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Background. Microarray technology shows great potential but previous studies were limited by small number of samples in the
colorectal cancer (CRC) research. The aims of this study are to investigate gene expression profile of CRCs by pooling cDNA
microarrays using PAM, ANN, and decision trees (CART and C5.0). Methods. Pooled 16 datasets contained 88 normal mucosal
tissues and 1186 CRCs. PAMwas performed to identify significant expressed genes in CRCs and models of PAM, ANN, CART, and
C5.0 were constructed for screening candidate genes via ranking gene order of significances. Results. The first screening identified
55 genes. The test accuracy of each model was over 0.97 averagely. Less than eight genes achieve excellent classification accuracy.
Combining the results of four models, we found the top eight differential genes in CRCs; suppressor genes, CA7, SPIB, GUCA2B,
AQP8, IL6R and CWH43; oncogenes, SPP1 and TCN1. Genes of higher significances showed lower variation in rank ordering by
different methods. Conclusion. We adopted a two-tier genetic screen, which not only reduced the number of candidate genes but
also yielded good accuracy (nearly 100%). This method can be applied to future studies. Among the top eight genes, CA7, TCN1,
and CWH43 have not been reported to be related to CRC.

1. Background

Colorectal cancer is one of the leading cancers in the world
and considered to be among the most frequent causes of
death, along with lung, prostate, and breast cancer [1].
Microarray analysis has provided insights into the genomic

alterations that potentially underpin the processes of col-
orectal carcinogenesis, tumor growth, and metastasis and
has enabled the identification of gene signatures for diag-
nosis, molecular characterization, prognosis prediction, and
treatment prediction [2]. However, there remains a lack of
clinically useful biomarkers emerging for cancers [3]. The
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translation of microarrays analysis into clinical practice is
still far from complete for several reasons: (1) the lack
of comparison and overlap of results obtained from each
individual study [4–6] due to technique-related variability of
sample collections and preparation, type of platform used,
and data analysis; (2) the lack of large-scale studies due to the
small number of available patient samples, leading to reduced
statistical power [7]; (3) the difficulty in understanding and
selecting the data that would be informative and useful for
developing a reliable clinical application [2].

The study pooled the dataset of microarrays from differ-
ent research teams in the Gene Expression Omnibus (GEO)
database in order to increase sample size, sample heterogene-
ity, and statistical power in the hope of addressing the issue
of insufficient sample size presented in previous studies. Four
methods, PredictionAnalysis ofMicroarray (PAM),Artificial
Neural Network (ANN), Classification and Regression Trees
(CART), and C5.0, were employed to analyze the variations
in gene expression between colorectal tumors and normal
mucosa tissues in order to screen for significant genes.

2. Methods

2.1. Microarray Data Sources. The microarray gene expres-
sion data are from searches using “colon cancer” and
“human [organism]” and “expression profiling by array
[dataset type]” as the keywords in the GEO database of the
National Center for Biotechnology Information (NCBI). The
eligible criteria were as follows: (1) the examined samples
were frozen tissue sections of normal human colorectal
mucosa, primary colorectal cancer, or hepatic metastases
from colorectal cancer; (2) the microarray platform used
was limited to single-color, whole genome gene chips
from Affymetrix; and (3) the data were presented as gene
expression level. The exclusion criteria were as follows: (1)
data from cultured cell lines or other in vitro assays; (2)
datasets without the original gene expression level data files;
and (3) those with redundant subdatasets. A total of 190
GEO series (GSE) datasets were finally 174 excluded, leaving
16 independent datasets for analysis, which are as follows:
GSE4045, GSE4107, GSE4183, GSE5851, GSE8671, GSE9348,
GSE1096, GSE12630, GSE12945, GSE13067, GSE13294,
GSE13471, GSE15960, GSE17538, GSE18105, and GSE14333.
The total number of examined tissues was 1,274, including
88 normal mucosal tissues and 1,186 colorectal tumor
tissues (53 adenoma tissues, 521 adenocarcinoma tissues, 533
primary colorectal tumor tissues, and 79 hepatic tissues with
metastatic colorectal tumors). The data set is unbalanced
among groups of adenoma, adenocarcinoma, carcinoma,
metastasis, and normal tissues having 53, 521, 533, 79, and 88
samples, whereas, in training set, candidate genes modeling
two remaining groups between cases and controls must have
accuracies more than 88/(88 + 53) = 0.6241, 521/(88 + 521)=
0.8555, 533/(88 + 533) = 0.8583, and 88/(88 + 79) = 0.5269,
respectively.

All microarray data of examined tissues were produced
from primary surgical cases without chemotherapy. For
adjusting metastatic spread, all the cases were divided into

five groups based on pathological tissue types: normal
mucosal tissues (nm), adenoma (ad), adenocarcinoma (ac),
primary tumor (unknown type, primary carcinoma; cn), and
liver metastases (mt). More clinical factors of stage, grade,
microsatellite instability (MSI), microsatellite stability (MSS),
sites, race, gender, and age were adjusted for gene ordering
and secondary genetic screening in the multinomial and
multivariate logistic regression. The research process of flow
chart diagram for the pooled datasets with analysis included
in the study is shown in Figures 1(a) and 1(b).

2.2. Preprocessing of Pooling Microarray Data. In Figure 1(b),
we used the GC Robust Multiarray Average (GCRMA)
method and R language software [8] to remove the chip
background associated with the microarray gene expression
levels. The expression levels of the probe sets were converted
into gene expression levels. Because the probe expression
levels showed a skewed distribution, the median probe
expression level was selected to represent the gene expression
level. Therefore, Bolstad et al. [9] proposed the GCRMA to
adjust the affinity among nucleotides because of different
binding strengths between GC and AT rather than the
RMA provided by the Affymetrix Console, as the latter is
designed for processing Affymetrix chips. The preprocessed
microarrayswere first performedwithin-study normalization
using GCRMA and then calculated gene level estimates
before combining the different studies and only keeping genes
available on all arrays. Afterwards, the preprocess also did
between-study normalization.

For instance, the HG-U133A gene chip used in this study
is comprised of 22,283 probes that cover 14,713 genes. Each
gene is covered by 1–14 probes. Of the 14,713 genes, 5,107
(38%) are covered by more than two probe combinations.
For genes covered by multiple probe combinations, this
study adopted the median method. For example, when the
expression level of the HFE gene was reflected by the levels of
13 probes, the level of the seventh (themedian number) probe
was chosen to represent the expression of the HFE gene.

Affymetrix chips were HG-U133A, HG-U133A-2, and
HG-U133-Plus-2. Among these 3 types of chips, the corre-
sponding numbers of genes were 14,713, 14,704, and 33,727,
after the conversion that each single gene can map sev-
eral probes, respectively. In the present study, the quartile
normalization of all gene expression values was performed
before combining 16 GSEs.The probes weremerged to obtain
the expression levels of 14,698 genes. The normalization can
eliminate the systematic variations among studies [10].

2.3. Primary Screening of Candidate Genes. The candidate
genes of colorectal tumors and normal mucosal tissues were
selected from the primary screening of the 14,698 genes using
PAM, followed by the construction of a classification model,
determination of gene order of importance, and secondary
gene screening using ANN, CART, C5.0, and PAM. decision
trees were constructed using CART and C5.0 for intragroup
comparison of gene order of importance.

The ad, ac, cn, and mt groups were subjected to pairwise
comparison of gene expression with the nm group to identify
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Figure 1: (a)The research process of flow chart diagram for the datasets with analysis. (b) Diagram of the methods used to identify candidate
genes and establish prediction models.

genes that were differentially expressed at different cancer
stages. The bootstrapping rounds were used to avoid the
poor extrapolation of the selected candidate genes that
the proposed analysis is unbiased and would not lead to
over-fitting. Three-fourths of the samples in each pair of
comparison groups were randomly selected as the model-
training group for PAM, and the remaining fourth served as
the model-testing group for an independent set of samples
that is left for final validation. Also, it will be interesting
to see the results of the current method under the null
hypothesis of nor predictive signal, which can be achieved by
label permutation.The threshold criteria for gene selection by
PAM were that the candidate genes were with the minimum
classification errors, which number was lower than 100.

2.4. Construction of the Four Model Analysis. Using the sig-
nificant genes from the primary screening, four classification
models were constructed for colorectal tumor tissues (ad,
ac, cn, and mt) and normal mucosal tissues (nm) for the
secondary screening of significant genes and determination
of the gene order of importance. Completely separating
training and validation data sets is a crucial step in classifier
development (Grade et al., 2007; Simon, Radmacher, Dobbin,
and McShane, 2003). It is very important that none of the
samples in the validation dataset has been used in any
part of the training, for example, for feature selection. In
Figure 1(b), bootstrapping was performed 1,000 rounds for
the training of each model with three-fourths of the samples,
and the remaining fourth for the model-testing group for an
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independent set of samples that is left for final validation.
Also, it will be interesting to see the results of the current
method under the null hypothesis of nor predictive signal,
which can be achieved by label permutation. The related
settings of the four analysis models are shown in Supplemen-
tary Table 1 (see Supplementary Materials available online
at http://dx.doi.org/10.1155/2014/634123).The introduction of
the four analysis methods is as follows. The Clementine 10.1
was performed for ANN, C5.0, and CART and the Rwas used
for PAM.

2.5. PAM. PAM uses nearest shrunken centroids as its
algorithm. It can eliminate noise signal [11], control the false
discovery rate (FDR), and select the best candidate gene set.
PAMmethod has been reported to perform better with fewer
genes than the original methods in previous studies [11, 12].
PAM was employed for the screening for primary candidate
genes, secondary gene selection, and model construction.
Tibshirani et al. [13] reanalyzed the microarray data of
leukemia from Golub et al. [14] and concluded 43 from
96 genes via PAM compared to that Khan et al. [15] who
concluded them via ANN. Meanwhile, the FDR was reduced
from 4 to 2 over 34 classifications.

2.6. ANN. ANN needs to go through repeated training and
learning to construct good classification models. It has the
following advantages: (1) it is suitable for the analysis of
highly dimensional and uncommon data; (2) it can accept
missing values and process noise of the information. Its
limitations are as follows: (1) it is necessary to avoid over-
training the model and (2) it has a nontransparent solution
process known as a “black box” (3). ANNwere trained by the
setting items ofmethodwith quick back propagation, prevent
overtraining with 80% samples, set random seed-seed with
720925, stop on with default, optimize with speed.TheQuick
back propagation with producing smaller hidden layer and
random seed 720925 with randomization for avoiding over-
fitting were default in ANN on Clementine 10.1.

2.7. C5.0 and CART. Decision trees are models with tree-
like structures. Trimming the branches can solve the problem
of over-training. In general, larger decision trees are more
expressive and may have more predictive power, but the
smaller a decision tree is, the stronger its simplicity is [16].The
construction of CART was based on a Gini index, with the
best independent variable chosen for the binary cut in each
branch. Therefore, each independent variable (field) is likely
to be used repeatedly at different nodes. C5.0 was developed
gradually from C4.5 and ID3 and is similar to the CART
method. The major difference is that the construction of its
decision tree is based on information gain [17].

2.8. Ordering Method for Gene Importance. The expression
values of the 55 genes were analyzed in the models con-
structed with ANN, CART, C5.0, and PAM, and the contri-
bution level of each gene to the classification of colorectal
tumors and normal mucosal tissues was obtained, which was
designated as gene importance.

CART, C5.0, and PAM used the number of times each
gene was selected as a predictor in 1,000 bootstrapping
rounds. A higher number of times indicated a higher
importance for the gene. ANN listed the relative importance
values of the input gene variables in the classification model,
with larger values representing higher contribution levels. In
addition to the ordering methods above, PAM and C5.0 also
used the centroids values, as well as the location of a gene,
as a node, in the decision tree, respectively, to calculate gene
importance. The higher absolute values of centroids and a
node, which are closer to the root of a decision tree (i.e., the
first split point), represent the higher importance for the gene.
All the index levels of gene importance in each model were
ranked and normalized into percentile ranked score (RS%).
For precise settings, see the Supplementary Table 2.

2.9. Functional Pathway Analysis. The use of pooled GEO
studies was secondary because only microarray data was
available. Testing 55 genes in any experimental model would
be beneficial for colon cancer biology. Therefore, the present
study analyzed the functional pathways that are related to
the tumor genesis of colorectal cancer using GSEA software
version 2.07. The GSEA MSigDB provides a collection of
annotated gene sets based ondifferent sources of information,
for example, gene ontology, pathways, or motifs [10]. Input
variables were the expression values of the 14,698 genes in
colorectal tumor tissues and normal mucosal tissues. The
related settings and gene ordering results are shown in the
Supplementary Tables 2 and 3. (ANN: the ANNmodel listed
the relative importance values (RI) of the input gene variables
in the classification of colorectal tumors and normal mucosal
tissues, with larger values representing higher contribution
levels. The relative importance values were ranked with 1
point for the lowest value, 2 points for the next lowest value,
and so on. Identical ranked scores (RS) were given to the
genes with the same RI value. Finally, each gene’s RS was
divided by the highest RS in order to obtain the percentile
ranked score (RS%). CART: the gene importance ordering
method in the CARTmodel was used to calculate the number
of times each gene was selected as a node in the decision
tree in the analysis with 1,000 repeated samplings. A higher
number of times selected indicated a higher importance for
the gene. The genes were ranked based on the number of
times they were selected as a significant gene, with 1 point
for the lowest number of times, 2 points for the next lowest
number of times, and so on.The same ranked score (RS) was
given to the genes with the same Sig value. Finally, the RS of
each gene was divided by the highest RS to obtain the RS%.
PAM: one of the PAM gene importance calculation methods
is similar to CART. However, in addition to using Sig to
calculate importance, PAMused the centroids values (Cen) to
calculate gene importance. The detailed calculation method
using Cen was as follows. The absolute values were obtained
for the averages of the centroids from thePAManalysis results
after taking 1,000 repeated samples for the four group pairs
(ad/nm, ac/nm, cn/nm, and mt/nm). Next, the sum of the
absolute values for each gene was ranked, with 1 point for the
lowest value, 2 points for the next lowest value, and so on.The
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Table 1: Descriptive statistics of study samples.

Variables Normal mucosa Colorectal tumors Logistic regression
𝑛 % 𝑛 % OR 𝑃 value

Gender (𝑛 = 759)
Female 10 48 331 45 1
Male 11 52 407 55 1.12 0.8

Age (𝑛 = 722)
≤60 17 81 240 33 1
>60 4 19 461 62 8.16 ∗ ∗ ∗

Race (𝑛 = 1,274)
European 14 16 321 27 1
Han 38 43 177 15 0.21 ∗ ∗ ∗

Australia 32 36 389 33 0.54 0.05
USA 4 5 299 25 3.26 ∗

Location of tissues (𝑛 = 272)
Proximal 5 11 32 14 1
Distal 42 89 193 86 0.72 0.52

OR: odds ratio; ∗<0.05; ∗∗∗<0.001. Proximal position: cecum, ascending colon, hepatic flexure, transverse colon, and splenic flexure. Distal position:
descending colon, sigmoid colon, and rectum.

same RS was given to identical centroids values. Finally, the
RS of each gene was divided by the highest RS to obtain the
RS%. C5.0: the calculation method is based on the number of
times each gene is selected, similar to CART, as well as node
location.The lattermethodwas that when a gene, as a node, is
closer to the root of a decision tree (i.e., the first split point), it
has a higher RS, while it has a lower RS, when it is closer to the
tip of the branches, and so on.The RS% calculationmethod is
the same as that of CART. The ranked scores were converted
to percentiles in order to make it possible to compare the
order of gene importance obtained from these four analysis
methods.)

3. Results

The age distribution indicated a higher proportion of col-
orectal cancer in people over 60 years old. No difference was
found in the location of collected tissues or genders between
the two groups (Table 1).

3.1. Primary Genetic Screening. The PAM screens the candi-
date genes with highly statistical significances by bootstrap-
ping and cross-validation and then classification algorithms
implement models with selected genes that can discriminate
between two groups among cancers and controls. The results
demonstrate how consistent differentmethods of datamining
perform and select candidate genes among ANN, decision
trees, and PAM according to correlation coefficients via
ranking statistical significances of 55 genes.

Significant genes were found in the ad/nm, ac/nm,
cn/nm, and mt/nm combination groups, respectively, and a
total of 55 significant genes were identified (Table 2). The
repetitions in the four comparison groups and the variations
of accuracy were very small and the average accuracy was
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1.00

ANN CART PAMC5.0 winnow

C5.0 winnowTest accuracy ANN CART PAM
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Mean 0.991 0.971 0.981 0.975
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ANN: artificial neural network
C5.0: one of decision tree PAM: prediction analysis of microarray

CART: classification and regression trees

Figure 2: Test accuracy rates of 4 approaches in 1,000 bootstrapping
rounds for classifying colorectal tumors andnormalmucosal tissues.

above 0.95 (Figure 2). Less than 18 genes were screened each
time, and the FDR value of each analysis was close to 0, which
indicates that the probability of false positive results for gene
significance was close to 0 (see the Supplementary Table 4
and Supplementary Figure 1).
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Table 2: 55 differential expressed genes in colorectal tumors of the primary screening.

Accession number Gene symbol Gene name Chromosome Fold change∗

HGNC: 74 ABCG2 ATP-binding cassette, subfamily G (white), member 2 4q22 −6.26
HGNC: 22204 AHCYL2 Adenosylhomocysteinase-like 2 7q32.1 −5.82
HGNC: 642 AQP8 Aquaporin 8 16p12 −6.56
HGNC: 17107 BEST2 Bestrophin 2 19p13.2 −4.52
HGNC: 1143 BTNL3 Butyrophilin-like 3 5q35.3 −6.03
HGNC: 21214 C6orf105 Chromosome 6 open reading frame 105 6p24.1 −7.31
HGNC: 28180 C9orf125 Chromosome 6 open reading frame 105 9q31.1 −4.23
HGNC: 1368 CA1 Carbonic anhydrase I 8q21.2 −6.22
HGNC: 1375 CA4 Carbonic anhydrase IV 17q23 −3.95
HGNC: 1381 CA7 Carbonic anhydrase VII 16q22.1 −5.39
HGNC: 30072 CD177 CD177 molecule 19q13.2 −4.65
HGNC: 1762 CDH3 Cadherin 3, type 1, P-cadherin (placental) 16q22.1 5.49
ENSG00000166869 CHP2 Calcineurin B homologous protein 2 16p12.2 −6.23

HGNC: 1973 CHST5 Carbohydrate (N-acetylglucosamine 6-O) sulfotransferase
5 16q22.3 −3.83

HGNC: 2015 CLCA1 Chloride channel accessory 1 1p22.3 −5.68
HGNC: 2018 CLCA4 Chloride channel accessory 4 1p31-p22 −4.08
HGNC: 2032 CLDN1 Claudin 1 3q28-q29 5.36
HGNC: 2050 CLDN8 Claudin 8 21q22.11 −3.69
HGNC: 2311 CPM Carboxypeptidase M 12q14.3 −3.64
HGNC: 26133 CWH43 Cell wall biogenesis 43 C-terminal homolog (S. cerevisiae) 4p11 −4.59
HGNC: 2765 DEFA6 Defensin, alpha 6, Paneth cell-specific 8p23.1 5.95
HGNC: 3178 EDN3 Endothelin 3 20q13.2-q13.3 −4.27
HGNC: 23117 FAM55D Family with sequence similarity 55, member D 11q23.2 −6.18
HGNC: 13572 FCGBP Fc fragment of IgG binding protein 19q13.1 −5.52

HGNC: 4128 GALNT6 UDP-N-acetyl-alpha-D-galactosamine:polypeptide
N-acetylgalactosaminyltransferase 6 (GalNAc-T6) 12q13 3.56

HGNC: 4191 GCG Glucagon 2q36-q37 −6.1
HGNC: 4682 GUCA2A Guanylate cyclase activator 2A (guanylin) 1p35-p34 −4.32
HGNC: 4683 GUCA2B Guanylate cyclase activator 2B (uroguanylin) 1p34-p33 −6.62
HGNC: 4764 H3F3A H3 histone, family 3A 1q41 −3.86
HGNC: 5141 HP Haptoglobin 16q22.1 11.72
HGNC: 6019 IL6R Interleukin 6 receptor 1q21 −3.46
HGNC: 29213 KIAA1199 KIAA1199 15q24 4.43
HGNC: 6359 KLK11 Kallikrein-related peptidase 11 19q13.33 4.65
HGNC: 7174 MMP7 Matrix metallopeptidase 7 (matrilysin, uterine) 11q21-q22 6.75
HGNC: 13370 MS4A12 Membrane-spanning 4-domains, subfamily A, member 12 11q12 −10.66
HGNC: 14296 MT1M Metallothionein 1M 16q13 −3.94
HGNC: 7512 MUC2 Mucin 2, oligomeric mucus/gel-forming 11p15.5 −7.23
HGNC: 7783 NFE2L3 Nuclear factor (erythroid-derived 2)-like 3 7p15.2 3.02

HGNC: 7978 NR3C1 Nuclear receptor subfamily 3, group C, member 1
(glucocorticoid receptor) 5q31.3 −3.2

HGNC: 7979 NR3C2 Nuclear receptor subfamily 3, group C, member 2 4q31.1 −5.08
HGNC: 8062 NUP153 Nucleoporin 153kDa 6p22.3 5.9
HGNC: 9748 PYY Peptide YY 17q21.1 −4.35
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Table 2: Continued.

Accession number Gene symbol Gene name Chromosome Fold change∗

HGNC: 10600 SCNN1B Sodium channel, nonvoltage-gated 1, beta 16p12.2-p12.1 −3.28
HGNC: 3018 SLC26A3 Solute carrier family 26, member 3 7q31 −5.59
HGNC: 25355 SLC30A10 Solute carrier family 30, member 10 1q41 −5.69

HGNC: 11030 SLC4A4 Solute carrier family 4, sodium bicarbonate cotransporter,
member 4 4q21 −5.14

HGNC: 11063 SLC7A5 Solute carrier family 7 (cationic amino acid transporter, y+
system), member 5 16q24.3 4.05

HGNC: 11242 SPIB Spi-B transcription factor (Spi-1/PU.1 related) 19q13.3-q13.4 −4.24
HGNC: 15464 SPINK5 Serine peptidase inhibitor, Kazal type 5 5q32 −4.31
HGNC: 11255 SPP1 Secreted phosphoprotein 1 4q22.1 9.69
HGNC: 11329 SST Somatostatin 3q28 −5.84

HGNC: 11652 TCN1 Transcobalamin I (vitamin B12 binding protein, R binder
family) 11q11-q12 8.66

HGNC: 11799 THRB Thyroid hormone receptor, beta (erythroblastic leukemia
viral (v-erb-a) oncogene homolog 2, avian) 3q24.2 −4.25

HGNC: 17995 TRPM6 Transient receptor potential cation channel, subfamily M,
member 6 9q21.13 −4.85

HGNC: 30961 ZG16 Zymogen granule protein 16 homolog (rat) 16q11.2 −3.94
∗Equation: fold change = log

2
(𝑔crc/𝑔nm); 𝑔crc: the average gene expression in colorectal tumors; 𝑔nm: the average gene expression in normal mucosal tissues.

Table 3: Spearman’s correlations of ranking orders of 55 significant genes among the methods of PAM, ANN, CART, and C5.0.

Spearman’s correlation ANN CARTΔ C5.0Δ C5.0 importance PAM centroid PAMΔ
ANN 𝑟

𝑠
1

CARTΔ 𝑟
𝑠

0.42∗∗ 1
C5.0Δ 𝑟

𝑠
0.48∗∗∗ 0.75∗∗∗ 1

C5.0 importance 𝑟
𝑠

0.24 0.62∗∗∗ 0.73∗∗∗ 1
PAM centroid 𝑟

𝑠
0.09 0.01 0.18 0.1 1

PAMΔ 𝑟
𝑠

0.09 0.01 0.18 0.1 1.00∗∗∗ 1
∗

𝑃 value < 0.05, ∗∗𝑃 value < 0.01, ∗∗∗𝑃 value < 0.001.

These 55 genes are mainly localized and functional
at the cell surface and at tight junction. Their molecular
functions are related to transporter activity, binding, catalytic
activity, enzyme regulator activity, and gelatinase activity.The
biological processes that these genes are involved in mainly
include biological adhesion, signaling, transporter, metabolic
process, insulin secretion, and biological regulation (see the
Supplementary Tables 5–7).

3.2. The Construction of Classification Models. The mean
values for the test accuracy reached 0.97 or above in the
classification of normal and colorectal cancer cases. ANN
and C5.0 exhibited the best performances, and ANN showed
the best model stability (Figure 2). CART required the least
number of gene variables, two genes (median value), for
each analysis. Less than 8 genes were selected in all the
models on average, which suggests that less than 8 genes can
effectively classify normal and colorectal cancer cases (see the
Supplementary Table 8).

The results in Table 3 demonstrate how consistent differ-
ent methods of data mining perform and select candidate
genes among ANN, decision trees, and PAM according to

correlation coefficients via ranking statistical significances
of 55 genes. The order of the importance of the 55 genes
reported by C5.0Δ and C5.0 importance showed very good
consistency with a Spearman’s correlation coefficient of 0.73
(𝑃 < 0.001) (Table 3). PAMΔ and PAM centroid gave
the exact same ranking order for the importance of the 55
genes. The results suggested that, in the repeated sampling
analysis, results of classification of colorectal tumors and
normal tissues via C5.0 and PAM, the number of times of
a gene is deemed significant, can be generally used as a
reference for the ranking order for gene importance; the
higher the number of times a gene is called significant, the
more important the gene is as a classification dependent
variable.

CARTΔ, C5.0Δ and C5.0 importance, an internal con-
trol group, had the similar importance orders of 55 genes
(Spearman’s correlation coefficient between 0.62 and 0.75
and 𝑃 < 0.001). ANN showed a significant correlation
with CARTΔ and C5.0Δ but had relatively low correlation
coefficients in the range of 0.42–0.48 (Table 3). In summary,
a poor consistency in gene importance rank ordering was
observed among the different methods.
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3.3. Gene Ordering and Secondary Genetic Screening. In
Figure 1(b), eight genes were selected by best ranking for
modeling 𝑃 values from bootstrapping ANN, decision tree,
and PAM. The results were shown in Figures 2 and 3.
Models sum of RS% was calculated, which was generally
inversely proportional to the coefficient of variance (CV)
value. The more important the gene is, the more consistent
the ranking orders are among the various models. The top
eight genes after ranking by RS% sum were selected, and
they are CA7, SPIB, GUCA2B, AQP8, IL6R, SPP1, TCN1,
and CWH43 (Figure 3). The RS% obtained by all of the
methods was 0.5 or greater for CA7, SPIB, and CWH43
(see the Supplementary Table 3). All genes except TCN1
remained significant after individual controlling for gender,
race, tissue location or age, and CA7, SPIB, and CWH43were
still significant when the four confounders were controlled
for simultaneously. Except for SPP1, which did not show a
correlation with microsatellite stability, the other genes all
exhibited significant correlation after logistic regression of
individual variables, with OR values ranging from 0.49 to
1.12. Of the eight genes, only SPP1was significantly associated
with cancer stage. The higher the expression level of SPP, the
more advanced the cancer stage was (see the Supplementary
Tables 9 and 10). The multivariate logistic regression was
performed for acquiring odds ratios of 8 genes expression

of each of the eight genes adjusted by demographics in the
four different groups. These odds ratios allow comparisons
of patterns of expression changes for each of the genes; for
example, whether gene expression increases (odds ratio > 1)
for groups with more severe lesions or whether there is only
a difference between normal and disease tissue.

The Supplementary Table 10 showed that DEFA6, TCN1,
and KLK11 are upregulated and NR3C1 and THRB are
downregulated in adenoma, which can be earlier screening
markers. The genes of ABCG2, CA7, HP, KIAA1199, and
CLDN1 are upregulated and CA4, CHP2, CHST5, CLCA1,
CLCA4, CLDN8, FAM55D, H3F3A, MUC2, and NR3C2 are
downregulated in carcinoma and metastases, which can be
prognosis monitoring markers. The markers are regulated
consistentlywith samedirection comparing the present study,
Cardoso et al. 2007 andChan et al. 2008 [4, 7], the gene family
present genes related with the selective markers that are not
mapped the same in literature.

Of these eight genes, AQP8, SPIB, SPP1, and TCN1 are
GO biological process annotated as transporters; CA7 and
GUCA2B are annotated as being involved in biological regu-
lation and signaling, respectively; IL6R is annotated as being
part of the immune system process, while no annotation
was available for CWH43. As for GO molecular function
annotation, CA7, IL6R, and SPP1 are annotated as having
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gelatinase activity; AQP8, SPIB, and TCN1 are annotated as
being capable of binding;GUCA2B is annotated as a regulator
of enzyme activity, and CWH43 is not annotated.

3.4. The GSEA Analysis of Functional Pathways. The GO
functional results were similar to the results from the GSEA
analysis with the 55 genes, suggesting these 55 genes are
indeed located in the significant functional pathways that
affect the tumor genesis of colorectal cancer.

The primary GO molecular function annotation is bind-
ing (nucleic acid binding, chromatin binding, and peptide
binding). Although peptide binding was downregulated in
colorectal tumor tissues, the other types of binding were
all upregulated. The activities of genes involved in channel
regulation signal transduction and transportation were sup-
pressed in colorectal cancer. Of the GO biological processes,
cell cycle, DNA replication, DNA metabolic process, and the
glutamate signaling pathway were upregulated in colorectal
cancer, while response to stimulus (feeding behavior) and
lipid metabolism was downregulated (see the Supplementary
Table 11).

4. Discussion

The present study aimed at finding possible marker gene sets
for colorectal cancer by using a two-step complex bioinfor-
matical analysis.The in silico gene expression analysis results
in a low numbered gene set that could be a potent classifica-
tory set for CRC. In a biological point of view, the methods
and the results are valid; however, the verification of the given
gene set on an independent sample set would be necessary,
even at protein level. Biostatistically, it would be interesting
to knowwhether the selected, highly discriminative genes are
also present in the excluded GSE datasets.

4.1. Comparison of Analysis Methods. Four models per-
formed very well at classifying colorectal tumors and normal
mucosal tissues with the average test accuracy rates above
0.97. ANN showed the best classification performance, with
an average test accuracy of 0.99 ± 0.01. CART required the
fewest genes, requiring an average of 1.7 genes to reach an
average test accuracy of 0.97. C5.0 had the best accuracy with
the fewest genes among the four methods.

In general, except for C5.0 and CART, a poor consistency
in gene importance rank ordering was observed among the
different methods. Lee et al. [11] observed the same results
and found that, in general, more sophisticated classifiers give
better performances than do classical methods. However, the
present study found that genes of higher importance showed
lower variation in rank ordering.

4.2. Gene Overlapping. Among 55 selected genes, 13 over-
lapped with significant genes mentioned in two review
articles on gene expression analysis in colorectal cancer [4,
7]. The overlap rate, 13/55 (24%), was not particularly high.
However, if the seven genes in the same gene family that
overlapped are included, the overlap rate increases to 36%.
Compared to the 40 genes identified by Verkman et al. [18],

there are 21 overlapping genes, and the overlap rate is 21/55
(38%).These overlapping genes areABCG2,AQP8,CA1,CA4,
CA7, CD177, CDH3, CLCA4, CLDN8, EDN3, FCGBP, GCG,
GUCA2A, GUCA2B, KIAA1199, MMP7, MS4A12, MT1M,
MUC2, PYY, SLC26A3, SLC4A4, SPIB, SST, and ZG16.

4.3. Top Eight Genes. Gelatinase activity was one major
GO annotation of these eight genes (CA7, SPIB, GUCA2B,
AQP8, IL6R, SPP1, TCN1, and CWH4) and is related to
tumor progress and metastasis. Its expression was elevated in
advanced or metastatic tumor tissues [19–22]. The following
is an introduction of the eight genes important for the
classification of colorectal cancer and normal tissues.

4.3.1. CA7 (Carbonic Anhydrase VII). CA7 was indicated
as an important suppressor gene for the classification of
normal and colorectal cancer tissues in this study. Among the
members of the CA isozyme family, CA2 [7], CA9, and CA12
have been shown to be related to tumor genesis [12]. However,
no reports have been published on the relationship between
CA7 and colorectal cancer.

4.3.2. SPIB (Spi-B Transcription Factor). The Spi-B transcrip-
tion factor protein is amember of the ETS transcription factor
family, which inhibits neoangiogenesis, tumor progression,
and metastasis [23, 24]. Currently, no relevant studies have
demonstrated a potential mechanism underlying the rela-
tionship between SPIB and the tumor genesis of colorectal
cancer.

4.3.3. GUCA2B (Guanylate Cyclase Activator 2B, Uroguan-
ylin). Uroguanylin (GUCA2B) and guanylin (GUCA2A) are
very close in structure and biological functions. They are
responsible for signal transduction that regulates the trans-
port and secretion of liquids and electrolytes in the gastroin-
testinal tract during digestion [25, 26].The suppression of this
function was found to promote tumor genesis [27, 28].

4.3.4. AQP8 (Aquaporin 8). Aquaporin are responsible for
water absorption and excretion in the gastrointestinal tract
[29]. They play important roles in the metastasis and pro-
liferation of cancer cells [18]. Fischer et al. discovered that
AQP8 expression was only found in the columnar surface of
epithelial cells; little or no expression of AQP8 was observed
in the colonic crypts or tumor cells [19], which is also
consistent with Galamb et al. [20].

4.3.5. IL6R (Interleukin 6 Receptor). IL6R is primarily
involved in the immune response, inflammation, and
hematopoiesis [21] and was downregulated in the present
study. The low expression level of sIL-6R in colorectal cancer
tissues was correlated with disease progression, and it can
serve as an independent factor for prognosis prediction [22].

4.3.6. SPP1 (Secreted Phosphoprotein 1, Osteopontin). Osteo-
pontin protein can be used as a marker of tumor progression
for breast cancer [30], lung cancer [31], and prostate cancer
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[32]. The expression level of osteopontin is remarkably
increased in the blood samples from advanced colorectal
cancer [33] and has been considered to be a marker for
colorectal cancer progression [34].

4.3.7. TCN1 (Transcobalamin 1). TCN1 is a regulator of the
Wnt/beta-catenin pathway and enhances the expression of
the target genes of beta-catenin, leading to cancer progression
and outcome deterioration. In gastric cancer studies, TCN1
was significantly correlated with cancer stage, poor cell
differentiation, lymph node metastasis, and a poor prognosis
[35].

4.3.8. CWH43 (Cell Wall Biogenesis 43 C-Terminal Homolog).
CWH43 has been reported to contribute to the cell wall
integrity of Saccharomyces cerevisiae [36]. However, at
present, no studies have reported its relationship with human
cancer. The expression of CWH43 was downregulated in
colorectal tumor tissues (fold change = −4.59).

5. Conclusion

This study adopted a two-tier genetic screen, which not only
reduced the number of candidate significant genes but also
resulted in an impressively nearly 100% test accuracy. This
analysis method can be applied to future pooled microarray
studies. The more important genes exhibit a more consistent
ranking order among the differentmethods used.CA7,TCN1,
and CWH43 are novel genes, but have not been previously
reported as related to colorectal cancer. Further researches
will help us better understand their roles in colorectal cancer.

Abbreviations

ACC: Accuracy
AUC: Area under the curve
DT: Decision tree
LR: Logistic regression
ANN: Artificial Neural Network
GEO: Gene Expression Omnibus

Conflict of Interests

The authors declare that they have no competing interests.

Authors’ Contribution

Conception and design were carried out by Chi-Ming Chu
and Yu-Tien Chang. Administrative support was provided
by Chi-Ming Chu, Yu-Chin Chou, Fu-Gong Lin, and Sui-
Lun Su. Collection and assembly of data were carried out
by Chi-Suan Huang and Yu-Tien Chang. Data analysis and
interpretation were carried out by Chi-Ming Chu and Yu-
Tien Chang. Chi-Ming Chu and Yu-Tien Chang wrote the
paper. Preparation of reagents/materials/analysis tools was
carried out by Yu-Tien Chang, Yu-Chin Chou, Chi-Shuan
Huang, Chia-Cheng Lee, Yao-Chi Liu, Lu Pai, and Harn-Jing

Terng. Chi-MingChu,Yu-TienChang,Harn-JingTerng,Chi-
Suan Huang, Woan-Jen Lee, Chin-Yu Chen, Thomas Wetter,
and Mark L. Wahlqvist approved the final paper.

Acknowledgments

This work was supported by Taiwan’s SBIR Promoting Pro-
gram from the Department of Industrial Technology of
the Ministry of Economic Affairs, Advpharma, Inc., and
the National Defense Medical Center (NDMC), Bureau of
Military Medicine, Ministry of Defense, Taiwan. Employ-
ment or Leadership Position was occupied by Chi-Ming
Chu, NDMC; Harn-Jing Terng, Advpharma, Inc. Taiwan.
Honoraria are acknowledged by Wu-Chien Chien; Ching-
Huang Lai, NDMC; Mark Sarno, Stason Pharmaceuticals,
Inc., CA, USA. No expert testimony and no remunerations
were provided.

References

[1] R. Labianca, G. D. Beretta, B. Kildani et al., “Colon cancer,”
Critical Reviews in Oncology/Hematology, vol. 74, no. 2, pp. 106–
133, 2010.

[2] M. Nannini, M. A. Pantaleo, A. Maleddu, A. Astolfi, S. Formica,
and G. Biasco, “Gene expression profiling in colorectal cancer
using microarray technologies: results and perspectives,” Can-
cer Treatment Reviews, vol. 35, no. 3, pp. 201–209, 2009.

[3] L. J. Lancashire, C. Lemetre, and G. R. Ball, “An introduction
to artificial neural networks in bioinformatics—application to
complex microarray and mass spectrometry datasets in cancer
studies,” Briefings in Bioinformatics, vol. 10, no. 3, pp. 315–329,
2009.

[4] J. Cardoso, J. Boer, H. Morreau, and R. Fodde, “Expression and
genomic profiling of colorectal cancer,”Biochimica et Biophysica
Acta, vol. 1775, no. 1, pp. 103–137, 2007.

[5] E. Sagynaliev, R. Steinert, G. Nestler, H. Lippert, M. Knoch,
and M.-A. Reymond, “Web-based data warehouse on gene
expression in human colorectal cancer,” Proteomics, vol. 5, no.
12, pp. 3066–3078, 2005.

[6] W. Shih, R. Chetty, and M.-S. Tsao, “Expression profiling by
microarrays in colorectal cancer (Review),” Oncology reports,
vol. 13, no. 3, pp. 517–524, 2005.

[7] S. K. Chan, O. L. Griffith, I. T. Tai, and S. J. M. Jones, “Meta-
analysis of colorectal cancer gene expression profiling studies
identifies consistently reported candidate biomarkers,” Cancer
Epidemiology Biomarkers and Prevention, vol. 17, no. 3, pp. 543–
552, 2008.

[8] R packages Bioconductor, open source software for bioinfor-
matics, http://www.bioconductor.org/.

[9] B. M. Bolstad, R. A. Irizarry, M. Astrand, and T. P. Speed, “A
comparison of normalizationmethods for high density oligonu-
cleotide array data based on variance and bias,” Bioinformatics,
vol. 19, no. 2, pp. 185–193, 2003.

[10] A. Subramanian, P. Tamayo, V. K. Mootha et al., “Gene set
enrichment analysis: a knowledge-based approach for inter-
preting genome-wide expression profiles,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 102, no. 43, pp. 15545–15550, 2005.

[11] J. W. Lee, J. B. Lee, M. Park, and S. H. Song, “An extensive
comparison of recent classification tools applied to microarray



Disease Markers 11

data,” Computational Statistics and Data Analysis, vol. 48, no. 4,
pp. 869–885, 2005.
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