Functional inference of methylenetetrahydrofolate reductase gene polymorphisms on enzyme stability as a potential risk factor for Down syndrome in Croatia

Jadranka Vraneković¹, Ivana Babić Božović², Nada Starčević Čizmarević², Alena Buretić-Tomljanović¹, Smiljana Ristić¹, Oleg Petrović³, Miljenko Kapović¹ and Bojana Brajenović-Milić*,

¹Department of Biology and Medical genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
²Department of Obstetrics and Gynecology, Rijeka University Hospital, Rijeka, Croatia

Abstract. Understanding the biochemical structure and function of the methylenetetrahydrofolate reductase gene (MTHFR) provides new evidence in elucidating the risk of having a child with Down syndrome (DS) in association with two common MTHFR polymorphisms, C677T and A1298C. The aim of this study was to evaluate the risk for DS according to the presence of MTHFR C677T and A1298C polymorphisms as well as the stability of the enzyme configuration. This study included mothers from Croatia with a liveborn DS child (n = 102) or DS pregnancy (n = 9) and mothers with a healthy child (n = 141). MTHFR C677T and A1298C polymorphisms were assessed by PCR-RFLP. Allele/genotype frequencies differences were determined using χ² test. Odds ratio and the 95% confidence intervals were calculated to evaluate the effects of different alleles/genotypes. No statistically significant differences were found between the frequencies of allele/genotype or genotype combinations of the MTHFR C677T and A1298C polymorphisms in the case and the control groups. Additionally, the observed frequencies of the stable (677CC/1298AA, 677CC/1298AC, 677CC/1298CC) and unstable (677CT/1298AA, 677CT/1298AC, 677TT/1298AA) enzyme configurations were not significantly different. We found no evidence to support the possibility that MTHFR polymorphisms and the stability of the enzyme configurations were associated with risk of having a child with DS in Croatian population.

Keywords: Down syndrome, enzyme configuration, MTHFR, polymorphisms

1. Introduction

Down syndrome (DS) or trisomy 21 is the most prevalent autosomal trisomy detected at birth [2]. Approximately 95% of DS cases are of maternal origin, and the prevalence for DS increases with age of the mother [12]. A number of studies from distinct geographic regions have evaluated the role of an abnormal folate pathway as a possible risk for DS. The folate pathway plays an important function in DNA synthesis as well as in DNA methylation. Accurate methylation of genomic DNA, particularly in the centromeric region of the chromosome, is crucial for stabilization and proper separation of the chromosomes during cellular
S-adenosylmethionine (SAM) is the major methyl donor for DNA, protein and lipid methylation, and its synthesis requires the activity of methylenetetrahydrofolate reductase (MTHFR), which catalyzes the conversion of 5,10 methylenetetrahydrofolate to 5-methyltetrahydrofolate, the major methyl donor for remethylation of homocysteine to methionine [15]. Polymorphisms in the human MTHFR gene (C677T and A1298C) have been identified, which result in a reduction of MTHFR enzymatic activity [21,35].

The association between the MTHFR C677T polymorphism and risk for having a child with DS was first reported ten years ago [20]. Since the initial study, many researchers have examined one or both MTHFR polymorphisms as a potential risk factor for DS, but these studies have yielded contradictory results [1,3–5, 7–11,18,20,24,26,27,29,30,33,36,39]. Interestingly, a recent study by Ulvik et al. demonstrated that the levels of total homocysteine (tHcy) associated with the various MTHFR combinations show significant differences; the levels of tHcy increase as the levels of folate decrease. Lowest serum folat and highest tHcy was found for the 677TT/1298AA genotype combinations [34]. These findings led Martinez-Frias to speculate that understanding the MTHFR gene structure and the mechanisms by which folate may reduce homocysteine levels in humans has provided a rationale for the conflicting epidemiological observations of the studies on the MTHFR C677T and A1298C polymorphisms and the risk of having a child with DS [23].

The aim of the present study was to assess the risk for DS in association with (i) maternal polymorphisms of MTHFR (C677T and A1298C) and (ii) stable or unstable MTHFR enzyme dimer configurations as defined by Ulvik et al. [34].

2. Subjects and methods

Mothers with DS children were recruited from the Down’s syndrome associations in the larger cities of Croatia (Rijeka, Zagreb, Pula, Zadar, Split, Karlovac, Čakovec and Osijek). Blood samples were collected from a total of 111 women who had either a liveborn child with DS (n = 102) or a trisomy 21 pregnancy that was terminated (n = 9). All DS cases were full trisomy 21; cases with translocation or mosaicism were not included in the study. The karyotypes of the parents were confirmed as normal. The control group consisted of women who screened negative at the second trimester screening test for DS performed in the Department of Biology and Medical Genetics, School of Medicine, University of Rijeka. The control mothers gave birth to healthy children, and had no previous miscarriages or abnormal pregnancies; a total of 141 control DNA samples were collected from this group. The control and case groups were age-matched and of the same ethnicity (Caucasian). The mean age of the case and control groups was 31.3 ± 6.4 (range 16–43) and 31.4 ± 5.0 (range 18–41) years, respectively (P = 0.867). Maternal age was calculated as the age of the mother at the time of conception of the DS child for the case group or the child who was born after maternal serum screening for the control group.

For the purpose of this study, we marked MTHFR genotype combinations according to the stability of the enzyme configurations as follows [34]:

- Stable enzyme configurations = 1 for genotypes 677CC/1298AA, 677CC/1298AC, and 677CC/1298CC.
- Unstable enzyme configurations = 2 for genotypes 677CT/1298AA, 677CT/1298AC, and 677TT/1298AA.

The Ethical Committee of the Medical School, University of Rijeka, approved the study. Written informed consent was obtained from all participants in the study.

Genomic DNA was extracted from 3 ml of EDTA-treated blood using the QIAamp DNA blood FlexiGene DNA Kit (QIAGEN GmbH, Hilden, Germany) according to the manufacturer’s instructions. Genotyping analyses were performed using the PCR-RFLP technique. Genotyping for the MTHFR C677T and A1298C polymorphisms was performed using the method published by Coppede et al. [10]. Digested PCR fragments were separated by electrophoresis on a 3% agarose gel containing ethidium bromide.

Allele frequencies were calculated by gene counting, and deviations from those estimated by the Hardy-Weinberg equilibrium were examined using the χ² test. Group differences in genotype and allele were analyzed for statistical significance using the χ² test. Odds ratio (OR) and the 95% confidence intervals (CI) were calculated to for heterozygous and homozygous mutant genotypes was compared with the wild type. Results were considered statistically significant at P < 0.05.

3. Results

We first examined the distributions of the MTHFR C677T and A1298C genotypes in the case group of
women with a DS child and in the control group (Table 1). No significant difference in these distributions was observed when compared with those predicted from the Hardy-Weinberg equilibrium for either cases or controls. We analyzed the frequencies of the \textit{MTHFR} C677T and A1298C alleles and genotypes in both groups, and no statistically significant differences in allele or genotype distributions were detected. Table 2 shows the frequencies of the nine genotype combinations derived from the C677T and A1298C polymorphisms in the case and control groups. We did not detect any statistically significant differences between the frequencies of genotype combinations in the two groups. We also assessed the frequencies of the enzyme configurations (stable or unstable) in the two groups, and no significant differences were found in frequencies between the case and the control group (Table 3).

4. Discussion

Here we present the first study on the genotype and allele frequencies of the C677T and A1298C \textit{MTHFR} polymorphisms in a group of mothers in Croatia who had DS pregnancies or a live born DS child. Our findings confirm the general profile of genotype and allele distributions for \textit{MTHFR} C677T and A1298C polymorphisms in the European population [16,22,28,32,37]. We did not find any association between \textit{MTHFR} C677T polymorphism with the risk for having a child with DS. The results are in agreement with studies performed in Mediterranean countries [4–11,24,33]. An association of the \textit{MTHFR} 677T allele with DS has also been found in North and South America, Asia, and Egypt [13,18,20,24,27,36]. Much more contradictory reports have been presented for the \textit{MTHFR} A1298C polymorphism [3,4,10,13,24,27,30]. When the combined maternal \textit{MTHFR} C677T/A1298C genotypes were considered, we failed to find any significant association with the risk for offspring with DS. The present results are consistent with the findings obtained in Sicily, France, Turkey, and Brazil [3–5,8,29]. As expected, the combined genotypes 677CT/1298CC, 677TT/1298CC, and 677TT/1298AC were not observed in the case group or in the controls. The findings support linkage disequilibrium between the \textit{MTH-
Table 3

Frequencies of MTHFR enzyme dimer configuration according to stability in women with a DS child (cases) and controls

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Genotype MTHFR C677T/A1298C</th>
<th>Cases (%) N = 111</th>
<th>Controls (%) N = 141</th>
<th>OR (95%CI) P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable</td>
<td>CCAA, CCAC, CCCC</td>
<td>46 (41)</td>
<td>65 (46)</td>
<td>1.20 (0.73–1.99) 0.540</td>
</tr>
<tr>
<td>Unstable</td>
<td>CTAA, CTAC, TTAA</td>
<td>65 (59)</td>
<td>76 (54)</td>
<td></td>
</tr>
</tbody>
</table>

