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An interaction between hypoxia and immunity has been confirmed in tumor tissue. However, there is no combined biomarker for
diagnosis on this basis. Therefore, we developed a scoring formula based on markers of hypoxia and immunity. Firstly, the
hypoxia-immune formula of lung adenocarcinoma (LUAD) was derived using LASSO-Cox regression in three cohorts from
public database, and the corresponding score was calculated for each patient. The formula is as follows: combined hypoxia and
immune index ðCIHIÞ = LDHAexpression × 0:2252 + GAPDHexpression × 0:0727 + ANGPTL4 expression × 0:0724 + VEGFC
expression × 0:1911 + DKK1 expression × 0:1355 + ADMexpression × 0:0588 + BTK expression × −0:1659. Meanwhile, patients
were divided into groups according to high and low CIHI, and expression profiles of hypoxia markers and immune markers
were analyzed in different groups. CIHI was used to confirm that patients with high CIHI represented a state of hypoxiahigh-
immunitylow, which had worse overall survival. We also discussed the evaluation value in the immune microenvironment and
clinical application of CIHI. In conclusion, this study developed and validated a hypoxia-immune formula that can guide
hypoxia modifier treatment and immunotherapy in LUAD.

1. Introduction

There are many different types of cancer, but lung cancer is
the most common cause of cancer-related death worldwide
[1]. Non-small-cell lung cancer accounts for four-fifths of
all lung cancer cases, with lung adenocarcinoma (LUAD)
the most frequent subtype [2]. Unfortunately, early-stage
patients with LUAD are difficult to diagnose, and the condi-
tion is frequently advanced by the time they are diag-
nosed [3].

The tumor microenvironment is closely related to the
degree of tumor development. A rising number of studies
have discovered that anomalies in tumor metabolism are
linked to alterations in the tumor microenvironment.
Immunotherapy refers to the targeting of immune check-
point, such as PD-1/PD-L1 and CTLA-4; the infiltration

of immune cells is a critical component determining the
efficacy of this treatment [4]. In addition, immunosuppres-
sive metabolites can be produced in a process that inhibits
their antitumor activity, while immune escape can be facil-
itated by affecting the expression of cell surface markers as
a method. And immune checkpoint blockade [5], such as
B7-H3 and PD-1 [6], can help restore glucose in the tumor
microenvironment (TME), allowing cytokine production
and glycolysis [7]. Endogenous tumor metabolism can be
targeted to boost immune responses [8]. In combination
with immune checkpoint inhibitors, targeted metabolism
is extremely likely to be a new immunotherapy strategy to
overcome immune resistance [9]. Hypoxia-related mecha-
nisms have long been one of the hallmarks of cancer signal-
ing pathways. Hypoxia is a common occurrence in solid
tumors, and it has been linked to cancer metastasis,
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extracellular matrix structure, angiogenesis, stem cell char-
acterization, and metabolic reprogramming [10]. A lot of
previous research has looked into the link between the
TME and hypoxia [11]. The hypoxic response of T cells,
for example, aids immunotherapy by increasing CD137
expression [12]. Another example is glycolysis in the pres-
ence of sufficient oxygen in breast cancer cells, which can
be regulated by macrophage-related lncRNAs [13]. Further-
more, inhibiting NRF1 degradation under hypoxic settings
has a negative impact on tumor-associated macrophage
polarization [14].

As a result, we aimed to develop and validate an inte-
grated index of immunity and hypoxia in this study in order
to estimate the microenvironment of LUAD. We also dis-
cussed the evaluation value in the immune microenviron-
ment and clinical application value of CIHI.

2. Materials and Methods

2.1. LUAD Patient Datasets and Hypoxia-Immune Genes.
We download clinical data and RNA-seq for LUAD cases
in TCGA and GEO database. Excluding missing data, 529
patients from TCGA-LUAD project, 398 patients from
GSE68465 dataset, and 442 patients from GSE72094 dataset
were finally included in this study. Annotate gene names
with their respective platform files in three cohorts. Mean-
while, we searched 200 hypoxia-related genes [15] and
2483 immune-related genes [16] in the previous references.
Considering the different gene annotation of three datasets,
we finally identified 1220 immune-hypoxia-related genes.

2.2. Calculating CIHI. In the study, we classified all LUAD
cases into three sets, including test set (GSE68465 and
GSE72094) and training set (TCGA) to improve the confi-
dence of CIHI. We used both sets to validate the prediction
performance, while one of the training sets was used to con-
struct the prognostic prediction model. Firstly, based on the
1220 immune-hypoxia-related genes in the training set, we
identified significant prognostic genes by univariate Cox
regression analysis. Subsequently, we used the glmnet pack-

age to perform LASSO regression and Cox regression for
screening genes participating in the CIHI formula. Mean-
while, we used multivariate Cox regression analysis in order
to construct a formula for generating coefficient of each
gene. Here is the formula for calculating CIHI: ðgene 1
expression × coefficientÞ + ðgene 2 expression × coefficientÞ
+⋯ + ðgene n expression × coefficientÞ. Also, all cases were
divided into two groups (low-CIHI group or high-CIHI
group) according to the median of the CIHI scores. In addi-
tion, our signatures were validated using the training set and
the test set described above.

2.3. Clinical Benefit Assessment. The training set and validat-
ing set were divided into the high-CIHI and low-CIHI
groups according to the median value of the CIHI score.
The Kaplan-Meier curves and ROC analysis were used to
predict OS of three cohorts for LUAD patients (1-year OS,
3-year OS, and 5-year OS, respectively). We then used cali-
bration curve of survival to validate the accuracy of CIHI.
In addition, we plotted heatmaps of clinicopathological
factors with CIHI scores to calculate their correlations.

2.4. The Stromal and Immune Infiltration in the Tumor
Environment. The tumor microenvironment contains vari-
ous stromal cells and immunocytes. We estimated the stro-
mal infiltrating via calculation of stromal score and tumor
purity by Estimation of STromal and Immune cells in
MAlignant Tumor tissues using Expression data (ESTI-
MATE) [17]. Besides, the infiltration level differences
between the high-CIHI and low-CIHI groups were com-
pared using the myeloid lineage phenotypic and functional
markers, inhibitory immune receptors or ligand markers,
activating immune receptor markers, IFNγ signature
markers, and immune modulator markers.

2.5. Statistical Analyses. The statistical analyses were con-
ducted in the R software (version 4.0.1). A two-sided p value
< 0.05 was regarded as statistically significant. The log-rank
test was used for the Kaplan-Meier curves of TCGA and
GEO dataset patient survival analyses. For normally
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Figure 1: Landscape of immune and hypoxia gene profiles. (a) 1220 immune-hypoxia-related genes annotated in three cohorts. (b)
Prognostic genes in each cohort were calculated, and 68 common prognostic genes were identified.
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Figure 2: Continued.
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distributed variables, we used Student’s t-test to conduct the
pairwise comparisons, and for nonnormally distributed
variables, the Wilcoxon test was performed. Finally, the
Spearman correlation analysis was used to compute the sig-
nificance of correlations between CIHI and genes. ∗∗∗, ∗∗,
∗, and NS refer to p < 0:001, <0.01, <0.05, and not signifi-
cant, respectively.

3. Results

3.1. A Landscape of Immune and Hypoxia Gene Profiles in
Different Cohorts. Excluding missing data, 529 patients from
TCGA-LUAD project, 398 patients from GSE68465 dataset,
and 442 patients from GSE72094 dataset were finally
included in this study. Considering the different gene anno-
tation of three datasets, we finally identified 1220 immune-
hypoxia-related genes (Figure 1(a)). Subsequently, univari-
ate Cox regression analysis was used to reveal the prognostic
genes, and 68 genes were identified in TCGA, GSE68465,
and GSE72094 cohorts (Figure 1(b)).

3.2. CIHI Was Calculated for Each Patient. Considering that
hypoxia may influence the immune cell infiltration and the
immune response, the combined analysis of hypoxia and
immunity may have potential prognostic value and indicate
the status of the tumor microenvironment (TME). Therefore,
68 prognostic genes were applied to the LASSO-Cox regres-
sion model to construct the CIHI formula in TCGA dataset.
Seven genes were selected according to the LASSO regression
analysis, and corresponding coefficients were generated at
the optimum λ which is -2.81 (Figures 2(a) and 2(b)). In
addition, the coefficient of each gene was further elaborated
by multivariate Cox regression analysis to calculate CIHI
(Figures 2(c) and 2(d)). CIHI = LDHA expression × 0:2252
+ GAPDH expression × 0:0727 + ANGPTL4 expression ×
0:0724 + VEGFC expression × 0:1911 + DKK1 expression ×
0:1355 + ADM expression × 0:0588 + BTK expression × −
0:1659. Among the 7 genes, ANGPTL4, GAPDH, LDHA,

and ADM belong to hypoxia-related genes (Figure 2(e)),
while immune-related genes are BTK, ADM, DKK1, VEGFC,
and ANGPTL4 (Figure 2(f)). Interestingly, ANGPTL4 and
ADM belong to both hypoxia-related genes and immune-
related genes (Figure 2(g)). The CIHI of each patient was
calculated according to this formula in TCGA, GSE68465,
and GSE72094 cohorts. Subsequently, the three cohorts were
divided into the high- and low-CIHI groups according to the
median CIHI of TCGA cohort. In addition, Spearman corre-
lation results showed that the CIHI was significantly corre-
lated with the selected 7 genes, as shown in Figure 3(a). In
addition, the correlation network showed that there was
more red line than blue line, indicating that CIHI was posi-
tively correlated with most genes (Figure 3(b)). From the
above analysis, we constructed a composite indicator and
identified two subgroups of LUAD patients. Correlation
analysis showed that CIHI was correlated with hypoxia-
related genes, suggesting that CIHI might reflect hypoxia in
TME.

These results suggested that hypoxia is associated with
immune responses in the microenvironment. Therefore, this
new scoring method, CIHI, may indicate the hypoxia
immune status of patients.

3.3. High CIHI Represents Hypoxiahigh-Immunitylow in
LUAD Patients. We further attempted to verify the associa-
tion between CIHI and hypoxia. In a previous study, hub
expression profiles associated with hypoxia in cancer were
identified. We first compared key hypoxia-related character-
istics in the high-risk and low-risk groups. Subsequent
analyses described the 13-gene expression levels of the two
phenotypes in three cohorts to reflect different hypoxia
states. The expression of ANGPTL4, ENO1 FOSL1, LDHA,
P4HA1, PDK1, PGAM1, SLC2A1, and VEGFA was signifi-
cantly increased in the high-risk group of three cohorts. This
may indicate that hypoxia-induced angiogenesis is more
common in the high-risk group, suggesting that our patients
with low CIHI have lower hypoxia levels (Figures 4(c)–4(e)).
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Figure 2: Calculating CIHI. (a, b) Parameter reduction by LASSO algorithm, the knee point determined by the effects of log penalty
coefficient on the partial likelihood deviance was used to select the final parameters. (c, d) The coefficients of 7 final parameters obtained
from Cox regression analysis. (e) Immune-related genes in 7 genes. (f) Hypoxia-related genes in 7 genes. (g) Hypoxia- and immune-
related genes are common among 7 genes.
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In addition to the GSE68465 cohort (without this gene
annotation), we also examined PD-L1 expression in each
cohort. Interestingly, patients with low CIHI had lower hyp-

oxia but higher PD-L1 levels (Figures 4(a) and 4(b)). There-
fore, we suggested that high CIHI represents hypoxiahigh-
immunitylow in LUAD patients.
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3.4. CIHI Levels and Immunoresponse Markers in LUAD. To
further promote CIHI function as an indicator of immune
response, a set of immune response markers was also tar-
geted to high-CIHI (hypoxiahigh-immunitylow) and low-
CIHI (hypoxialow-immunityhigh) phenotypes. Our results
showed patterns of immune response between different phe-
notypes. In general, patients with hypoxiahigh-immunitylow

exhibited a suppressive immune microenvironment com-
pared with patients with hypoxialow-immunityhigh. This
finding is consistent with the fact that these signals are
responsible for regulating protumor or antitumor activity.
In three cohorts, T cell phenotypes and functional markers,

including CD3E, CD4, GZMB, and TBX21, were expressed
at higher levels in the hypoxialow-immunityhigh groups. Sim-
ilarly, the differential genes in myeloid lineage phenotypic
and functional markers, inhibitory immune receptors or
ligand markers, activating immune receptor markers, IFNγ
signature markers, and immune modulator markers were
all highly expressed in the hypoxialow-immunityhigh group
(Figures 5(a)–5(c)). These results showed that there was a
complex immune response in the low-CIHI group.

3.5. CIHI Levels Affect the Tumor Microenvironment. Fur-
ther results showed the characteristics of CIHI and its
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Figure 5: CIHI levels and immunoresponse markers in LUAD. T cell phenotypes and functional markers, myeloid lineage phenotypic
and functional markers, inhibitory immune receptors or ligand markers, activating immune receptor markers, IFNγ signature markers,
and immune modulator markers in (a) GSE68465, (b) GSE72094, and (c) TCGA cohorts based on CIHI score. ∗p < 0:05, ∗∗p < 0:01,
and ∗∗∗p < 0:001.
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correlation with TME in each cohort. Interestingly, CIHI
was negatively correlated with stromal score, immune score,
and estimate score in three cohorts. It suggested that CIHI
may also be associated with stromal non-immune-related
components, such as fibroblasts (Figure 6). In addition, the
overall landscape of TME was estimated using the ESTI-
MATE algorithm. All three scores were significantly higher
in hypoxiahigh-immunitylow patients.

3.6. Benefits of CIHI for Clinical Application. How to choose
the appropriate tool or score for early diagnosis and treat-
ment of cancer remains a key clinical issue. Previous studies
have shown that hypoxia and changes in immune status are
prominent features of malignant tumors. First of all, in
PCA and t-SNE analysis, we found that three cohorts
including TCGA (Figure 7(f)), GSE68465 (Figure 6(b)),
and GSE72094 (Figure 6(d)) could be well distinguished
and presented discrete distribution. In addition, we analyzed
the correlation between CIHI score and various clinicopath-
ological factors. In the GSE68465 cohort, the heatmap
revealed that CIHI scores were significantly correlated with
survival status, T stage, and grade (p < 0:05), as shown in
Figure 7(a). Meanwhile, in the GSE72094 cohort, which con-
tained information about the genetic mutation, the heatmap
revealed that CIHI scores were significantly correlated with

survival status, stage, KRAS, EGFR, and TP53 (p < 0:05), as
shown in Figure 7(c). In addition, CIHI scores were associ-
ated with all clinical factors except M staging in TCGA
cohort (p < 0:05), as shown in Figure 7(e). In addition, we
further explored the predictive power of CIHI on survival
status. Intriguingly, in three cohorts, a high CIHI score repre-
sented a poorer prognosis, with a significantly shorter sur-
vival time (p < 0:05), as shown in Figures 8(a), 8(c), and
8(e). In addition, we also conducted in-depth analysis of
CIHI in predicting survival at different times. ROC analysis
showed that CIHI had good predictive value for survival at
1, 3, and 5 years in different cohorts (AUC > 0:6), as shown
in Figures 8(b), 8(d), and 8(f).

3.7. Validation of CIHI in the ICI Cohort. We assessed the
prognostic value of CIHI in the cohort treated with anti-
PD-L1 (IMvigor). The results showed that low CIHI had
better OS than low-CIHI patients (Figure 9(a)). Meanwhile,
it can be found that in CR/PR and SD/PD cohorts, there are
significant differences in CIHI (Figure 9(c)). Unfortunately,
our CIHI may be a poor predictor of survival at 1, 3, and 5
years (Figure 9(b)), but the role of CIHIs in assessing the
response to ICI treatment cannot be ignored. Finally, the
prognostic value of CIHI was compared with other risk sig-
natures [18, 19]. C-index results showed that CIHI had the

CIHI-high CIHI-low

–2000

0

2000

4000

Es
tim

at
e s

co
re

2.5e-10

CIHI-high CIHI-low

–1000

1000

0

2000

3000

Im
m

un
e s

co
re

2.2e-13

St
ro

m
al

 sc
or

e

CIHI-high CIHI-low

–1000

0

1000

2000
1.1e-05

TCGA

4000

2000

0

–2000

–4000

Es
tim

at
e s

co
re

0 5 10

Risk score

R = –0.34, P = 1.7e–5 3000

2000

0

1000

–1000

Im
m

un
e s

co
re

0 5 10

Risk score

R = –0.39, P<2.2e–16 2000

1000

0

–1000

–2000

St
ro

m
al

 sc
or

e

0 5 10

Risk score

R = –0.23, P = 1.7e–07RRRRRRRRRRRRRRRRRRRRRRRR = –===== 0.34....30.3.33 , 3 P = 1.7e7P –5 3000

2000

0

1000

–1000

Im
m

un
e s

co
re

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR = –0.39,  0.39 PP<2.2.22e–16<2. e 162 2000

1000

0

–1000

–2000

St
ro

m
al

 sc
or

e

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR == –=================== 0.23,0 23= 2 PPP = 1.7e1 77PP –0707

Group

CIHI-high

CIHI-low

(c)
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strongest predictive performance (Figure 9(d)). In addition,
it should not be ignored that other risk signatures can also
stratify the risk of LUAD patients (Figure 9(e)).

4. Discussion

Although there have been advancements in treating
advanced LUAD, such as immunotherapy, there are still
many difficulties for researchers and clinicians to conquer.
After all, this is an advanced stage of the disease and improv-
ing the OS of such patients remains difficult; studies have
shown that the 5-year OS rate in patients with advanced
LUAD is even lower than 20% [20]. Therefore, the current
goal is to research and develop biomarkers as soon as possi-
ble to predict the prognosis of LUAD patients correctly,
though in many ways understanding the correlation between
tumor metabolism and immune cell infiltration inside TME
is useful and development of therapeutics [21]. Although
researchers have created many various approaches to define
and quantify the immunological aspects of LUAD in
contemporary studies, such as models and prognostic bio-
markers, attention to the extracellular microenvironment,
such as the effects of pH and hypoxia on cancer cells,
remains modest [22]. In the study, we constructed a formula
as follows: CIHI = LDHAexpression × 0:2252 + GAPDH
expression × 0:0727 + ANGPTL4 expression × 0:0724 +
VEGFC expression × 0:1911 + DKK1 expression × 0:1355
+ ADM expression × 0:0588 + BTK expression × − 0:1659.
Patients were divided into groups according to high and low
CIHI, and expression profiles of hypoxia markers and
immune markers were analyzed in different groups. CIHI

was used to confirm that patients with high CIHI represented
a state of hypoxiahigh-immunitylow, which had worse overall
survival. And most importantly, we also discussed the evalua-
tion value in the immune microenvironment and clinical
application value of CIHI.

The combined status of immune response and hypoxia
in the TME is rarely noted. Some of the conclusions of this
study are the same as those of previous studies; hypoxia pro-
motes CD8+ T cell effects and migratory function, demon-
strating that hypoxia has diverse functions in tumor cells
and immune cells [23]. We also found more expression of
immune cell markers in patients with hypoxiahigh. The sig-
nificance of aberrant metabolism in tumor growth has got-
ten a lot of attention in recent years. To date, researchers
have extensively explored and studied the expression pat-
terns of metabolic enzymes in several cancer types, including
prostate, breast, colorectal, gastric, and liver cancers [24].
We can continue to evaluate and investigate TME cell infil-
tration mediated by metabolic enzymes using a range of
acceptable statistical methods in future studies thanks to
the ongoing development of current sequencing technolo-
gies. In this study, CIHI was negatively correlated with
stromal score, immune score, and estimate score in three
cohorts. It suggested that CIHI may also be associated with
stromal non-immune-related components, such as fibro-
blasts. In addition, the overall landscape of TME was
estimated using the ESTIMATE algorithm. All three scores
were significantly higher in hypoxiahigh-immunitylow

patients. This indicates that the score has a robust potential
to evaluate TME. Interestingly, cancer cells can emit various
chemokines, which then attract monocytes to the tumor

2

0

–2

–4
–2.5 2.50.0 7.55.0

PC1

PC
2

20

10

0

–10

–20

–30

–20 –10 0 10 20 30

tSNE1

tS
N

E2

Risk
High
Low

(f)

Figure 7: Composite heatmaps of CIHI and clinicopathological features in LUAD patients. (a) Heatmap of differences in clinicopathological
factors and high- and low-CIHI groups in the GSE68465 cohort. (b) PCA analysis and t-SNE analysis in the GSE68465 cohort. (c) Heatmap
of differences in clinicopathological factors and high- and low-CIHI groups in the GSE72094 cohort. (d) PCA analysis and t-SNE analysis in
the GSE72094 cohort. (e) Heatmap of differences in clinicopathological factors and high- and low-CIHI groups in TCGA cohort. (f) PCA
analysis and t-SNE analysis in TCGA cohort. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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[25]. Within the tumor tissue, recruited monocytes quickly
transform to become TAMs, inhibiting T cell activation
and proliferation while also lowering their antigen expres-
sion ability [26]. TAMs have been proven in previous
research to promote tumor proliferation and angiogenesis
by enriching in hypoxic zones and secreting cytokines [27].
Therefore, our CIHI score can also reflect the level of
immune evasion in LUAD tissues on the secondary side.

There are still some limitations of our study that are
worth noting. The bioinformatics results, for starters, have

been validated using TCGA and GEO samples. However,
we were unable to conduct a second external validation,
because we lacked the sufficient funding to sequence LUAD
patients in our hospital. Second, we only used the ESTI-
MATE algorithm to corroborate our findings for the associ-
ation between CIHI and TME, and we will need to conduct
more experiments in the future to confirm our conclusion.
In conclusion, this study developed and validated a
hypoxia-immune formula that can guide hypoxia modifier
treatment and immunotherapy in LUAD.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time (years)

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

p < 0.001

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time (years)

High risk
Low risk

263
263

192
223 129 77 46

106 61 31
28
24

20
18

14
13

8
9

6
6

4
5

3
3

3
3

3
3

0
3

0
3

0
3

0
3

0
3

0
2

0
0

Ri
sk

High risk
Low risk

Risk

TCGA

(e)

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

1-specificity

Se
ns

iti
vi

ty

AUC at 1 years: 0.730
AUC at 3 years: 0.710
AUC at 5 years: 0.623

(f)

Figure 8: ROC and survival analysis in GEO and TCGA cohorts. Kaplan-Meier survival analysis of different CIHI scores in (a) GSE68465,
(c) GSE72094, and (e) TCGA cohorts. ROC analysis based on CIHI in (b) GSE68465, (d) GSE72094, and (f) TCGA cohorts.
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Figure 9: Validation of CIHI in ICI treatment cohort. (a) Kaplan-Meier survival analysis of anti-PD-L1 cohort. (b) ROC analysis of 1, 3, and
5 years in anti-PD-L1 cohort. (c) Difference of CIHI in different treatment response groups. (d) Comparison of C-index of different risk
signatures. (e) Kaplan-Meier survival analysis about Liu and Liu2 signature.
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