HLA-DEPENDENT TNF SECRETORY RESPONSE MAY PROVIDE AN IMMUNOGENETIC LINK BETWEEN PRE-ECLAMPSIA AND TYPE 1 DIABETES MELLITUS

DAVID C. KILPATRICK
Department of Transfusion Medicine, 2 Forrest Road, Edinburgh, EH1 2QN, U.K.

SUMMARY

Tumour necrosis factor (TNF) may be relevant to the pathogenesis of both pre-eclampsia and type 1 diabetes, and there is evidence than human TNFα responses to stimuli are HLA-DR dependent. To test the hypothesis that pre-eclampsia and diabetes may share a common immunogenetic susceptibility, 92 pre-eclampsia patients were compared with 264 general population controls. The relative frequencies of individual HLA-DR antigens in pre-eclampsias were found to correlate with reported relative TNFα responses for those antigens. Moreover, putative high responder HLA-DR1, DR3 and DR4 alleles were significantly (p<0.001) more frequent in pre-eclampsia patients (79%) than in controls (59%). This hypothesis could explain the weak association between pre-eclampsia and diabetes and may help resolve the apparently conflicting literature on HLA in pre-eclampsia.

KEY WORDS Tumour necrosis factor HLA-DR Diabetes Pre-eclampsia

INTRODUCTION

Studies on pre-eclampsia have thrown up many conflicting ideas. There is undoubtedly a genetic component, but its nature us unclear (Cooper et al., 1993). Data on HLA relationships have been particularly inconsistent (Cooper et al., 1993). Our own finding of an association between pre-eclampsia and sharing of HLA-DR4 between fetus and mother (Kilpatrick et al., 1990) has never been confirmed or refuted, but others have failed to confirm an association with maternal HLA-DR4 or to implicate linkage disequilibrium between maternal HLA-DR4 and the putative pre-eclampsia susceptibility gene (Wilton et al., 1991; Hayward et al., 1990). Nevertheless, the association with maternal HLA-DR4 is the only HLA association that has been reported from two independent laboratories (Cooper et al., 1993; Simon et al., 1988).

Diabetics are at increased risk of pre-eclampsia (Garner et al., 1990), and conversely, women with pre-eclampsia are more likely than normotensive women to experience type 1 diabetes in later life (Dahlquist and Kallen, 1992). It is well established that HLA-DR4 is positively associated with insulin dependent diabetes mellitus, and it is possible these clinically unrelated diseases share a common immunogenetic susceptibility marker.

A totally separate line of investigation could also link pre-eclampsia with diabetes. The oxidative stress hypothesis attributes a central role to tumour necrosis factor (TNF) in the pathogenesis of pre-eclampsia (Stark, 1993). Human TNF secretion in response to lipopolysaccharide is HLA-Class II dependent (Santamaria et al., 1989). Pociot et al. (1993) have investigated the relationship between TNF release and individual HLA-DR
alleles. HLA-DR1, 3 and 4 individuals were found to be high responders, while HLA-
DR2 and 5 individuals were low responders. Pociot et al. suggested that TNF plays a role
in the pathogenesis of type 1 diabetes and is linked to the HLA associations of that
disease. I have therefore re-analysed HLA-DR data for pre-eclampsia patients and
controls to test the hypothesis that pre-eclampsia may also be associated with the DR
alleles linked to a high TNF response.

METHODS

HLA-DR typing was previously carried out on 92 unrelated women whose pregnan-
cies were complicated by proteinuric pre-eclampsia meeting the criteria for gestational
proteinuric hypertension (Kilpatrick et al., 1990). Control data representing the general
population were obtained from 132 women and their husbands after normal pregnancies
(Jazwinska et al., 1987). Data on TNFα secretion as a function of HLA-DR type was
taken from Pociot et al. (1993).

Regression analysis was performed by Student’s t-test. 2 x 2 analyses were conducted
by the x² test and Fisher’s exact test.

RESULTS

The relative TNFα secretory capacity calculated from Pociot et al. (1993) closely
resembles the relative frequency of HLA-DR alleles in pre-eclamptic patients (Table 1).
The DR 5,6 and 8 antigens have been grouped together because serological typing with
the antisera available at the time did not distinguish accurately between those
specificities, and all three were associated with a below-average TNFα response. Thus
analysed, there was a striking correlation (r=0.78) which approached statistical signifi-
cance (p<0.07).

When the HLA data were analysed to compare the proportion of women with pre-
eclampsia (n=92) with HLA DR1 or 3 or 4 (79%) to the corresponding proportion in the
general population (59% of 264 controls), the difference was highly significant (x² =
12.6; p<0.001). Even when all patients and controls possessing HLA-DR4 were excluded
from the analysis, the putative high TNFα responders were still significantly over-
represented (Table 2).

DISCUSSION

These results clearly confirm an association between pre-eclampsia and the group of
HLA-DR specificities found in association with high TNFα responders. This analysis
and interpretation relies on the data of Pociot and coworkers, but other groups have also
found DR3 to be associated with high, and DR2 to be associated with low, TNFα
responders (Bendtzen et al., 1988; Jacob et al., 1990; Peces et al., 1995).

This relationship not only supports a role for TNF in the pathogenesis of pre-
eclampsia, but may help explain some of the confusion in the literature of HLA and pre-
eclampsia. It is not a single HLA-DR specificity that would be over-represented in the
disease, but a group of antigens, which might occur in varying proportions in different
series of patients. The putative HLA-DR4 association in particular has been called into
question, and therefore the data were analysed separately after the withdrawal of all DR-
Table 1. Pre-eclampsia and TNF response related to HLA-DR.

<table>
<thead>
<tr>
<th>HLA-DR specificity</th>
<th>Relative frequency in pre-eclampsia*</th>
<th>Relative TNFα response#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.81</td>
<td>1.34</td>
</tr>
<tr>
<td>2</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>3</td>
<td>1.21</td>
<td>1.52</td>
</tr>
<tr>
<td>4</td>
<td>1.43</td>
<td>1.28</td>
</tr>
<tr>
<td>7</td>
<td>0.93</td>
<td>0.94</td>
</tr>
<tr>
<td>5/6/8</td>
<td>0.68</td>
<td>0.80</td>
</tr>
</tbody>
</table>

*Calculated as the ratio of the antigen frequency in pre-eclampsia patients to controls.
#Ratio of TNFα secretory capacity to the average value, calculated from data provided by Pociot et al. (1993).

Table 2. Putative high TNF responders in pre-eclampsia patients and controls after exclusion of all subjects with HLA-DR4.

<table>
<thead>
<tr>
<th>DR1 or DR3 positive (%)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-eclampsia patients</td>
<td>69</td>
</tr>
<tr>
<td>(n=58)</td>
<td></td>
</tr>
<tr>
<td>Female controls</td>
<td>48</td>
</tr>
<tr>
<td>(n=51)</td>
<td>p<0.01</td>
</tr>
<tr>
<td>Total (male+female) controls</td>
<td>46</td>
</tr>
<tr>
<td>(n=91)</td>
<td>p<0.002</td>
</tr>
</tbody>
</table>

Although there is an unexplained association between pre-eclampsia and type 1 diabetes, most diabetics do not experience pre-eclampsia during pregnancy and only a small proportion of pre-eclampsia patients subsequently develop diabetes. These circumstances suggest that pre-eclampsia and diabetes are distinct diseases with separate causes, yet with some relevant common factor linking the two. A tendency to produce a high level of TNF in response to (presumably different) stimuli could be the common factor.

We found no single DR4-bearing haplotype to be over-represented in pre-eclampsia (Liston and Kilpatrick, 1991) and others have failed to find any linkage between pre-eclampsia and the maternal HLA-DR region (Wilton et al., 1991; Hayworth et al., 1992). If the suggestion made here be true, it is not necessary to invoke HLA-DR as being linked to a disease susceptibility gene. Instead, HLA-DR4 (and other DRβ alleles) would function as immune response genes, modulating the TNFα response to (unspecified) stimulation. Such HLA associations would presumably be in addition to, and independ-
ent of, other disease susceptibility genes. HLA would be part of a more complex genetic susceptibility, which would also include a fetal contribution (Liston and Kilpatrick, 1991). It might be worthwhile for other workers with HLA data in pre-eclampsia to re-examine their HLA-DR data in the light of this analysis.

REFERENCES

