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Background. Autophagy plays an essential role in tumorigenesis. At present, due to the unclear role of autophagy in renal clear cell
carcinoma, we studied the potential value of autophagy-related genes (ARGs) in renal clear cell carcinoma (ccRCC).Methods.We
obtained all ccRCC data from The Cancer Genome Atlas (TCGA).We extracted the expression data of ARGs for difference analysis
and carried out biological function analysis on the different results. The autophagy risk model was constructed. The 5-year survival
rate was assessed using the model, and the predictive power of the model was evaluated from multiple perspectives. Cox regression
analysis was use to assess whether the model could be an independent prognostic factor. Finally, the correlation between the model
and clinical indicators is analyzed. Results. The patients were divided into the high-risk group and low-risk group according to the
median of autophagy risk score, and the results showed that the prognosis of the low-risk group was better than that of a high-risk
group. The validation results of external data sets show that our model has good predictive value for ccRCC patients. The model can
be an independent prognostic factor. Finally, the results show that our model has a stable predictive ability. Conclusion. The
autophagy gene model we constructed can be used as an excellent prognostic indicator for ccRCC. Our study provides the
possibility of individualized and precise treatment for ccRCC patients.

1. Introduction

Clear cell renal cell carcinoma (ccRCC) is the most common
type of cancer in renal cell carcinoma and one of the most
common malignancies of the urinary system [1]. ccRCC
has a high incidence, low therapeutic effect and poor progno-
sis [2]. The early detection rate of ccRCC patients is low due
to inconspicuous early symptoms of ccRCC and the lack of
accurate diagnostic markers. Therefore, finding new diagnos-
tic indicators was urgently needed to improve the early diag-
nosis and treatment of ccRCC. Autophagy is a process
whereby lysosomes are activated by various pathways to
degrade intracellular substances. Under normal conditions,
autophagy is a dynamic cycling process in which cell growth
and self-survival maintain a balance [3]. Autophagy plays a
dual role in cancer. Under normal conditions, autophagy
maintains the body’s balance, monitors the body’s cells, and

inhibits cell cancerization. In contrast to its antitumour role
before tumour formation, autophagy is beneficial to tumour
growth [4]. In recent years, autophagy is associated with a
variety of cancers, and the autophagy gene has been used
as a novel target for tumour therapy [5]. Studies have shown
that autophagy plays a vital role in pancreatic, colorectal,
and prostate cancers [2, 6, 7]. Studies have demonstrated
that the activation of the autophagy pathway can promote
the growth and development of ccRCC, and the results show
that the pathway constructed by TRPM3 and mir-204 can
promote the progress of ccRCC [8]. Autophagy can activate
the epithelial-mesenchymal transition (EMT) to induce infil-
tration and metastasis of ccRCC, which reduces the clinical
therapeutic effect. Therefore, autophagy can be utilized as a
potential target for ccRCC treatment [9]. At present,
although studies on autophagy in ccRCC have involved var-
ious aspects, studies on the overall autophagy gene are
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insufficient. Therefore, we are required to construct a model
based on autophagy gene to improve the early detection and
survival prognosis of ccRCC patients.

In this study, we analyzed the expression data of all
ccRCC samples in the TCGA database and screened the dif-
ferentially expressed autophagy-related genes (DEARGs).
We conducted Gene Ontology (GO) biological enrichment
analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis on the DEARGs to understand
the biological functions of the DEARGs. DEARGs associ-
ated with survival were screened, and the risk models were
so manufactured. According to the risk score of the model,
the patients were divided into a high-risk group and low-
risk group; the survival and risk curves were drawn to
determine the accuracy of the model. A Cox regression
analysis was used to determine whether the predictive
model and clinical indicators could be used as independent
prognostic factors, and the ROC curve was drawn to verify
the accuracy. Finally, we assessed the correlation between
the model and clinical indicators.

In summary, our model can reasonably predict the
prognosis of ccRCC, and the risk score can be used as an
independent prognostic factor. Moreover, the correlation
between the model molecular tag and the clinic provides
us with the possibility of further accurate and individual-
ized treatment.

2. Material and Methods

2.1. Data Download. We downloaded the transcriptome and
clinical data from all the ccRCC samples from the TCGA
database (https://portal.gdc.cancer.gov/). There were 72
cases of normal renal tissue and 539 cases of ccRCC in the
expression data. The transcriptome data are in the format
of FPKM. Also, we downloaded all transcriptome data from
the International Cancer Genome Consortium (ICGC) data
for European patients. We got all the ARGs (232) from the
Human Autophagy Database (HAD, http://www.autophagy
.lu/); the expression information of all ARGs (222) in ccRCC
data was extracted.

In this study, all of our analytical processes are shown in
Figure 1.

2.2. DEARGs Were Selected from ccRCC. In order to screen
DEARGs, we assessed the expression data of normal renal
tissue and ccRCC. This operation is conducted in an R envi-
ronment (version Rx64 3.6.2). The Limma package [10] was
used to correct the data, and the Wilcoxon test was per-
formed on the data (∣logFC ∣ >1, FDR < 0:05). The result is
visualized using the pheatmap package.

2.3. Biological Enrichment Analysis of DEARGs. In order to
examine the biological function of DEARGs, we conducted
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Figure 1: Flow chart of data analysis.
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Figure 2: Continued.
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GO and KEGG enrichment analysis on DEARGs. This oper-
ation runs in an R environment; the cutoff value was p < 0:5
and adjusted p < 0:05. The R package used for this operation
includes “clusterProfiler” [11], “org.Hs.eg.db,” “enrichplot,”
“DOSE,” “ggplot2,” “stringi,” “colorspace,” “digest,” and
“GOplot.”

2.4. Construction Prognostic Risk Model. First, we screened
DEARGs caused by the ccRCC prognosis. In the R environ-
ment, the “survival” package performed a univariate Cox
regression analysis on DEARGs. We screened 8 DEARGs
connected with the ccRCC prognosis. Then, we performed
a multivariate Cox regression analysis on 8-DEARGs, and
the results obtained a 5-DEARGs risk prediction model
(p < 0:05). Depending on the model, we obtained a compre-
hensive prognostic scoring system (risk score). Risk score
= EXPRNA1 × βRNA1 + EXPRNA2 × βRNA2 +⋯ + EXPRNAn ×
βRNAn, where EXP is the DEARGs expression level and β
is the multivariate regression coefficient of the Cox regres-
sion model.

2.5. Survival Curve and Risk Curve. The patients with ccRCC
were subdivided into a high-risk group and low-risk group
according to the median risk score of the model. In the R
environment, the “survival” and “survminer” packages were
used for survival analysis and data visualization of patients
in the high-risk and low-risk groups. We visualized the risk
model, the survival state of ccRCC, and the risk curve accord-
ing to the risk score of the model.

2.6. Validation of the Model. To further verify the accuracy of
our model predictions, we validated the EU group of patients
in the ICGC database. We divided patients into the high-risk
and low-risk groups based on the median value of the model
risk score. The survival status of the high-risk and low-risk
groups was further observed. Besides, we draw ROC curves
to assess the accuracy of model predictions. In order to fur-
ther verify the expression of model genes in ccRCC, we used
the Human Protein Atlas database (http://www.proteinatlas
.org/) for verification.

2.7. Clinical Relevance of Risk Models. To further investigate
the model, we discussed the correlation between the model
and clinical traits. In the R environment, the “beeswarm”
package was used for the t-test analysis of the data
(p < 0:05).

2.8. Independent Prognostic Analysis and Validation. To fur-
ther validate the feasibility of the risk model, we determined
whether the risk score could be employed as an independent
prognostic factor. We combined the clinical traits (survival
time, survival status, age, gender, grade, stage, TNM stage)
with the risk scores for the univariate (p < 0:05) and multi-
variate (p < 0:05) Cox analyses. We were visualizing data
using the “survival” package in the R environment. Finally,
through the “survivvalroc” package, we plotted the ROC
curve of risk score and clinical traits to judge the accuracy
of each indicator.
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Figure 2: Differential expression of autophagy genes in ccRCC samples. (a) Heat map of 45 differential autophagy-related genes in the
tumour and normal tissue samples. (b) Volcano plot of 45 differentially expressed autophagy-related genes. Red represents the high
expression of autophagy-related genes, and green represents the low expression of autophagy-related genes. (c) Differential expression of
autophagy-related genes in the tumour and normal tissue samples. Heat map of 45 differential autophagy genes.
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3. Results

3.1. Differential Expression Analysis of ARGs. We screened
the expression information of 222 ARGs in ccRCC accord-
ing to the 232 ARGs in HAD (Supplementary Table 1).
According to the screening criteria (∣logFC ∣ >1, FDR < 0:05),
we finally got 45 DEARGs, including 9 downregulated and
36 upregulated ARGs. We visualized the data in the form of
a heat map, volcano plot, and boxplot (Figure 2). The
logFC in ccRCC is illustrated in Supplementary Table 2.

3.2. Enrichment Analysis of DEARGs in ccRCC. To further
study the biological function of DEARGs in ccRCC, we ana-
lyzed 45 DEARGs by GO and KEGG. Figure 3(a) indicates
the top 10 terms of the GO enrichment analysis results. The
results showed that DEARGs were related to the regulation
of cysteine-type endopeptidase activity involved in apoptotic
process, regulation of cysteine-type endopeptidase activity,
regulation of endopeptidase activity, regulation of peptidase

activity, autophagy, the process utilizing autophagic mecha-
nism, positive regulation of cysteine-type endopeptidase
activity involved in the apoptotic process, intrinsic apoptotic
signalling pathway, activation of cysteine-type endopeptidase
activity involved in the apoptotic process, and macroauto-
phagy. Figure 3(b) shows that DEARGs in KEGG are related
to autophagy–animal, autophagy–other, bladder cancer, cen-
tral carbon metabolism in cancer, colorectal cancer, EGFR
tyrosine kinase inhibitor resistance, endocrine resistance,
endometrial cancer, ErbB signalling pathway, hepatitis C,
HIF–1 signaling pathway, human cytomegalovirus infection,
Kaposi sarcoma-associated herpesvirus infection, non-small-
cell lung cancer, p53 signalling pathway, pancreatic cancer,
PD–L1 expression and PD–1 checkpoint pathway in cancer,
platinum drug resistance, proteoglycans in cancer, and Shig-
ellosis pathway.

3.3. Identification of Prognostic DEARGs. In order to con-
struct a prognostic survival risk model, we conducted a
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Figure 3: Biological function analysis of differentially expressed autophagy genes. (a) GO enrichment analysis of differential autophagy-
related genes. (b) KEGG enrichment analysis of different autophagy-related genes.
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univariate Cox regression analysis of DEARGs, which
selected 8-DEARGs associated with prognostic survival.
The results are detailed in Supplementary Table 3. Among
the genes we screened for 8-DEARGs, there were two low-
risk genes and six high-risk genes.

3.4. Construction of Prognostic Risk Models. In order to con-
struct a prognostic risk model associated with autophagy
genes, we conducted a multivariate Cox regression analysis
of 8 genes associated with prognosis. Finally, we have a 5-
gene prognostic risk model (Figure 4). The risk scores were
calculated using correlations for 5-DEARGs (BID, CX3CL1,

EIF4EBP1, VMP1, SPHK1). Risk score = 0:6544 × EXPBID
− 0:2684 × EXPCX3CL1 + 0:1526 × EXPEIF4EBP1 + 0:2780 × EX
PVMP1 + 0:1581 × EXPSPHK1. The risk score of patients is
shown in Supplementary Table 4.

3.5. Survival Analysis of Autophagy Scores. We calculated
the autophagy risk score for each patient based on the
model. We divided patients into high-risk and low-risk
groups based on the median autophagy risk score. Survival
analysis was performed for both groups, and the results are
shown in Figure 5(a). Then, we draw a ROC curve to assess
the accuracy of the risk model (Figure 5(b)). The 5-year
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Figure 4: The prognostic signature in ccRCC. (a) The panel is a heat map of 5 genes. (b) The panel is the survival status and overall survival
time of each ccRCC. (c) The panel is the risk score for each ccRCC.

6 Disease Markers



survival of the low-risk group was better than that of the
high-risk group.

3.6. Validation of the Model. Our model was validated using
the EU group of patients in the ICGC database. According to
the median risk score of our model, patients were divided
into the high-risk and low-risk groups. The results showed
that the patients in the high-risk group had a worse progno-
sis than those in the low-risk group (Figure 5(c)). Also, the
ROC curve shows that our model has an excellent predictive
effect (Figure 5(d)). We validated our model using the
Human Protein Atlas database. The results showed that
BID, EIF4EBP1, and SPHK1 were significantly increased in
the ccRCC compared with the normal renal tissue. However,
the staining level of CX3CL1 in the ccRCC tissues was rela-

tively lower. There was no significant difference in VMP1
between the normal and tumour tissues. The results of
immunohistochemistry were consistent with those of our
analysis, which further confirmed the accuracy of our model
(Figure 6).

3.7. Correlation Analysis between the Risk Models and
Clinical Indicators. We further analyzed the correlation
between the clinical with the gene signature in the model.
BID was significantly associated with ccRCC grade (p =
7:631e − 05), stage (p = 7:868e − 08), T stage (p = 1:39e −
05), M stage (p = 0:006), and N stage (p = 7:43e − 05).
CX3CL1 was significantly correlated with gender (p = 0:002),
ccRCC grade (p = 4:402e − 04), stage (p = 3:66e − 04), and T
stage (p = 1:761e − 04). EIF4EBP1 was significantly correlated
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Figure 5: The prognostic signature in ccRCC. (a) The panel represents the overall survival of the sample at high and low risk. (b) The panel
represents the ROC analysis. (c) The 5-year survival in the high-risk and low-risk groups in the EU group. (d) The panel represents the ROC
analysis of the EU group.
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with ccRCC age (p = 0:027), grade (p = 0:001), stage (p =
1:519e − 05), T stage (p = 2:761e − 04), M stage (p = 3:433e
− 04), and N stage (p = 0:017). VMP1 was significantly associ-
ated with gender (p = 0:026), stage (p = 0:038), and T stage

(p = 0:017). SPHK1 was significantly associated with ccRCC
grade (p = 1:713e − 06), stage (p = 2:587e − 05), T stage (p =
1:237e − 04), M stage (p = 0:001), and N stage (p = 0:006).
Risk score was significantly correlated with ccRCC grade
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Figure 7: The model was combined with a regression analysis of clinical indicators: (a) univariate regression analysis; (b) multivariate
regression analysis; (c) multi-index ROC curve.
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(p = 1:874e − 06), stage (p = 2:489e − 06), T stage (p = 1:751e
− 06), M stage (p = 0:019), N stage (p = 0:019), and M stage
(p = 0:011) (supplementary Table 5).

3.8. Independent Prognostic Analysis. We combined the
autophagy risk score with clinical characteristics for Cox
regression analysis, and the results showed that our autoph-
agy risk score could be an independent prognostic factor
for ccRCC (Figures 7(a) and 7(b)). We found that tumour
grade can also be used as an independent predictor of posta-
nalysis. Multi-indicator ROC curve shows that the autophagy
risk score can effectively predict the prognosis of patients
(Figure 8(c)). Also, our autophagy risk score, combined with
clinical indicators, can effectively predict the survival status
of ccRCC (Figure 8).

4. Discussion

Clear cell renal cell carcinoma (ccRCC) is the most common
type of renal cell carcinoma and one of the most common
tumours in the urinary system. In ccRCC patients, the early
symptoms are not visible; most of them are detected by phys-
ical examination, and the lack of specific diagnostic markers
makes early diagnosis difficult. Therefore, new diagnostic
indicators are critical to the early detection and treatment
of ccRCC.

Autophagy is critical at maintaining a stable intracellular
environment [12]. Early studies have reported that autoph-
agy has a significant relationship with the occurrence and
progression of tumours [13, 14]. Autophagy also plays a

major role in the occurrence and development of ccRCC
[15]. Therefore, we investigated the role of autophagy genes
in ccRCC and screened out autophagy genes that can be used
as diagnostic indicators to improve the early diagnosis and
prognostic survival of ccRCC.

In this study, RNA-seq data in the TCGA database were
analyzed to screen ARGs related to ccRCC prognosis. We
finally got 45 DEARGs, including 9 downregulated and 36
upregulated ARGs. In order to explore the biological func-
tion of DEARGs, we conducted GO and KEGG enrichment
analysis on DEARGs. The results showed that these differen-
tially expressed genes were closely related to autophagy, apo-
ptosis, and bioregulation. These functions are closely
associated with the occurrence and development of tumours.
The KEGG enrichment analysis reveals that DEARGS is
mainly related to the PD–L1 expression and PD–1 check-
point pathway in cancer, p53 signalling pathway, HIF–1 sig-
nalling pathway, ErbB signalling pathway, EGFR tyrosine
kinase inhibitor resistance, and autophagy pathway. The pro-
grammed cell death 1 receptor (PD–1) can be used as an
immunoassay site for ccRCC to influence the ccRCC survival
rate [16]. Besides, numerous other pathways have been
reported in ccRCC [17–19]. Univariate Cox analysis was per-
formed on DEARGs to screen for autophagy genes associated
with survival. We screened 8 autophagy genes associated
with survival (BIRC5, BID, SPHK1, CX3CL1, EIF4EBP1,
VMP1, BAG1, CASP4). Then, we performed a multivariate
Cox regression analysis on 8-DEARGs, and obtained a 5-
DEARGs (BID, CX3CL1, EIF4EBP1, VMP1, SPHK1) risk
prediction model (p < 0:05). According to the autophagy risk
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score, the patients were subdivided into the high-risk and
low-risk groups. The survival analysis showed that the 5-
year survival rate was significantly lower in the high-risk
group than in the low-risk group. The ROC analysis also
reflects the accuracy of an autophagy risk model. The corre-
lation analysis between the model with clinical traits showed
that the tumour markers were associated with age, gender,
grade, stage, and TMN stage. The correlation analysis also
verified the reliability of our autophagy risk signature.
Finally, we analyzed whether the autophagy risk score and
clinical traits could be independent prognostic factors. The
results showed that the autophagy risk model could be an
independent factor for ccRCC prognostic survival, and the
results of ROC analysis also demonstrated the feasibility of
the model as an independent prognosis (risk scoreAUC =
0:733, gradeAUC = 0:710, and stageAUC = 0:789).

In summary, our study indicates that autophagy gene
plays an essential role in ccRCC. The autophagy gene-
related risk prediction model developed by us has good accu-
racy for ccRCC. Our study provides the possibility of more
precise research and clinical treatment. In our risk model,
BID, EIF4EBP1, VMP1, and SPHK1 were high-risk genes,
while CX3CL1 was low-risk genes. BID promotes the occur-
rence and metastasis of ccRCC by altering TNF signals [20].
Other studies have shown that BID is closely related to the
survival prognosis of ccRCC [21–23]. SPHK1 can be used
as a target gene of HIF-1 to influence the prognosis of
ccRCC [24]. The SphK1 overexpression promotes the RCC
process by regulating the Akt/mTOR pathway [25]. CX3CL1
is closely related to the metastasis and invasion of ccRCC
[26]. It has been reported that BID and EIF4EBP1 can be
used as predictive model markers of ccRCC [22]. Unfortu-
nately, there has been no study of VMP1 in ccRCC.
Although no studies have been conducted on VMP1 and
ccRCC, VMP1, as an autophagy gene, plays a vital role in
the development and invasion of pancreatic cancer and liver
cancer [27, 28]. Autophagy-related genes BID, EIF4EBP1,
VMP1, SPHK1, and CX3CL1 also play essential roles in
other cancers.

5. Conclusion

In this study, we used the autophagy gene expression data
of ccRCC in TCGA data to build a risk prediction model,
and we verified the accuracy of our model through several
aspects. However, we need to acknowledge the limitations
of this study, and the following points need to be explained:
(1) Our model needs to be validated in a prospective clini-
cal trial. (2) At present, the research on autophagy-related
genes is not mature and still needs further research to
improve. We firmly believe that the diagnosis and treat-
ment of ccRCC are becoming more and more perfect with
the deepening of research.

Data Availability

We downloaded transcriptome and clinical data from all
ccRCC samples from the TCGA database (https://portal.gdc
.cancer.gov/). There were 72 cases of normal renal tissue

and 539 cases of ccRCC in the expression data. The tran-
scriptome data are in the format of FPKM. Also, we down-
loaded all transcriptome data from the International Cancer
Genome Consortium (ICGC) data for European patients.
We got all the ARGs (232) from the Human Autophagy
Database (HADb, http://www.autophagy.lu/); the expression
information of all ARGs (222) in ccRCC data was extracted.
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