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Colorectal cancer (CRC) is one of the most common malignant tumors worldwide, causing a large number of cancer-related deaths
each year. Patients are usually diagnosed at advanced and incurable stages due to the lack of suitable screening methods for early
detection. Noncoding RNAs (ncRNAs), including small and long noncoding RNAs (IncRNA), are known to have significant
regulatory functions, and accumulating evidence suggests that circulating ncRNAs have potential applications as noninvasive
biomarkers for diagnosing CRC, evaluating its prognosis, or predicting chemosensitivity in the general population. In this
review, we summarize the origins of circulating ncRNAs and provide details of single and multiple circulating ncRNAs that
might have roles as diagnostic and prognostic biomarkers in CRC. We end by discussing circulating ncRNAs that may

distinguish patients with resistance to chemotherapy.

1. Introduction

Colorectal cancer (CRC) is one of the most common
malignant tumors of the gastrointestinal tract and the third
most commonly diagnosed cancer in men and the second
in women worldwide [1, 2]. Therapeutic methods have
improved and new techniques have been developed, but
survival rates for CRC patients are still below our expecta-
tions as they are usually diagnosed at an advanced stage [3].
Therefore, population-based early screening for CRC detec-
tion might help reduce incidence and improve patient sur-
vival [4]. Colonoscopy is the current gold standard for CRC
detection, but it is not very suitable for population-wide
CRC screening because it is invasive and expensive and
capacity requirements cannot be met [5, 6].

Hence, it would be useful to discover novel and accurate
biomarkers for screening CRC using a less invasive proce-
dure. Recently, blood-based biomarkers such as circulating
noncoding RNAs (ncRNAs) have been the subject of intense
research since blood samples are easier to retrieve and more
acceptable than colonoscopy for patients.

ncRNAs include microRNAs (miRNAs), long noncoding
RNAs (IncRNAs), piwi-interacting RNAs (piRNAs), and
transfer RNAs (tRNAs), all with no capacity to encode pro-
teins [7-10]. In particular, miRNAs and IncRNAs have been
the most widely studied ncRNAs in recent decades. miRNAs
are small ncRNAs with approximately 22 nucleotides that
can regulate human genes by binding to the 3" untranslated
region of the target message RNAs [11, 12]. IncRNAs, com-
prising more than 200 nucleotides, are involved in a wide
range of biological processes and diseases including cancer
development and metastasis, even though they lack an open
reading frame [13-17]. Both miRNAs and IncRNAs can be
detected in plasma or serum samples, and they may poten-
tially act as circulating biomarkers for diagnosis, prognosis,
and chemosensitivity in various types of cancer. For example,
miR-21 was significantly upregulated in pancreatic ductal
adenocarcinoma (PDAC) plasma samples compared with
healthy controls. The expression of plasma miR-21 was asso-
ciated with advanced stage, lymph node metastasis, liver
metastasis (LM), and poor survival in PDAC patients;
patients with higher plasma miR-21 have worse outcome
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[18]. Additionally, H19 is a well-known IncRNA found
upregulated in the plasma of gastric cancer patients. H19
levels were also reduced in postoperative samples compared
with preoperative samples [19]. Moreover, a panel of five
miRNAs (miR-20a, miR-130, miR-145, miR-216, and miR-
372) might be potential serum biomarkers for predicting
the response to oxaliplatin-based chemotherapy [20].

In this review, we summarize the origins of circulating
ncRNAs and discuss the current knowledge regarding their
potential roles as novel diagnostic, prognostic, and chemo-
sensitive predictive biomarkers, which may improve the
effectiveness of treatments and reduce patient mortality.

2. Origins of Circulating ncRNAs

Most studies indicate that ncRNAs are released into the cir-
culation via three possible mechanisms:

(1) Membrane-bound vesicles such as exosomes and
microvesicles are the major origin of circulating
ncRNAs. These vesicles can participate in cell-cell
communication by transferring ncRNAs [21-24].
Exosomes and microvesicles can carry several types
of ncRNAs when released from donor cells via mem-
brane blebbing [21, 23, 25]. Studies have shown that
exosomes can transfer miRNAs to target cells and
protect miRNAs from RNases in the circulation
[24]. When these vesicles are received by recipient
cells, the ncRNAs can participate in modulating cel-
lular functions, such as angiogenesis, hematopoiesis,
exocytosis, and tumorigenesis [21].

(2) Apoptotic bodies can also be the source of circulating
ncRNAs. When apoptosis occurs, cell fragments
from dying cells are transported in apoptotic bodies,
which are engulfed by neighboring living cells via
phosphatidylserine signaling. Several miRNAs are
carried within the apoptotic bodies when they are
released into the circulation [26, 27]. In particular,
miR-126 is highly enriched in apoptotic bodies, so
uptake of apoptotic bodies by recipient cells can
cause transfer of miR-126 which then regulates
sprouty-related protein 1, vascular cell adhesion mol-
ecule-1, and CXCL12 [26].

(3) RNA-binding proteins (RBPs) can regulate gene
expression and are another possible source of circu-
lating ncRNAs. RBPs participate in several compo-
nents of the messenger RNA (mRNA) maturation
process, including pre-mRNA splicing and mRNA
export, localization, and translation [28, 29]. Some
of the proteins that bind with ncRNAs include
high-density lipoproteins (HDLs) and Argonaute 2
(Ago2) [30, 31]. Studies indicate that HDL com-
plexes can transport miRNAs and deliver them to
target cells with functional capabilities [30]. Circu-
lating miRNAs such as miR-16, miR-92a, and
miR-122 are also present in nonvesicular Ago2
complexes, and it has been suggested that these
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complexes are responsible for the stability of circu-
lating miRNAs [31].

Research indicates that ncRNAs exhibit high stability in
the circulation. Due to their protection in exosomes, micro-
vesicles, apoptotic bodies, and protein complexes, circulating
ncRNAs are resistant to harsh conditions such as high tem-
peratures, extremes pH values, or long-term frozen storage
[31-35]. Thus, circulating ncRNA concentrations are stable,
allowing them to serve as potential biomarkers for several
diseases, including CRC [33, 36, 37].

3. Circulating ncRNAs for Diagnostic and Early
Screening in CRC

3.1. Single Circulating miRNAs as Diagnostic and Early
Screening Biomarkers. miR-21 acts as an oncogene in several
cancers [38-40], and a clear upregulation of miR-21 was
found in CRC plasma [41, 42]. In a training set comprising
30 CRC patients and 30 healthy controls, the area under
the receive operating characteristic (ROC) curve (AUC)
value for miR-21 was 0.820 (sensitivity: 90.0%, specificity:
90.0%). In a test set containing 20 CRC patients and 20
healthy controls, the AUC value was 0.910 [41]. This asso-
ciation was supported by Liu et al. who found increased
miR-21 in serum from CRC patients compared with colo-
rectal advanced adenoma (CAA) patients and healthy con-
trols, yielding an AUC value of 0.802 with a sensitivity of
65.0% and specificity of 85.0% [43]. Moreover, serum exo-
somal miR-21 levels could also be used for screening early
CRC [44].

A group of 353 individuals (111 CRC patients, 29 inflam-
matory bowel disease (IBD) patients, 83 patients with benign
lesions, and 130 healthy controls) participated in a study
where three miRNAs (miR-24, miR-320a, and miR-423-5p)
were measured, and all were decreased significantly in CRC
plasma samples compared with IBD patients and controls.
When miR-24, miR-320a, and miR-423-5p were used to dis-
tinguish CRC from controls, the AUC values were 0.822,
0.897, and 0.839, respectively. When these miRNAs were
employed to distinguish between CRC and IBD, the AUC
values for miR-24 and miR-320a were 0.974 and 0.990,
respectively. Furthermore, miR-320a and miR-423-5p both
decreased during the progression of colorectal disease from
IBD to CRC [45].

Another study also found that circulating miRNAs could
separate malignant and benign diseases from healthy con-
trols. In a cohort of 90 CRC patients, 43 CAA patients, and
58 controls, plasma miR-760 and miR-601 levels could differ-
entiate CRC patients from healthy controls with AUC values
of 0.788 and 0.747, respectively. The AUC values were 0.682
for miR-760 and 0.638 for miR-601 when discriminating
CAA patients from healthy controls. Importantly, both miR-
NAs decreased in the plasma during CRC progression.
Patients with TNM stage IV had significantly lower plasma
levels of miR-760 and miR-601 than those with stage I. In
addition, ROC curve analysis showed that combining miR-
601 and miR-760 with CEA improved diagnostic sensitivity
from 29.4% to 80.4% with an AUC of 0.805 [36].
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Other circulating miRNAs and their diagnostic value for
CRC are listed in Table 1.

3.2. Single Circulating IncRNAs as Diagnostic and Early
Screening Biomarkers. Colon cancer-associated transcript 2
(CCAT?2) is located at the 8q24 region, and its genomic locus
encompasses the SNP rs6983267 which is closely associated
with increased risks for many cancers [46, 47]. CCAT2 is
overexpressed in many cancer tissues, and it participates in
tumor cell proliferation, invasion, and motility [48-50].
Compared with microsatellite-unstable CRC tissues or nor-
mal mucosae which lack the chromosomal instability, the
expression level of CCAT?2 is higher in microsatellite-stable
CRC tissues which exhibit chromosomal instability. In addi-
tion, CCAT2 can regulate Wnt signaling via the TCF7L2 pro-
tein and also regulates the nearby gene MYC via cis signaling
[51]. Wang et al. found higher circulating CCAT2 in CRC
patient serum and exosomes than in healthy subjects.
CCAT?2 might be protected by exosomes and act as a novel
diagnostic biomarker for predicting CRC [52].

HNF1A-AS1 was shown to be upregulated in various
cancers including gastric [53], lung [54], and hepatocellular
cancers [55]. The expression of HIF1IA-AS1 in serum sam-
ples from 151 patients with CRC was higher than in samples
from 160 healthy individuals. The diagnostic value was very
high at 0.960 (sensitivity: 86.8%, specificity: 92.5%). In addi-
tion, serum HIF1A-ASI levels were strongly associated with
differentiation degree, tumor size, T stage, N stage, M stage,
and TNM stage [56].

NEAT1 was shown to be overexpressed in CRC serum
and cancer tissues compared with healthy controls and
matched NATs. ROC curve analysis indicated the discrimi-
natory power of NEAT1 levels in tissues with an AUC value
0£0.810 [39]. In serum samples, NEAT1 was significantly ele-
vated in 56 CRC patients compared with controls, and the
AUC value was 0.947 [57]. Considering the diagnostic rele-
vance of NEAT], future studies should expand the sample
size to hundreds of individuals in further multicenter studies
for possible clinical applications.

Colorectal Neoplasia Differentially Expressed (CRNDE),
which was originally found aberrantly expressed in CRC, is
upregulated in a number of malignant cancers such as pan-
creatic, lung, and hepatocellular cancers [58-60]. It can pro-
mote cell proliferation and chemoresistance by regulating
Wnt/f-catenin signaling via miR-181a-5p in CRC [61].
CRNDE is located at human chromosome 16 and many
splice variants have been identified, one of which called
CRNDE-h was shown to effectively distinguish between colo-
rectal malignancies, benign diseases, and healthy individuals.
Serum exosomal CRNDE-h levels were significantly upregu-
lated in CRC patients compared with patients with IBD,
hyperplastic polyps, adenoma, or healthy controls. The
AUC value was 0.892 for distinguishing CRC patients from
a group containing 80 benign disease patients and 80 controls
(sensitivity: 70.3%, specificity: 94.4%). The diagnostic value
of CRNDE-h was better than that of the conventional tumor
biomarker CEA, which alone had an AUC value of 0.688
(sensitivity: 37.16%, specificity: 88.75%). The AUC value
improved significantly to 0.913 when exosomal CRNDE-h

levels were combined with CEA. The origin of exosomal
CRNDE-h has been explored. It was shown that exosomal
CRNDE-h could enter the cell culture medium and that
expression was clearly elevated in five CRC cell lines
(HCT116, SW620, SW480, HT29, and LoVo). Second, the
presence of a tumor led to a marked increase in the serum
exosomal CRNDE-h level in a xenograft mice model. Third,
CRNDE-h expression levels measured in serum samples
and matched CRC tissues showed a moderately significant
correlation. Finally, serum exosomal CRNDE-h levels were
significantly lower in postoperative samples compared with
preoperative samples. These findings suggest that the exoso-
mal CRNDE-h detected in the serum is mainly released or
leaked from tumor cells. Thus, exosomal CRNDE-h may be
a novel serum-based tumor marker for the diagnosis of
CRC [62]. Besides CRNDE-h, another splice variant of
CRNDE named CRNDE-p might also be a diagnostic bio-
marker. Yu et al. indicated that serum exosomal CRNDE-p
from 410 CRC patients was higher than that in 58 adenoma
patients or 175 healthy subjects. The AUC for CRNDE-p dis-
criminating CRC patients from adenoma patients is 0.854,
and the AUC is 0.882 when combining serum exosomal
CRNDE-p and the traditional biomarker CEA. In addition,
high expression of CRNDE-p is closely associated with
advanced T stage lymph node metastasis and clinical stages.
This suggests that serum exosomal CRNDE-p might be a
novel diagnostic biomarker, especially when combined with
the traditional biomarker CEA [63].

Hu et al. isolated plasma exosomes by ultracentrifugation
from 10 CRC patients and 10 healthy individuals then used
microarray to find IncRNAs with differential expression.
Among the 1705 significantly differential IncRNAs, they
chose the six IncRNAs with the largest increase in expression
(LNCV6_116109, LNCV6_98390, LNCV6_38772, LNCV6_
108266, LNCV6_84003, and LNCV6_98602) for subsequent
analysis. In a larger cohort consisting of 50 CRC patients and
50 healthy subjects, researchers found that the expression
levels of all six IncRNAs are significantly higher in CRC than
in healthy individuals. These six plasma exosomal IncRNAs
might serve as potential biomarkers for early CRC detection.
All six IncRNAs are obviously higher in CRC patients with
stage I/II than in healthy subjects. AUC values for LNCV6_
116109, LNCV6_98390, LNCV6_38772, LNCV6_108266,
LNCV6_84003, and LNCV6_98602 are 0.8052, 0.7088,
0.7460, 0.7292, 0.7356, and 0.6800, respectively [64].

ZNFX1 antisense RNA1 (ZFAS1) has been reported to be
overexpressed and involved in cell proliferation and metasta-
sis in many cancers [65-67]. Additionally, studies demon-
strate that SP-1 can induce ZFAS1 and promote cell cycle
progression via the miR-150-5p/VEGFA axis [68]. ZFAS1
also acts as an oncogene by destabilizing p53 and its interac-
tions with the CDK1/cyclin B complex, finally regulating the
cell cycle and inhibiting apoptosis in CRC [69]. Fang et al.
examined expression levels of ZFAS1 in plasma samples from
105 patients with CRC and 95 healthy subjects and found
that ZFASI is higher in plasma samples from CRC patients,
similar to its change in tissues. When the optimal cutoff value
is 10.84, ZFASI has an AUC of 0.88 and sensitivity and spec-
ificity of 92.38% and 76.84%, respectively. Moreover, its
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TaBLE 1: Single circulating ncRNA as diagnostic and early screening biomarkers for CRC.

Numbers of

ncRNAs Body fluid Dysregulation Numbers of CRC healthy control AUC  Sensitivity =~ Specificity ~Reference
. Plasma T 50 50 091 90% 90% [41]

miR-21

Serum 1 200 80 0.802 65% 85% [43]

Serum T 200 80 0.786 65.5% 82.5% [43]
miR-92a Plasma T 120 115 0.885 89% 70% [108]

Plasma T 120 59 0.838 84.0% 71.2% [109]
miR-29a Plasma T 120 59 0.844 69.0% 89.1% [109]
miR-18a Plasma T 78 86 0.804 73.1% 79.1% [110]
miR-200c Plasma T 78 86 0.749 64.1% 73.3% [110]
miR-20a Plasma T 100 79 0.59 46.00% 73.00% [111]
miR-106a Plasma T 100 79 0.605 74.00% 44.40% [111]
miR-199a-3p Serum T 114 32 0.644 47.60% 75.00% [112]
miR-223 Serum T 130 60 0.838 — — [113]
miR-372 Serum T 165 30 0.854 81.9% 73.3% [114]
miR-103 Serum T 124 32 0.662 55.9% 75.0% [115]
miR-720 Serum T 124 32 0.63 58.3% 56.3% [115]
miR-155 Serum T 146 60 0.776 58.2% 95.0% [116]
miR-378 Plasma 1 65 70 0.796 — — [117]
miR-23a Serum (exosome) T 101 19 0.953 — — [44]
miR-150 Serum (exosome) T 101 19 0.758 — — [44]
miR-223 Serum (exosome) T 101 19 0.716 — — [44]
miR-1246 Serum (exosome) T 101 19 0.948 — — [44]
miR-221 Plasma T 103 37 0.606 86.00% 41.00% [118]
miR-24 Plasma 1 111 130 0.839 78.38% 83.85% [45]
miR-320a Plasma 1 111 130 0.886 92.79% 73.08% [45]
miR-423-5p Plasma 1 111 130 0.833 91.89% 70.77% [45]
miR-601 Plasma 1 100 68 0.747 69.2% 72.4% [36]
miR-760 Plasma 1 100 68 0.788 80.0% 72.4% [36]
miR-194 Serum l 55 55 0.85 72% 80% [119]
miR-29b Serum 1 55 55 0.87 77% 75% [119]
miR-139-3p Serum 1 117 90 0.9935 96.60% 97.80% [120]
miR-375 Plasma 1 94 46 0.7489 76.92% 64.62% [121]
miR-145 Serum 1 25 10 0.78 80% 68% [122]
HIF1A-AS1 Serum T 151 160 0.96 86.80% 92.5% [56]
CRNDE-h Serum (exosome) T 148 300 0.892 70.3% 94.4% [62]
CRNDE-p Serum (exosome) T 410 175 0.854 0.854 — [63]
HOTAIRM1 Plasma 1 150 101 0.78 64.0% 76.5% [71]
ZFAS1 Plasma T 105 95 0.88 92.38% 76.84% [70]
GNATI-1 Plasma 1 62 37 0.72 — — [72]
BLACATI1 Serum T 30 30 0.858 83.3% 76.7% [123]
CCAT2 Serum (exosome) T 100 — — — — [52]
GAS5 Plasma (exosome) 1 158 173 0.875 — — [76]
LNCV6_116109 Plasma (exosome) T 50 50 0.8052 — — [64]
LNCV6_98390  Plasma (exosome) T 50 50 0.7088 — — [64]
LNCV6_38772  Plasma (exosome) T 50 50 0.7460 — — [64]
LNCV6_108266 Plasma (exosome) T 50 50 0.7292 — — [64]
LNCV6_84003  Plasma (exosome) T 50 50 0.7356 — — [64]
LNCV6_98602  Plasma (exosome) T 50 50 0.6800 — — [64]

Note: T, upregulated; |, downregulated; —, not mentioned. HIF1A-AS1, hypoxia-inducible factor 1 alpha-antisense RNA 1; CRNDE, colorectal neoplasia
differentially expressed; HOTAIRMI1, HOX antisense intergenic RNA myeloid 1; GNAT1-1, G protein subunit « transducin 1; BLACAT]I, bladder cancer-
associated transcript 1; ZFAS1, ZNFX1 antisense RNA1; GAS5, growth arrest specific transcript 5; CCAT2, colon cancer-associated transcript 2.
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positive predictive value and negative predictive value are
80.70% and 84.88%, respectively [70]. Thus, ZFAS1 shows
potential as a diagnostic biomarker.

HOTAIRMLI is located between the human HOXA1 and
HOXA2 genes, and its level was shown to be lower in CRC
plasma samples compared with controls. In a training set of
100 CRC patients and 67 controls, the AUC value was
0.780 (specificity: 80.3%, sensitivity: 61.5%). In the validation
set comprising 50 CRC patients and 34 controls, the AUC
value was 0.771 (specificity: 76.5%, sensitivity: 64.0%) [71].

GNAT1-1 was found downregulated in CRC tissues and
plasma samples compared with matched NATSs and healthy
controls. Lower GNAT1-1 expression was associated with
more advanced stages, and patients with TNM stages III
and IV have significantly lower plasma GNAT1-1 levels than
those with stages I and II. Moreover, GNAT1-1 could dis-
criminate CRC patients from controls with an AUC value
of 0.720 [72].

GASS is downregulated in CRC tissues compared with
matched NATSs. Some previous results indicated that GAS5
can inhibit CRC progression via the miR-182-5p/FOXO3a
axis and the Wnt/f-catenin signaling pathway [73-75]. In a
recent study, Liu et al. found that GAS5 is downregulated
in CRC tissues, plasma, and exosomes, with an AUC for tis-
sue GASS5 levels distinguishing CRC and NATSs of 0.791 and
GAS5 in plasma and exosomes distinguishing 158 patients
with CRC and 173 healthy subjects with AUC values of
0.875 and 0.964, respectively [76]. Further research confirms
this result, demonstrating an obvious decrease in GAS5 levels
in the serum of CRC patients between 109 CRC patients and
99 healthy subjects [77]. These results suggest that GAS5
might be intimately involved in CRC and acts as a biomarker
for CRC screening.

Other circulating IncRNAs and their diagnostic values
are listed in Table 1.

3.3. Panels of Circulating miRNAs and IncRNAs as Diagnostic
and Early Screening Biomarkers. In addition to the single cir-
culating ncRNAs reviewed above, studies have also combined
different circulating ncRNAs into panels for detecting CRC.
Combinations of several ncRNAs have better diagnostic
value than single biomarkers [78]. Based on a cohort com-
prising control, CRC, CAA, breast cancer, pancreatic cancer,
and lung cancer samples, Carter et al. identified some
uniquely dysregulated miRNAs specifically for screening
CRC. Four miRNAs (miR-21, miR-29¢, miR-346, and miR-
374a) could distinguish between healthy controls or patients
with any type of neoplasia with an AUC of 0.91. Four miR-
NAs (miR-21, miR-29¢, miR-372, and miR-374a) were ana-
lyzed in patients with neoplasms, and the AUC value was
0.79 when discriminating patients with colorectal neoplasm
from other neoplasms. Subsequently, miR-29¢, miR-122,
miR-192, and miR-374a were used to distinguish whether
patients had CRC or CAA, with an AUC value of 0.98 [79].

Considering the diagnostic relevance of this miRNA sig-
nature, further studies are merited before clinical applica-
tions. In another study, four plasma miRNAs (miR-21,
miR-25, miR-18a, and miR-22) were identified as CRC bio-
markers. The combination of these four miRNAs could

clearly distinguish CRC patients from controls, with an
AUC value of 0.93 (sensitivity: 67%, specificity: 90%) [80].
A microRNA expression profiling assay was used for screen-
ing biomarkers to distinguish CRC, CRC precursor lesions,
and healthy individuals. Total RNA was obtained from 21
patients with CRC, 20 patients with CAA, and 20 healthy
controls for microRNA profiling. Six miRNAs (miR-29a,
miR-18a, miR-19a, miR-19b, miR-15b, and miR-335) were
significantly upregulated in CRC plasma samples compared
with healthy controls. Combining miR-19a and miR-19b
showed an AUC value of 0.8194, with sensitivity and specific-
ity of 78.57% and 77.36%, respectively. Combining miR-15b
with these two miRNAs increased the discriminative capac-
ity, with an AUC value of 0.8356 (sensitivity: 78.6%, specific-
ity: 79.3%) [78).

Wang et al. combined up- and downregulated miRNAs
and established a diagnostic panel for CRC screening. miR-
21 and let-7g were both upregulated in CRC serum samples,
whereas miR-92a, miR-31, miR-181b, and miR-203 were all
downregulated. In a training set comprising 30 CRC patients
and 30 healthy controls, this panel of six miRNAs yielded an
AUC value of 0.900. Subsequent validation obtained an AUC
value of 0.923 when distinguishing 83 CRC patients and 59
controls [81].

Plasma expression levels of HOTAIR and CCAT1 were
found to be remarkably upregulated in CRC patients com-
pared with healthy individuals. Combining these two
IncRNAs increased diagnostic performance, with an AUC
value of 0.954 (sensitivity, 84.3%; specificity, 80.2%). Addi-
tionally, the diagnostic positivity rate when combining
HOTAIR with CCAT1 for CRC in stage I/II was 85% [82].

Dysregulated IncRNAs were investigated in CRC tissues
using genome-wide IncRNA microarrays, and their expres-
sion levels were then validated in 80 cancer tissues and 120
serum samples. A panel of four IncRNAs (Inc-BANCR, Inc-
NR-026817, Inc-NR-029373, and Inc-NR-034119) obtained
an AUC value of 0.881 when discriminating CRC patients
and controls (sensitivity: 89.2%, specificity: 75.8%). The cor-
responding AUC values obtained using this panel for CRC
patients with TNM at stage I, stage II, and stage III were
0.774, 0.844, and 0.949, respectively [35].

In another study, Wang et al. found that a three-IncRNA
signature could play as a diagnostic marker for CRC screen-
ing via stepwise regression analysis. First, they found that 13
of the 17 candidate CRC or gastrointestinal cancer-associated
IncRNAs were detectable in a small cohort. Second, five of
the 13 IncRNAs were found with significant differential
abundance in 30 preoperative CRC patients and 31 healthy
individuals. Third, these five IncRNAs were further evaluated
in additional serum samples from 30 CRC patients and 30
healthy individuals. Finally, all data from the second and
third steps were pooled and analyzed, with results indicating
that RP11-462C24.1, LOC285194, and Nblal12061 were sig-
nificantly upregulated in serum from CRC patients. The
AUC value of combining RP11-462C24.1, LOC285194, and
Nbla12061 was 0.793 (sensitivity: 68.3%, specificity: 86.9%),
obviously higher than that of CEA, CA199, CA125, and
CA724. When these three IncRNAs were combined with
CEA, CA199, CA125, or CA724, the AUC values further



improved to 0.845, 0.855, 0.798, or 0.824, respectively. Fur-
thermore, expression of the three IncRNAs was signifi-
cantly reduced after surgery. These results suggest that
this combination of three IncRNAs in serum represents a
new supplementary method for CRC screening [37]. Panels
of circulating miRNAs and IncRNAs that act as diagnostic
biomarkers are listed in Table 2.

4. Circulating ncRNA as Recurrence and
Survival Evaluation Biomarkers in CRC

4.1. Single Circulating miRNAs as Recurrence and Survival
Evaluation Biomarkers. Increased serum miR-21 strongly
correlated with poor survival in CRC patients, and it might
serve as an independent prognostic factor for overall survival
(OS). Furthermore, elevated miR-21 expression in serum
samples correlated with tumor size and distant metastases
[83]. The same result was obtained by Yin et al. who found
elevated serum miR-21 levels in patients with LM and other
organ metastasis [84]. Similarly, another study showed that
increased exosomal miR-21 in CRC plasma samples signifi-
cantly correlated with advanced TNM stage and LM. Patients
with high levels of exosomal miR-21 had poor OS and
relapse-free survival (RES). Furthermore, plasma exosomal
miR-21 levels could serve as an independent prognostic fac-
tor for OS and disease-free survival (DFS) in TNM stage II
and III patients, and OS in TNM stage IV patients [85].
miR-200c was significantly elevated in TNM stage IV serum
samples compared with TNM stage I. High serum miR-200c
levels were significantly associated with poor OS, DFS, posi-
tive lymph nodes, and LM. miR-200c could serve as an inde-
pendent prognostic factor for lymph node metastasis, tumor
recurrence, and poor OS in CRC patients [86].

Similarly, Hur et al. indicated that miR-885-5p was a sig-
nificantly upregulated miRNA in the LM group compared
with the pCRC group. miR-885-5p expression levels signifi-
cantly correlated with lymph node metastasis, distant metas-
tasis, and LM. Furthermore, patients with higher serum miR-
885-5p expression levels had poor OS and DES [87]. miR-
885-5p might serve as a potential biomarker for CRC prog-
nosis. Yuan et al. demonstrated that miR-183 was signifi-
cantly overexpressed in CRC plasma samples, and patients
with elevated expression levels of miR-183 had a high risk
of tumor recurrence. In addition, miR-183 expression could
serve as an independent prognostic factor for OS in CRC
patients. High plasma miR-183 levels were significantly asso-
ciated with lymph node metastasis, distant metastasis, and
advanced pTNM stage [88].

Another study showed that miR-139-5p might be a CRC
recurrence-associated biomarker because miR-139-5p levels
were significantly higher in cancer tissues from recurrent
patients. A subsequent study demonstrated that miR-139-
5p levels in serum samples were significantly higher in recur-
rent CRC patients compared with nonrecurrence cases, with
an AUC value of 0.750, a specificity of 80.0%, and a sensitiv-
ity of 64.0%. Furthermore, CRC patients with higher serum
levels of miR-139-5p had a significantly shorter RFS than
those with lower miR-139-5p expression [89].
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Other circulating miRNAs are listed in Table 3, which
shows their prognostic value for CRC.

4.2. Single Circulating IncRNAs as Recurrence and Survival
Evaluation Biomarkers. IncRNA 91H is an oncogene
involved with CRC progression, and it can promote cell pro-
liferation, migration, and invasion [90]. Serum exosomal
91H levels strongly correlate with metastasis and tumor
recurrence. Patients with high 91H levels had a higher risk
of tumor metastasis and recurrence than other patients. Uni-
variate and multivariate analyses indicated that 91H could
serve as an independent prognostic factor for RFS in CRC
patients [91].

Increased serum exosomal CRNDE-h was significantly
associated with regional lymph nodes and distant metastasis.
Furthermore, patients with high exosomal CRNDE-h had
poor OS, and expression of exosomal CRNDE-h could serve
as an independent factor for OS in CRC patients [62].

As mentioned above, GNAT1-1 is significantly downreg-
ulated in CCRC serum samples. The expression of GNAT1-1
expression was significantly lower in LM tissues compared
with pCRC tissues. In addition, GNAT1-1 strongly correlated
with tumor stage, lymphovascular invasion, tumor depth, and
distant metastasis. Patients with decreased GNAT1-1 expres-
sion levels have a shorter OS than those with high levels, and
GNAT1-1 expression could be used as an independent prog-
nostic factor [72].

5. Circulating ncRNAs as Treatment Response
Prediction Biomarkers in CRC

5.1. Circulating miRNAs as Treatment Response Prediction
Biomarkers. Chemotherapy is a useful treatment for CRC
patients before or after surgical resection. Effective systemic
treatment could improve the possibility of survival with
advanced stage CRC. However, CRC patients with resistance
to chemotherapy fail to benefit from effective chemotherapy
and may also suffer from adverse side effects following che-
motherapy [20, 92, 93]. To improve CRC treatment, it is
necessary to identify new therapeutic biomarkers to discrim-
inate patients who will respond to chemotherapy from those
who are resistant. Recently, several studies demonstrated
associations between circulating ncRNAs and sensitivity to
chemotherapy. The association between ncRNAs and che-
mosensitivity are listed in Table 4, which shows their prog-
nostic value for CRC.

Studies have identified potential serum biomarkers for
predicting the response to oxaliplatin-based chemotherapy
(modified FOLFOX®6) in patients with CRC. In particular, a
study employed TagMan low-density arrays based on pooled
serum samples from 20 responders and 20 nonresponders to
chemotherapy to identify differentially expressed miRNAs.
The results showed that five serum miRNAs (miR-20a,
miR-130, miR-145, miR-216, and miR-372) differed signifi-
cantly between the two groups. In the training set, the AUC
value for these five miRNAs was 0.841, and the positive and
negative predictive values were 0.86 and 0.89, respectively.
Moreover, in a larger validation set comprising 93 responders
and 80 nonresponders, the AUC value was 0.918, and the
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TaBLE 2: Panels of circulating miRNAs as diagnostic and early screening biomarkers for CRC.

Body  Number  Numbers

Numbers

Panel of ncRNA fluid of ncRNAs of patients of controls AUC Sensitivity Specificity Reference
miR-21T, let-7gT, miR-31|, miR-

9%l miR-181b], miR.203 Serum 6 113 89 0.923 — — [81]
miR-19aT, miR-19bT, miR-15bT  Plasma 3 63 73 0.84 7857%  79.25% (78]
miR-409-3pT, miR-7], miR-93| Plasma 3 124 117 0.897 82% 89% [32]
miR-29¢|, miR-1227, miR-192|, 0.98 (discriminate

miR-374a] Flasma 4 = > CRC from CAA) - - [79]
Inc-CCATIT, Inc-HOTAIRT Plasma 2 32 32 0.954 — — [82]
Inc-LOC2851947, Inc-RP11- o o
462C24.17, Inc-Nbla120617 Serum 3 71 70 0.793 68.33% 86.89% [37]
Inc-BANCRT, Inc-NR-026817, ¢\ 4 240 240 0.881 89.17%  75.83% (35]

Inc-NR-029373, Inc-NR-034119

Note: T, upregulated; |, downregulated; —, not mentioned. CAA, colorectal advanced adenoma; CCAT1, colon cancer-associated transcript 1; HOTAIR, HOX

transcript antisense intergenic RNA; BANCR, BRAF-activated noncoding RNA.

TaBLE 3: Single circulating ncRNAs as recurrence and survival evaluation biomarkers for CRC.

ncRNAs Body fluid N;zili)eerftss()f Clinical significance Application detail Reference
miR-21 Serum 186 Tumor size, distant metastasis miR-21T — OS] [83]
miR-22 Plasma (exosome) 326 Liver metastasis, TNM stage miR-217T — OS], DFS| [85]
miR-200c Serum 206 Lymph node, distant metastasis, tumor ¢ 590c1 -, 05|, DFS|  [86]
recurrence
miR-96 Plasma 227 — miR-967 — OS] [124]
miR-200b Plasma 227 — miR-200bT — OS| [124]
miR-141 Plasma 227 — miR-1417 — OS] [124]
miR-885-5p Serum 169 Ly?ﬁ&t?:;e,r?f;:rs féfaifstinfyﬁ?ﬁfﬁ?s miR‘Sssl';psTl — 08, (87]
invasion
miR-221 Serum 103 — miR-2217 — OS] [118]
miR-183 Plasma 118 M e (1 IV), Hor romarierto®  miR-1831 — OS], DFS| (58
miR-139-5p Serum 76 TNM stage, tumor recurrence miR-139-5pT — RFS| [89]
miR-148a Serum 26 Tumor recurrence miR-148a] — OS], DFS|  [125]
91H Serum (exosome) 232 Tumor metastasis, recurrence 91HT — RFS| [91]
CRNDE-h  Serum (exosome) 148 Lymph nodes metastasis, distant metastasis CRNDE-hT — OS] [62]
GNATI-1 Plasma 62 — GNAT1-1] — OS| [72]
Note: T, upregulated; |, downregulated; —, not mentioned. OS, overall survival; DFS, disease-free survival; RFS, relapse-free survival; CRNDE-h, colorectal

neoplasia differentially expressed-h; SPRY4-IT1, SPRY4 intronic transcript 1.

positive and negative predictive values were 0.93 and 0.94,
respectively. These five serum miRNAs may be potential
serum biomarkers for predicting response to chemotherapy
in CRC [20].

Another study identified potential biomarkers for pre-
dicting outcome in metastatic CRC (mCRC) patients treated
with 5-FU and oxaliplatin-based chemotherapy. A cohort
comprising 24 mCRC plasma samples (12 responders and
12 nonresponders) was investigated in this study. The top
10 differentially expressed miRNAs were selected for further
study in a validation cohort of 150 patients, and three plasma
miRNAs (miR-106a, miR-484, and miR-130) were found to
be significantly upregulated in mCRC patients with chemo-

therapy resistance. Patients with elevated expression of these
three plasma miRNAs had poor progression-free survival
(PES). These plasma miRNAs might predict the outcome
for mCRC patients before treatment with 5-FU and
oxaliplatin-based chemotherapy [94].

Similarly, Hansen et al. found significantly elevated
plasma miR-126 levels in nonresponding mCRC patients
compared with responding patients who received first-line
chemotherapy (XELOX) combined with bevacizumab.
The change in miRNA-126 also positively correlated with
tumor size changes. Thus, there is a relationship between
changes in miR-126 and tumor response when receiving
first-line chemotherapy combined with bevacizumab in
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TaBLE 4: Single circulating ncRNAs as treatment response prediction biomarkers for CRC.

Chemotherapy regimen ncRNA 1?1(1)1(1137 Chemotherapy sensitivity Reference
miR-106a, miR-484, miR-130 Plasma (miR-106a, miR-484, miR-130) T — resistance [94]

5-Fluorouracil combined with ] ] ]
miR-20a, miR-130, miR-145,

(miR-20a, miR-130, miR-145, miR-216, miR-372) T

oxaliplatin

P miR-216, miR-372 Serum — resistance [20]
Oxaliplatin combined with miR-1914, miR-1915 Plasma (miR-19147, miR-1915) T — responding [96]
capecitabine
Oxaliplatin, capecitabine . . .
combined with bevacizumab miR-126 Plasma miR-126T — resistance [95]
5-Fluorouracil XIST Serum XIXTT — resistance [97]
Oxaliplatin MEG3 Serum MEG3T — resistance [98]

Note: T, upregulated. XIST, X-inactive specific transcript; MMEG3, maternally expressed gene 3.

mCRC patients. Therefore, miR-126 might be a possible
biomarker for resistance to antiangiogenic-containing
treatments [95].

miR-1914 * and miR-1915 were found to be downregu-
lated in the plasma of chemoresistant CRC patients who
received XELOX. The decreased expression of these two
miRNAs significantly correlated with poor OS and PES.
miR-1914 * and miR-1915 can reduce the expression of
nuclear factor I/X and suppress chemoresistance by regulat-
ing cell proliferation, invasion, and apoptosis in CRC [96].

5.2. Circulating IncRNAs as Treatment Response Prediction
Biomarkers. IncRNA XIST was shown to be significantly
upregulated in both serum and cancer tissues from nonre-
sponding CRC patients. Serum XIST had an AUC value of
0.756 when distinguishing nonresponding cases from
responders (sensitivity: 71.7%, specificity: 68.3%). Further-
more, OS and RFS were poor in CRC patients with elevated
XIST expression levels who were treated with 5-FU [97].

Serum IncRNA MEGS3 levels were significantly lower in
oxaliplatin-based chemotherapy resistant CRC patients, with
an AUC value of 0.784 when discriminating nonresponders
from responders [98].

6. Future Directions

CRC is a leading cause of cancer-related deaths throughout
the world [99]. Colonoscopy is the gold standard for diagno-
sis, but it is expensive and invasive [5, 6]. Thus, novel and
accurate biomarkers using less invasive approaches are
urgently required to improve CRC detection. In recent
decades, studies have shown that ncRNAs can be detected
in various bodily fluids, including serum and plasma, and
that they are particularly stable [24, 31-34]. Significant prog-
ress has been made in investigating the potential roles of
ncRNAs in CRC screening.

Several traditional blood-based biomarkers, such as CEA,
carbohydrate antigen (CA) 19-9, CA242, and CA724, have
been employed widely as clinical diagnostic biomarkers for
CRC screening in recent decades, but they are limited in their
diagnostic value, sensitivity, and specificity. As discussed
above, several circulating ncRNAs have high accuracy in

CRC detection, such as CRNDE-h with an AUC value of
0.892, a sensitivity of 70.3%, and specificity of 94.4% when
differentiating CRC and controls, and they may potentially
be more reliable biomarkers compared with traditional
blood-based biomarkers (in the same cohort, the AUC value
for CEA was only 0.688 with a sensitivity of 37.16% and a
specificity of 88.75%; combining CRNDE-h and CEA
improved the AUC value from 0.688 to 0.913) [62]. Also,
CEA protein expression levels may be affected by other bowel
diseases, such as ulcerative colitis [100]. Some other malig-
nant tumors, including PDAC, breast cancer, and gastric
cancer, can also affect levels of these traditional markers
[100-102], leading to frequent high false positive rates. This
may be avoided using ncRNAs, as Carter et al. found that
miR-21, miR-29¢, miR-372, and miR-374a could distinguish
CRC and other neoplasms with an AUC value of 0.79. miR-
29¢, miR-122, miR-192, and miR-374a could also distinguish
CRC from CAA, with an AUC value of 0.98 [79]. Circulat-
ing ncRNAs have remarkable potential as biomarkers for
CRC screening. In the future, it will be important to identify
further circulating ncRNA biomarkers, possibly in combina-
tion with each other or protein biomarkers, and apply them
in the clinic.

Many recent studies have focused on IncRNAs and miR-
NAs, but few have investigated other types of circulating
ncRNAs such as circular RNAs (circRNAs) and piRNAs. cir-
cRNAs can regulate genome expression levels by acting as
miRNA sponges, and they are extremely stable since they
lack open linear tails and they are insensitive to exonucleases
[103-105]. Yang et al. found upregulated circ-LDLRAD3 in
the plasma of patients with pancreatic cancer that could be
used as a biomarker in diagnosing pancreatic cancer [106].
The potential use of serum piRNA was also suggested as a
diagnostic biomarker for tumor detection. piR-651 was sig-
nificantly downregulated in classical Hodgkin lymphoma
serum samples, and it exhibited an increasing trend in serum
samples from complete response patients compared with the
diagnostic samples [107]. However, few studies have investi-
gated the diagnostic capacities of circulating circRNAs and
piRNAs for CRC detection. Among the human genome,
dozens or even hundreds of genes or transcripts may serve
as accurate and sensitive biomarkers.
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The studies summarized above suggest areas for further
improvements. Circulating ncRNAs were often evaluated in
small cohorts of serum and plasma samples in these studies.
For example, Kanaan et al. investigated miR-21 in a group of
20 CRC patients and 20 healthy subjects, and the AUC value
was 0.910 [41], yet this high diagnostic efficacy might acci-
dentally be misattributed due to the small sample size. In
future investigations, multicenter studies should be per-
formed and sample sizes must be increased to ensure reliable
scientific results.

Some studies have combined multiple -circulating
ncRNAs into panels for CRC detection. These panels
obtained higher AUC values and improved the diagnostic
accuracy for CRC detection over most single biomarkers
[78]. Exosomal miR-23a and miR-1246 levels were validated
in 101 CRC serum samples, and AUC values of 0.953 and
0.948 were obtained, respectively [44]. Considering the high
predictive accuracy of these individual circulating miRNAs,
combining serum exosomal miR-23a and miR-1246 levels
may yield a higher AUC value. Establishing mathematical
models and combining multiple biomarkers may be an effec-
tive approach for optimizing diagnostic biomarkers. We
hypothesize that combining different types of ncRNAs, such
as IncRNAs and miRNAs which have known diagnostic
capacities, may yield novel and more precise biomarker
panels in future research.

Several studies have reported the potential roles of circu-
lating ncRNAs as diagnostic, prognostic, or chemosensitivity
predictive biomarkers in CRC, but they may be “the tip of
the iceberg.” Future research should aim at achieving a dee-
per understanding of the regulatory mechanisms related to
circulating ncRNAs and establish standard protocols for
ncRNA detection to establish them as biomarkers for gen-
eral CRC patients.
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