)

(3) When t1 ≤ t< t1 + ϑ1,

V(z(t)) ≤V z t0( 􏼁( 􏼁e
ρ1,0(t)

+ η1 + ηe
r1ϑ0+ρ1,0(t)

􏼐 􏼑‖ω‖
2

t0 ,t[ ]

≤V z t0( 􏼁( 􏼁e
− r1+r2( )ϑmin+r2 t− t0( ) + η 1 + e

r1ϑmax+r2 t1+ϑ1− t0( )− r1+r2( )ϑmin􏼒 􏼓‖ω‖
2

t0 ,t[ ].
(71)

(4) When t1 + ϑ1 ≤ t< t2,

V(z(t)) ≤V z t0( 􏼁( 􏼁e
ρ2,0(t)

+ η􏽘
1

j�0
e

r1ϑj+ρ2,j(t)
‖ω‖

2
t0 ,t[ ]

≤V z t0( 􏼁( 􏼁e
− r1+r2( )2ϑmin+r2 t− t0( ) + η 1 + e

r1ϑmax+r2 t2− t0( ) 􏽘

2

j�1
e

− r1+r2( )jϑmin⎛⎝ ⎞⎠‖ω‖
2

t0 ,t[ ].

(72)

(5) When t2 ≤ t< t2 + ϑ2,
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V(z(t)) ≤V z t0( 􏼁( 􏼁e
ρ2,0(t)

+ η1 + η􏽘

1

j�0
e

r1ϑj+ρ2,j(t)⎛⎝ ⎞⎠‖ω‖
2

t0 ,t[ ]

≤V z t0( 􏼁( 􏼁e
− r1+r2( )2ϑmin+r2 t− t0( ) + η 1 + e

r1ϑmax+r2 t2+ϑ2− t0( ) 􏽘

2

j�1
e

− r1+r2( )jϑmin⎛⎝ ⎞⎠‖ω‖
2

t0 ,t[ ].

(73)

By inducing, we get (6) When t􏽥i− 1 ≤ t< t􏽥i− 1 + ϑ􏽥i− 1,

V(z(t)) ≤V z t0( 􏼁( 􏼁e
ρ􏽥i− 1,0

(t)
+ η1 + η􏽘

􏽥i− 2

j�0
e

r1ϑj+ρ􏽥i− 1,j
(t)

⎛⎜⎝ ⎞⎟⎠ ×‖ω‖
2

t0 ,t[ ]

≤V z t0( 􏼁( 􏼁e
− r1+r2( )(􏽥i− 1)ϑmin+r2 t− t0( ) + η 1 + e

r1ϑmax+r2 t􏽥i− 1
+ϑ􏽥i− 1

− t0􏼒 􏼓
􏽘

􏽥i− 1

j�1
e

− r1+r2( )jϑmin⎛⎜⎜⎝ ⎞⎟⎟⎠ ×‖ω‖
2

t0 ,t[ ].

(74)

(7) When t􏽥i− 1 + ϑ􏽥i− 1 ≤ t< t􏽥i,

V(z(t)) ≤V z t0( 􏼁( 􏼁e
ρ􏽥i,0

(t)
+ η􏽘

􏽥i− 1

j�0
e

r1ϑj+ρ􏽥i,j
(t)

‖ω‖
2

t0 ,t[ ]

≤V z t0( 􏼁( 􏼁e
− r1+r2( )􏽥iϑmin+r2 t− t0( ) + η 1 + e

r1ϑmax+r2 t􏽥i
− t0􏼒 􏼓

􏽘

􏽥i

j�1
e

− r1+r2( )jϑmin⎛⎜⎜⎝ ⎞⎟⎟⎠‖ω‖
2

t0 ,t[ ].

(75)

Let ξ3 � max 1, e
− (r1+r2)ϑmin+(r2+λ)(t􏽥i

− t0)
􏼚 􏼛. From the above

derivation, for any t ∈ [t0, t􏽥i), we have

V(z(t)) ≤ ξ3V z t0( 􏼁( 􏼁e
− λ t− t0( ) + η 1 +

e
r1ϑmax+r2 t􏽥i

− t0􏼒 􏼓− r1+r2( )ϑmin

1 − e
− r1+r2( )ϑmin

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠‖ω‖
2

t0 ,t[ ]. (76)

Let α � η(1 + (e
r1ϑmax+r2(t􏽥i

− t0)− (r1+r2)ϑmin / 1 − e− (r1+r2)ϑmin))

and β � η(1 + (er1ϑmax+d1 / 1 − e− λϑmin )). Hence, for any t≥ t0,
one has

V(z(t))≤ ξ∗1V z t0( 􏼁( 􏼁e
− λ t− t0( ) + ξ∗2 ‖ω‖

2
t0 ,t[ ], (77)

where ξ∗1 � max ed1 , ξ3􏼈 􏼉 and ξ∗2 � max α, β􏼈 􏼉.
So, for any t≥ t0,

‖z(t)‖ ≤
��

ξ∗1
􏽱

z t0( 􏼁
����

����e
− (λ/2) t− t0( ) +

��

ξ∗2
􏽱

‖ω‖ t0 ,t[ ], (78)

which indicates that (1) achieves stabilization to exponential
ISS under observer-based T-APIC (4).

Next, we estimate Rmin.
From (59), it follows that

ϖ(i + 1)≥ 􏽘

i

j�0
Δj − dϖ, (79)

which means that

ϖ≥ lim sup
i⟶∞

􏽐
i
j�0 Δj − dϖ

i + 1
� lim sup

i⟶∞

􏽐
i
j�0 Δj

i + 1
. (80)

It follows from (30), (60), and (80) that

Rmin ≥ min
ti{ }, ϑi{ }

ϑmin

limi⟶∞sup 􏽐
i
j�0 Δj/(i + 1)􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭ ≥
ϑmin

ϖ
>R
∗
u.

(81)

+e deducing procedure is finished. □
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Remark 6. When ti􏼈 􏼉 is given to satisfy (28) or satisfy (28)
and converse average dwell time (59), by +eorem 1 and
+eorem 2, there exists nontrival ϑi􏼈 􏼉, such that (1) is sta-
bilized to exponential ISS via observer-based T-APIC (4).
Also, we get that MATR Rmin >R∗u . Comparing (59) with
(60), it is worth mentioning that if converse average dwell
time (59) holds, we can use the average dwell time ϖ of Δi􏼈 􏼉

substitute for the single Δi in (58) to deduce observer-based
T-APIC (K1, K2, ti􏼈 􏼉, ϑi􏼈 􏼉).

Case 2. ϑi􏼈 􏼉 is given to satisfy (29).
Here, we will give homologous criteria to ensure that (1)

is stabilized to exponential ISS via observer-based T-APIC
(4) and estimate Rmin.

Theorem 3. Suppose ϑi􏼈 􏼉 is given to satisfy (29) and As-
sumptions 1 and 2 hold. (1) is stabilized to exponential ISS via
observer-based T-APIC (4), if ti􏼈 􏼉 satisfies (28) and one of the
following conditions:

(a)

1< c
− 1
inf � min

i∈N

Δi

ϑi

􏼨 􏼩< R
∗
u( 􏼁

− 1
. (82)

(b) For appropriate λ satisfying 0< λ< r1 and any i ∈ N,

ϑi <Δi ≤
r1 + r2

λ + r2
ϑi. (83)

(c) Converse average dwell time (59) holds and ϖ satisfies

ϑmin <ϖ< ϑmin · R
∗
u( 􏼁

− 1
, (84)

r1 and r2 in the above conditions are the same as those
in Ceorem 1. Moreover, we can obtain that
Rmin >R∗u .

Proof. For (a) and (b), it can be similar to the proof in
+eorem 1, and for (c), by using the similar proof of +e-
orem 2, we can get the result. □

Remark 7. From+eorems 1–3, it is not difficult to find that
R∗u � r2/(r1 + r2) is an extremely significant index for Rmin
of observer-based T-APIC (4). In addition, one can see that
neural network (1) realizes stabilization to exponential ISS
via observer-based T-APIC (4) when R∗u <Rmin.

Corollary 1. Under Assumptions 1 and 2, for any i ∈ N, if
ϑi � ϑ and ti􏼈 􏼉 satisfy

ti+1 < ti + 1 +
r1

r2
􏼠 􏼡ϑ, (85)

then system (1) realizes stabilization to exponential ISS via
observer-based T-APIC (4).

Proof. From (85), we can deduce

1> min
i∈N

ϑ
Δi

􏼨 􏼩>
r2

r1 + r2
. (86)

+en, by (a) in +eorem 3, it follows that Corollary 2 is
true.

PIC as an especial case of APIC, next, a corresponding
result obtained by the observer-based PIC will be given. □

Corollary 2. Under Assumptions 1 and 2, if control period T

and control width ϑ of observer-based PIC satisfy

ϑ<T< ϑ +
r1

r2
ϑ, (87)

then (1) can achieve stabilization to exponential ISS via the
observer-based PIC.

Proof. Let ϑi � ϑ and T be the maximum value of Δi in (82),
namely, T � max Δi􏼈 􏼉. According to (82) of +eorem 3 and
condition (87), Corollary 2 is correct. □

4. Stabilization toExponential ISS viaObserver-
Based E-APIC

Compared with the time-triggered control mechanism, the
event-triggered control mechanism can not only save un-
necessary adjustment times but also control intensity is more
appropriate. +erefore, in +eorem 4, we propose the ob-
server-based E-APIC to realize the exponential ISS of the
system (1).

+e following is the construction of the observer-based
E-APIC.

Suppose Assumptions 1 and 2 hold. +e observer-based
E-APIC depends on two indices: threshold value δmax > 1
and check period Δ> 0, which is generally a comparatively
great real number.

Let VT(z(t)) � zT(t)z(t). To ensure that the observer-
based E-APIC satisfies (28) and (29), let ϑi􏼈 􏼉 satisfy

0<
ln δmax

r1
< ϑmin � min ϑi􏼈 􏼉≤ ϑi ≤Δ −

ln δmax

r2
. (88)

+e event-triggered mechanism is as follows:

ti+1 �
min t: t ∈ 􏽢ψi ti + ϑi, ti + Δ( 􏼃􏼈 􏼉, if 􏽢ψi ti + ϑi, ti + Δ( 􏼃≠∅;

ti + Δ, if 􏽢ψi ti + ϑi, ti + Δ( 􏼃 � ∅,
􏼨

(89)

where

􏽢ψi(s, t]≜ θ: s< θ ≤ t, V(z(θ))≥ δmaxV(z(s)) + ξm‖ω‖
2
[s,θ]􏽮 􏽯,

(90)

with ξm ≥max ε− 1
1 r− 1

1 , ε− 1
2 r− 1

2􏼈 􏼉, 0< ε1 <g1, 0< ε2 <g2, and r1
and r2 are the same as those in +eorem 1.

Remark 8. Since ω ∈ L∞,loc, replacing ‖ω‖[ti+ϑi ,t]
with ‖ω‖∞

will simplify the calculation in (88) and (89).
+e event-triggered control is closely related to the

system state, that is, the controller is only activated when the
systematic deviation reaches or exceeds the preset value
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given. +e systematic deviation is usually expressed as
‖e(t)‖ � ‖x(t) − x(ti)‖, and the trigger condition is
‖e(t)‖≥m, where m stands for the threshold value satisfying
m> 0 and ti > t. Moreover, ti+1 � min t: t> ti, ‖e(t)‖≥m{ }􏼈 􏼉.
Since the state of the system studied can not be obtained
completely, the error system between the observer and the
plant is constructed, and the corresponding augmented
system is constructed by using the observed value and the
error. Significantly, there is a special case that ‖e(t)‖<m{ }

always holds, which indicates that the trigger condition has
not appeared, that is, the controller has not been activated,
which may lead to system instability. +e check period
proposed in [30] can effectively keep from this situation.
Introducing a comparatively great check period to the ob-
server-based E-APIC means eventhough the trigger con-
dition is not satisfied during a check period, there will be a
control input at the end of the check period to ensure the ISS
of the system.

Theorem 4. Under Assumptions 1 and 2, (1) can realize
stabilization to exponential ISS via observer-based E-APIC
(88) and (89), and the MATR Rmin of the observer-based
E-APIC satisfies

ϑmin

Δ
≤Rmin ≤

􏽥r2r1ϑmin
􏽥r2 + r1( 􏼁ln δmax

, (91)

where 􏽥r2 is a positive constant satisfying 􏽥r2 > r2 and
− 􏽥r2 + (g2 + ε− 1

2 + ε− 1
2 ξ− 1

m ) + 4l22 ≤ 0.

Proof. From (88) and (89), one can see that the interval
between two adjacent controls Δi � ti+1 − ti > ϑi >
(ln δmax/r1)> 0, which means the observer-based E-APIC
will not be triggered countless times in a limited time. So,
there is no Zeno behavior under the observer-based E-APIC.
Furthermore, one can see that ϑi􏼈 􏼉 is nontrival.

For any ti + ϑi ≤ t< ti+1, from (42), we have

_V(z(t))≤ g2 + ε2( 􏼁V(z(t)) + 4l
2
2V(z(t − τ))+ ε− 1

2 ‖ω‖
2

ti+ϑi ,t[ ].

(92)

From (92), whenever V(z(t)) ≥ ξm‖ω‖2[ti+ϑi ,t]
, we get

_V(z(t))≤ g2 + ε2 + ε− 1
2 ξ− 1

m􏼐 􏼑V(z(t)) + 4l
2
2V(z(t − τ)).

(93)

Additionaly, since r2 ≥g2 + ε2 + 4l22, apparently there
exists 􏽥r2 > 0, satisfying 􏽥r2 >g2 + ε2 + ε− 1

2 ξ− 1
m + 4l22; then, we

can choose a positive constant 􏽥r2 satisfying 􏽥r2 > r2 and
− 􏽥r2 + g2 + ε2 + ε− 1

2 ξ− 1
m + 4l22 < 0.

By using Lemma 2 and (93), for any ti + ϑi ≤ t< ti+1, one
has

V(z(t))≤V z ti + ϑi( 􏼁( 􏼁e
􏽥r2 t− ti − ϑi( ). (94)

By the continuity of V(z(t)), we get

V z ti+1( 􏼁( 􏼁≤ e
􏽥r2 ti+1− ti− ϑi( )V z ti + ϑi( 􏼁( 􏼁

≤ e
􏽥r2 ti+1− ti− ϑi( )V z ti + ϑi( 􏼁( 􏼁 + ξm‖ω‖

2
ti+ϑi ,ti+1[ ].

(95)

On the one hand, by (89), if 􏽢ψi(ti + ϑi, ti + Δ]≠∅, which
means ti+1 ≤ ti + Δ, one has

V z ti+1( 􏼁( 􏼁 � δmaxV z ti + ϑi( 􏼁( 􏼁 + ξm‖ω‖
2

ti+ϑi ,ti+1[ ], (96)

since V(z(t)) is continuous.
+en, combining (95) and (96), we have

δmax ≤ e
􏽥r2 ti+1− ti− ϑi( ), (97)

which implies that

0<
ln δmax

􏽥r2
≤ ti+1 − ti − ϑi ≤Δ − ϑmin, (98)

for any i ∈ N.
On the other hand, if 􏽢ψi(ti + ϑi, ti + Δ] � ∅, then

ti+1 � ti + Δ. By (88), we get

0<
ln δmax

􏽥r2
<
ln δmax

r2
≤Δ − ϑi � ti+1 − ti − ϑi ≤Δ − ϑmin,

(99)

for any i ∈ N.
Hence, for any i ∈ N, we get (98) holds. Combining (88)

and (98), we can obtain

0<
1
r1

+
1
􏽥r2

􏼠 􏼡ln δmax < ti+1 − ti ≤Δ. (100)

Next, we show that (1) is stabilized to exponential ISS by
the observer-based E-APIC.

For any ti ≤ t< ti + ϑi, by (40), one has

V(z(t)) ≤ δmaxV z ti( 􏼁( 􏼁 + η1‖ω‖
2

ti ,t[ ]. (101)

In addition, from (41), we have

V z ti + ϑi( 􏼁( 􏼁≤V z ti( 􏼁( 􏼁e
− r1ϑi + η1‖ω‖

2
ti ,ti+ϑi[ ]. (102)

Let ξ � max η1, ξm􏼈 􏼉 and 􏽥ξ � δmaxη1 + ξ. For any
ti + ϑi ≤ t< ti+1, i ∈ N, by (89) and (102), we get

V(z(t)) ≤ δmaxV z ti + ϑi( 􏼁( 􏼁 + ξm‖ω‖
2

ti+ϑi ,t[ ]

≤ δmaxe
− r1ϑi V z ti( 􏼁( 􏼁 + 􏽥ξ‖ω‖

2
ti,t[ ].

(103)

Let bi � V(z(ti)) and pi � δmaxe
− r1ϑi , for any i ∈ N; by

(89) and the continuity of V(z(t)), one has

bi+1 ≤pibi + 􏽥ξ‖ω‖
2

ti,t[ ]. (104)

Let 􏽥λ � r1ϑmin − ln δmax and 􏽥ξ
∗

� 􏽥ξ(1 − e− 􏽥λ)− 1. It follows
from (88) that 􏽥λ> 0; in addition, by (104), for any i ∈ N, we
can obtain
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bi ≤ e
􏽘

i− 1

j�0
ln δmax− r1ϑj

b0 + 􏽥ξ 1 + 􏽘
i− 1

j�1
e
􏽘

i− 1

k�j
ln δmax− r1ϑi( )⎛⎝ ⎞⎠‖ω‖

2
t0 ,ti[ ]

≤ e
− 􏽥λi

b0 + 􏽥ξ 1 + 􏽘
i− 1

j�1
e

j ln δmax− r1ϑmin( )⎛⎝ ⎞⎠‖ω‖
2

t0,ti[ ]

≤ e
− 􏽥λi

b0 + 􏽥ξ
∗
‖ω‖

2
t0 ,ti[ ].

(105)

By using (101) and (103), for any ti ≤ t≤ ti+1, i ∈ N, we get

V(z(t)) ≤ δmaxV z ti( 􏼁( 􏼁 + 􏽥ξ‖ω‖
2

ti ,t[ ]. (106)

Combining (105) and (106), for any t≥ t0, we get

V(z(t)) ≤ δmaxe
− 􏽥λi

V z t0( 􏼁( 􏼁 + 􏽥ξ + δmax
􏽥ξ
∗

􏼐 􏼑‖ω‖
2

t0 ,t[ ]

≤ δmaxe
􏽥λ
e

(− 􏽥λ/Δ) t− t0( )V z t0( 􏼁( 􏼁 + 􏽥ξ + δmax
􏽥ξ
∗

􏼐 􏼑‖ω‖
2

t0 ,t[ ].

(107)

Hence, for any t≥ t0, by (107), we have

‖z(t)‖≤

������

δmaxe
􏽥λ

􏽲

e
(− 􏽥λ/2Δ)

z t0( 􏼁
����

���� +

���������
􏽥ξ + δmax

􏽥ξ
∗

􏽱

‖ω‖ t0 ,t[ ],

(108)

which means that (1) realizes stabilization to exponential ISS
under observer-based E-APIC (88) and (89). In addition, let
ϑi � ϑmin and combining (30) and (100), (91) holds. +e
deducing procedure is finished.

+e following is the contrast among observer-based PIC,
observer-based T-APIC, and observer-based E-APIC. For
the convenience of exposition, denote by RP

min, RT
min, and

RE
min, respectively, MATR of observer-based PIC, observer-

based T-APIC, and observer-based E-APIC.
Set symbol NP(t), NT(t), and NE(t), respectively, the

control times of the observer-based PIC, the observer-based
T-APIC, and the observer-based E-APIC on interval [t0, t).
Let ϑT

min and ϑE
min denote the minimum activation time of

observer-based T-APIC and observer-based E-APIC,
respectively. □

Theorem 5. Let ϑi � ϑ, i ∈ N, in observer-based T-APIC and
observer-based E-APIC as in observer-based PIC. Cen, if
Assumptions 1 and 2 hold, there is an observer-based E-APIC
(88) and (89) satisfying

R
E
min ≤R

∗
u ≤min R

P
min, R

T
min􏽮 􏽯. (109)

Proof. Follow +eorems 1–3 and Corollary 2; there exists a
fully small ε satisfying 0< ε≪ r1, such that min RP

min,􏼈

RT
min}≥ (r2 + ε)/(r1 + r2). Let δmax � er1􏽥r2ϑ(r1+r2)∖(ε+r2)(􏽥r2+r1)

in observer-based E-APIC (88) and (89); then, by (91) in
+eorem 4, we have RE

min ≤ (ε + r2)/(r1 + r2) � R∗u +

ε/(r1 + r2). Hence, (109) holds when ε⟶ 0. □

Theorem 6.

(a) If σE ≜ ((1/r1) + (1/􏽥r2))ln δmax ≥T, then, for any
t≥ t0, one has

t − t0

Δ
􏼔 􏼕≤NE(t)≤

t − t0

σE

􏼢 􏼣≤NP(t). (110)

(b) Let observer-based T-APIC satisfy ϑT
min > 0 and con-

verse average dwell time NT(t)≥ (t − t0)/σT, where
σT ≜ ((r1 + r2)/(λ + 􏽥r2))ϑ

T
min with λ defined by (44). If

ln δmax ≥ σT((1/r1) + (1/􏽥r2))
− 1, then NE(t)≤NT(t).

(c) If the threshold value δmax in observer-based E-APIC
(88) and (89) satisfies ln δmax ≥ max σT, T􏼈 􏼉

((1/r1) + (1/􏽥r2))
− 1, then, for any t≥ t0, we get

NE(t)≤min NP(t), NE(t)􏼈 􏼉. (111)

Proof. By (100), we can derive (a). From (a) and σE > σT, we
have (b), and (c) follows from (a) and (b). □

Remark 9. By +eorem 6, the control times of observer-
based E-APIC are less than those of observer-based PIC and
observer-based T-APIC when we choose an appropriate
δmax.

5. Example

In this section, we provide a numerical example to simulate
the validity of the obtained results.

Example 1. Consider a two-dimensional neural network
with time delay and external disturbances, which is de-
scribed as

x1(t)

x2(t)
􏼠 􏼡 � −

1 0

0 1
􏼠 􏼡

x1(t)

x2(t)
􏼠 􏼡 +

1 0.1

0.1 1
􏼠 􏼡

f1 x1(t)( 􏼁

f2 x2(t)( 􏼁
􏼠 􏼡 +

− 1 0.1

0.1 − 1
􏼠 􏼡

g1 x1(t − τ)( 􏼁

g2 x2(t − τ)( 􏼁
􏼠 􏼡 +

u11(t)

u12(t)
􏼠 􏼡 +

ω1(t)

ω2(t)
􏼠 􏼡.

(112)

+en, the corresponding state observer is designed by
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Figure 1: State trajectories xi(i � 1, 2) of system (112) under the
observer-based T-APIC.
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Figure 2:+e starting instant of each control of the observer-based
T-APIC.
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Figure 3: State trajectories xi(i � 1, 2) of system (112) under the
observer-based T-APIC.
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Figure 4:+e starting instant of each control of the observer-based
T-APIC.
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Figure 5: State trajectories xi(i � 1, 2) of system (112) under the
observer-based E-APIC.
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Figure 6:+e starting instant of each control of the observer-based
E-APIC.
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Figure 7: State trajectories xi(i � 1, 2) of system (112) under the
observer-based PIC.
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Figure 8:+e starting instant of each control of the observer-based
PIC.
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Figure 9: State trajectories xi(i � 1, 2) of system (112) under the
observer-based T-APIC.
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Figure 10: +e starting instant of each control of the observer-
based T-APIC.
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Figure 11: State trajectories xi(i � 1, 2) of system (112) under the
observer-based E-APIC.
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Figure 12: +e starting instant of each control of the observer-
based E-APIC.
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􏽥x1(t)

􏽥x2(t)
􏼠 􏼡 � −

1 0

0 1
􏼠 􏼡

􏽥x1(t)

􏽥x2(t)
􏼠 􏼡 +

1 0.1

0.1 1
􏼠 􏼡

f1 􏽥x1(t)( 􏼁

f2 􏽥x2(t)( 􏼁
􏼠 􏼡 +

− 1 0.1

0.1 − 1
􏼠 􏼡

g1 􏽥x1(t)( 􏼁

g2 􏽥x2(t)( 􏼁
􏼠 􏼡 +

u21(t)

u22(t)
􏼠 􏼡. (113)

Let

fi xi( 􏼁 � sin xi( 􏼁, i � 1, 2,

gi xi( 􏼁 � 0.1 tanh xi( 􏼁, i � 1, 2,
(114)

and the delay of τ is set to be 0.1, (ω1(t),ω2(t))T �

(sin(t), rand(1))T. Moreover, solving matrix inequalities
(13) and (14), we have g1 � 9.9796, g2 � 5.0204, K1 � − 19.5I,
and K2 � − 19.6I. Let ε1 � ε2 � 1. By solving inequalities (31)
and (32), we have 􏽥r1 ≥ − 8.8 and r2 ≥ 6.0604, choose
􏽥r1 � − 5.28, r2 � 7.42, and then r1 � |􏽥r1| � 5.28.

Here, let ti+1 � ti + 4 + 0.55 × rand(1). In order to satisfy
the conditions in +eorem 1, we choose ϑi � 2.7+

0.1 × rand(1); then, neural network (112) can realize sta-
bilization to exponential ISS via the observer-based T-APIC.
+e numerical simulations are shown in Figures 1 and 2 .

According to (28) and (59), let ti+1 � ti + 3 + rand(1). If
ϑi is designed as ϑi � 2 + rand(1), then the conditions (29)
and (60) of +eorem 2 can be satisfied, which means that
neural network (112) can realize stabilization to exponential
ISS via the observer-based T-APIC. +e state trajectories of
(112) and the starting instant of each control of the observer-
based T-APIC are shown in Figures 3 and 4 .

Let the threshold value δmax � 15, check period Δ � 10,
and ξm � 0.5≥max 0.1894, 0.1348{ }. According to +eorem
4, we choose ϑi � 2.5 + 0.1 × rand(1); then, under the event-
triggered mechanism (89), system (112) realizes stabilization
to exponential ISS. +e numerical simulations are shown in
Figures 5 and 6 .

To better compare observer-based PIC, observer-based
T-APIC, and observer-based E-APIC, let control duration
ϑi � 1.5 and the remaining parameters remain unchanged.

(a) For observer-based PIC, according to Corollary 2, let
T � 2. +en, neural network (112) can realize sta-
bilization to exponential ISS via observer-based PIC.
+e state trajectories of (112) and the starting instant
of each control of the observer-based PIC are shown
in Figures 7 and 8, respectively.

(b) For observer-based T-APIC, according to +eorem
3, let ti􏼈 􏼉 be designed as ti+1 � ti+ 2 + 0.566×

rand(1). +en, neural network (112) can realize
stabilization to exponential ISS via observer-based
T-APIC. +e numerical simulations refer to Fig-
ures 9 and 10, respectively.

(c) For observer-based E-APIC, let the threshold value
δmax � 15, check period Δ � 10, and ξm � 0.5. From

+eorem 4, system (112) is stabilization to expo-
nential ISS under the event-triggered mechanism
(89). +e state trajectories of (112) and the starting
instant of each control of the observer-based E-APIC
are shown in Figures 11 and 12, respectively.

As follows, the three kinds of controllers are compared
from the control times and activation time rate in the same
time. Here, we extract the relevant data of 100 s in the
numerical simulations, as given in Table 1.

From Table 1, one can see that the control times of
observer-based E-APIC are least and the activation time rate
of the observer-based E-APIC is lowest, which show that the
observer-based E-APIC is superior to the observer-based
T-APIC and the observer-based PIC in control times and
activation time rate; in the meanwhile, we can get the ob-
server-based T-APIC has some better performances than the
observer-based PIC.

6. Conclusions

+is study focuses on the exponential input-to-state stability
of a class of neural networks with time delay and external
disturbances under the observer-based APIC. Considering
that the state of the system and the delay information may
not be accurately obtained in practical application, a state
observer independent of historical information is structured.
For realizing exponential input-to-state stability of the
studied network, the observer-based T-APIC is designed by
using the infimum of single activation time rate and the
condition of converse average dwell time, respectively. An
observer-based E-APIC is advanced to solve the problem
that the results obtained under the observer-based T-APIC
may be conservative. In addition, theMATR of the observer-
based T-APIC and the observer-based E-APIC are esti-
mated. +e results show that the observer-based E-APIC is
superior to the observer-based PIC and the observer-based
T-APIC in terms of control times and activation time rate,
and the observer-based T-APIC is also superior to the ob-
server-based PIC. Compared with the disturbances con-
sidered, the random disturbance makes the system have
more abundant and interesting trajectories. +erefore, it is
our next work to study the stability of neural networks with
random disturbance under aperiodic intermittent control.

Data Availability

No data were used to support this study.

Table 1: Contrasts among observer-based PIC, observer-based T-APIC, observer-based E-APIC.

Observer-based PIC Observer-based T-APIC Observer-based E-APIC
N(100) 50 44 15
R(100) 75% 66% 22%

R∗u ≈ 58%
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