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The identification of biomarkers plays an important role in the diagnosis and prognosis of cancers. In this study, we explored the
diagnostic and prognostic value of the FLAD1 expression across pan-cancer analysis from online databases (Oncomine, cBioPortal,
Breast Cancer Gene-Expression Miner, UALCAN, GEO, BCIP, TNMplot, ENCORI, Kaplan-Meier Plotter, and LinkedOmics). We
found that FLAD1 was overexpressed in a number of different kinds of cancers, especially in breast cancer, and higher FLAD1
expression level was associated with the HER+, p53 mutant, node-involved, NPI stage 3, basal-like, and triple-negative groups
compared with the other subgroups of breast cancer. The FLAD1 expression levels were higher in patients that were 21–40 years
old than those in patients of other ages and were higher in the African-American group than in the Caucasian group. We also
analyzed the FLAD1-related microRNAs and their prognostic values in breast cancer. This study highlights the significance of
FLAD1 in cancers and provides evidence for its potential as a biomarker for the diagnosis and prognosis of cancers.

1. Introduction

Breast cancer is the most commonmalignancy in women and
the most common cause of cancer-related deaths in less-
developed countries [1]. Approximately 2.1 million newly
diagnosed female breast cancer cases were reported world-
wide in 2018 [2]. Breast cancer has various subtypes that
differ in histopathology, biology, and response to systemic
treatment [3]. Despite the rapid development of new technol-
ogies and treatments, the identification of biomarkers for
diagnosis and prognosis is still in the early research phase [4].

Flavin adenine dinucleotide synthetase 1 (FLAD1), also
known as FAD1, is located on chromosome 1 [5] at 1q21.3
[6] (https://www.genecards.org/). It encodes flavin adenine
dinucleotide synthase (FADS), which contains an N-
terminal molybdopterin-binding (MPTb) domain and a C-
terminal domain sufficient to catalyze FAD synthesis [7].
The FLAD1 expression was previously reported to be upreg-
ulated in hepatocellular carcinoma and is considered to be
related to hepatitis B virus infection [8]. Another study
reported that FLAD1, as well as three other genomic markers,

DBN1, CACNB3, and CCND2, could serve as a novel prog-
nostic model of stage I-III non-small-cell lung cancer [9].
The FLAD1 expression has also been shown to be upregu-
lated in gastric cancer [10] and breast cancer [11].

With the development of high-throughput technology,
the relationships between oncogene expressions and clinical
factors have become obvious. However, the diagnostic and
prognostic significance of FLAD1 is unclear. Therefore, in
this study, we searched for relevant data from online data-
bases to determine the diagnostic and prognostic value of
the abnormal expression of FLAD1 and related miRNAs in
pan-cancer analysis, especially in breast cancer. These results
have implications for the development of new molecular bio-
markers in breast cancer and provide evidence for the clinical
value of FLAD1.

2. Materials and Methods

2.1. Oncomine Database. Oncomine is an online database
[12] (http://www.oncomine.org) with sequencing and bioin-
formatic data for 715 datasets and 86,733 samples. We
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analyzed FLAD1 in several kinds of tumors and selected 656
datasets. The thresholds were set as the following: p value
(0.0001), fold change (2), gene rank (top 10%), and data type
(all).

2.2. cBioPortal with The Cancer Genome Atlas (TCGA)
Dataset. The cBioPortal for Cancer Genomics [13, 14]
(http://www.cbioportal.org) includes large scale of cancer
genomic dataset that can be visualized and analyzed online.
We performed the analyses on the dataset “TCGA, PanCan-
cer Atlas,” and the threshold was set as value ±2.

2.3. Breast Cancer Gene-Expression Miner (bc-GenExMiner)
v4.6. bc-GenExMiner v4.6 (http://bcgenex.ico.unicancer.fr/
BC-GEM/GEM-Accueil.php) [15–17] is a statistical mining
tool of published annotated transcriptomic data. Statistical
analyses are provided, including analyses of targeted expres-
sion, exhaustive expression, customized expression, targeted
prognosis, exhaustive prognosis, molecular subtype progno-
sis, basal-like/TNBC prognosis, targeted gene correlations,
exhaustive gene correlations, gene ontology, and gene corre-
lations by chromosomal location. These data can be classified
according to clinical and pathologic parameters.

2.4. ENCORI. The Encyclopedia of RNA Interactomes
(ENCORI), (http://starbase.sysu.edu.cn/index.php), previ-
ously known as starBase v2.0 [18], is a public platform often
used to analyze the interaction between mRNAs and noncod-
ing RNAs among 23 species.

2.5. Cytoscope 3.8.2. The miRNA–mRNA network was drawn
using Cytoscape 3.8.2 (http://www.cytoscape.org/) [19],
which constructs complicated networks from original data.

2.6. TNMplot. TNMplot [20] (https://www.tnmplot.com/) is
an online tool for the differential gene expression analysis
among tumors.

2.7. UALCAN Analysis. UALCAN [21] (http://ualcan.path
.uab.edu) uses related resources to analyze transcriptome
data for 31 cancer types. It provides valuable data about genes
or targets associated with clinical parameters.

2.8. GEO Datasets. GEO datasets (https://www.ncbi.nlm.nih
.gov/gds/) contains original gene expression datasets, includ-
ing raw data of sequencing, microarray, and platform
information.

2.9. BCIP. BCIP (Breast Cancer Integrative Platform) [22]
(http://www.omicsnet.org/bcancer/database) is a platform
with gene expression, histopathological features, and clinical
information of breast cancer samples.

2.10. Kaplan–Meier Plotter. Kaplan–Meier Plotter [23]
(http://www.kmplot.com) is an online visualization tool for
survival data for breast, lung, ovarian, liver, and gastric can-
cer. A p value of <0.05 was considered statistically significant.

2.11. LinkedOmics Analysis. The LinkedOmics database [24]
(http://www.linkedomics.org) is a publicly available platform
with data for 32 TCGA cancer types. Differentially expressed

genes correlated with FLAD1 in the TCGA breast invasive
carcinoma cohort were identified. Results were analyzed
using Spearman’s correlation coefficients.

3. Results

3.1. FLAD1 Overexpression in Pan-Cancer Analysis. We first
analyzed the FLAD1 expression in human cancers and found
that it was overexpressed in six breast cancer datasets in the
Oncomine database (Figure 1). We also found some evidence
for the abnormal expression of FLAD1 in various cancers in
ENCORI [18]. A significant difference in the FLAD1 expres-
sion between cancer samples and normal tissue samples was
identified for eight cancer types (Figure 2, p < 0:001), includ-
ing kidney renal papillary cell carcinoma, head-neck
squamous cell carcinoma, esophageal cancers, colon adeno-
carcinoma, cholangiocarcinoma, breast invasive carcinoma,
bladder urothelial carcinoma, and liver hepatocellular carci-
noma. TNMplot [20] was further used for pan-cancer analy-
sis of FLAD1, including 56,938 samples showing that FLAD1
is highly expressed in acute myeloid leukemi, bladder cancer,
breast cancer, colon cancer, esophageal cancer, liver cancer,
lung adenocarcinoma, lung squamous cell cancer, ovarian
cancer, pancreatic cancer, rectum cancer, kidney renal
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Figure 1: The transcription level of the FLAD1 in 20 types of
human cancers in Oncomine.
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Figure 2: Continued.
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Figure 2: Continued.
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Figure 2: Continued.
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papillary cell carcinoma, skin cancer, stomach cancer, testic-
ular cancer, uterine carcinosarcoma, and uterine corpus
endometrial carcinoma (Figure 3, p < 0:001).

3.2. Frequency and Type of FLAD1 Alterations in Breast
Cancer. We used cBioPortal to determine the type and
frequency of FLAD1 alterations in 106 of 996 patients with
breast cancer. Only 10 cases were with mutation while 5
cases had missense mutations, 4 cases had truncation
mutations, and 1 had SV/Fusion. Thus, amplification may
be the most common type of FLAD1 alteration in breast
cancer.

3.3. Diagnostic Value and Related Clinical Features of the
FLAD1 Expression in Breast Cancer. We then analyzed the
FLAD1 expression in three GEO datasets (GSE10797 [25],
GSE22820 [26], GSE54002 [27]) and in BCIP (“Metabric,”
[28] “TCGA_Agilent,” “GSE5364_GPL96” [29]). These
results confirmed that the expressions levels of FLAD1 in
breast cancer groups are higher than that in normal tissue
groups (Figures 4 and 5).

The analysis using bc-GenExMiner showed that the ER-
positive and PR-positive groups had lower FLAD1 expression
(p < 0:001) in line with a previous study [11]. However, the
HER2-positive groups showed higher FLAD1 expression
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Figure 2: The transcription level of FLAD1 in various cancer types in ENCORI: (a) kidney renal papillary cell carcinoma (KIRP), (b) head-
neck squamous cell carcinoma (HNSC), (c) esophageal cancers (ESCA), (d) colon adenocarcinoma (COAD), (e) cholangiocarcinoma
(CHOL), (f) breast invasive carcinoma (BRCA), (g) bladder urothelial carcinoma (BLCA), and (h) liver hepatocellular carcinoma (LIHC).
p < 0:001 in all figures.
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Figure 4: The FLAD1 expression in breast cancers samples and normal controls from GEO. (a) GSE10797, p = 0:0067. (b) GSE22820, p <
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(Figure 6(a), p < 0:001). Nodal status (Figure 6(b) p = 0:0011)
and age (Figure 6(c), p < 0:001) were also related to the
FLAD1 expression. In addition, the p53 mutated group
showed higher FLAD1 expression (Figure 6(d), p < 0:001).
The basal-like group showed higher FLAD1 expression levels
than those found for samples with a nonbasal-like status
(Figure 6(e), p < 0:001). Similarly, the triple-negative group
showed higher mRNA expression levels than those in the
nontriple-negative group. Moreover, the expression level of
FLAD1 sequentially increased in advanced stages based on
the NPI (Figure 6(f), p < 0:001).

UALCAN was also used to reveal the clinical parameters
related to FLAD1 in breast invasive carcinoma. The overall
FLAD1 mRNA expression level was significantly (p < 0:001)
higher in the breast cancer group than in the healthy
donors (Figure 7(a); median transcripts per million
(TPM) of 58.593 and 29.68, respectively). There was no
significant difference in the FLAD1 levels according to
gender (Figure 7(b), median TPM 58.821 for men and
58.519 for women, respectively; p = 0:818); although, sig-
nificant differences were found for age (Figure 7(c)); the
median TPM for patients who were 21–40 years old
(median TPM = 66:653) was higher than those of other
age groups: 41–60 years (median TPM = 60:918, p = 0:016),
61–80 years (median TPM = 54:837, p = 0:002), and 81–100
years (median TPM = 55:355, p = 0:003). Significant differ-
ences were also found with respect to race, with significantly
higher expression levels being observed in African-American
patients (median TPM = 68:061) than in Caucasian
(median TPM = 56:558) and Asian (median TPM = 60:17)
patients (p < 0:001; Figure 7(d)). There were no differences
observed in the comparisons of the patients from the Cauca-
sian vs. Asian (p = 0:078) or African-American vs. Asian
(p = 0:332) groups. The FLAD1 expression level was higher
for all stages compared with the normal group. However,
a significant difference (p = 0:003) between the stages was

only found for stage 1 (median TPM = 52:445) and stage
2 (median TPM = 60:417), with no significant differences
for the other comparisons: stage 1 vs. stage 3
(median TPM = 56:524), p = 0:135; stage 1 vs. stage 4
(median TPM = 66:849), p = 0:064; stage 2 vs. stage 3, p =
0:255, stage 2 vs. stage 4, p = 0:492; and stage 3 vs. stage 4,
p = 0:320 (Figure 7(e)). In addition, the FLAD1 expression
levels in the luminal subclass (median TPM = 56:156) were
also significantly lower than those in the HER2-positive
(median TPM = 67:728) and triple-negative (median TPM
= 76:715) groups (Figure 7(f), p = 0:003 and p < 0:001,
respectively), whereas no significant difference was found
between the FLAD1 expression levels in the HER2-positive
and triple-negative groups (p = 0:232).

3.4. Prognostic Value of the FLAD1 Expression in Breast
Cancer and Other Cancers. We analyzed the survival data
from the BCIP, which showed that the low expression of
FLAD1 is associated with longer overall survival (OS) and
disease-specific survival (Figure 8).

We also analyzed the relationships between the FLAD1
expression and OS in a number of different kinds of cancers
and found that the FLAD1 overexpression was related to a
poorer OS in five types of cancers: kidney renal clear cell car-
cinoma, kidney renal papillary cell carcinoma, liver hepato-
cellular carcinoma, sarcoma, and thymoma (Figure 9).

3.5. FLAD1-Related miRNA Network and Prognostic Value.
We used ENCORI to analyze the mRNA–miRNA interac-
tions and then used cystoscope to visualize the network.
The related miRNAs were identified included hsa-miR-128-
3p, hsa-miR-137, hsa-miR-299-5p, hsa-miR-3622a-5p, hsa-
miR-486-5p, and hsa-miR-154-5p (Figure 10).

We then performed the survival analysis for each miRNA
and found that longer survival time is positively correlated
with hsa-miR-299-5p, hsa-miR-154, hsa-miR-299-3p, hsa-
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Figure 6: Violin plots showed the FLAD1 mRNA expression in subgroups of patients with breast cancer (bc-GenExMiner). (a) Expressions
between HER2 (-) and HER2 (+). (b) Expression related to nodal status. (c) Expressions between age ≤ 51 and age > 51. (d) Expressions
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miR-31, hsa-miR-328, hsa-miR-654-5p, and hsa-miR-543
(Figure S1, p < 0:05). In addition, we found that the low
expression of some miRNAs was associated with a higher

survival rate, including hsa-miR-3622a, hsa-miR-1343, hsa-
miR-24, hsa-miR-541, hsa-miR-3918, hsa-miR-224, hsa-
miR-4731, hsa-miR-4726, hsa-miR-378 g, hsa-miR-4739,

0
Normal

(n = 114)
Stage4

(n = 20)
Stage3

(n = 247)
Stage2

(n = 615)
Stage1

(n = 183)
TCGA samples

Expression of FLAD1 in BRCA based on individual cancer stages

25

50

75

100
Tr

an
sc

rip
t p

er
 m

ill
io

n

125

150 ⁎⁎⁎
⁎⁎⁎

⁎⁎⁎
⁎⁎⁎ ⁎⁎

(e)

Expression of FLAD1 in BRCA based on breast cancer
subclasses

0
Normal

(n = 114)
Lumral

(n = 566)
HER2 positive

(n = 37)
Triple negative

(n = 116)
TCGA samples

50

100

150

Tr
an

sc
rip

t p
er

 m
ill

io
n

200

⁎⁎⁎
⁎⁎⁎

⁎⁎⁎
⁎⁎⁎

⁎⁎

(f)

Figure 7: Boxplots showed FLAD1 transcription in subgroups of patients with breast invasive carcinoma (UALCAN). (a) Comparison
between the normal group and cancer group. (b) Comparison between the normal group and different genders in patients’ group (male
and female). (c) Comparison between the normal group and different ages in patients’ group (21–40, 41–60, 61–80, or 81–100 years). (d)
Comparison between the normal group and different races in patients’ group (Caucasian, African-American or Asian). (e) Comparison
between the normal group and different stages in patients’ group (stages 1, 2, 3, or 4). (f) Comparison between the normal
individuals and different subclasses in patients’ group (luminal, HER2-positive, and triple-negative). Data are mean ± SE. ∗p < 0:05;
∗∗p < 0:01; ∗∗∗p < 0:001.
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Figure 8: Continued.
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Figure 8: Overall survival (OS) and disease-specific survival (DS) between the high and low expression of the FLAD1 group. (a) OS from
dataset “Metabric” [28], p = 0:003. (b) OS from dataset “GSE1456_GPL96” [30], p = 0:004. (c) OS from dataset “GSE7390_GPL96”
[31], p = 0:046. (d) DS from dataset “Metabric”, p < 0:001. (e) DS from dataset “GSE1456_GPL96”, p < 0:001. (f) DS from dataset
“GSE3494_GPL96” [32], p = 0:004.
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hsa-miR-7, hsa-miR-4640, hsa-miR-1913, hsa-miR-2467,
hsa-miR-3144, and hsa-miR-5194 (Figure S2).

3.6. Genes Correlated with FLAD1 in Breast Invasive
Carcinoma.We used LinkedOmics to analyze proteomic data

for patients with breast invasive carcinoma and found 1861
genes (dark red dots in Figure 11) showing significant posi-
tive correlations with FLAD1 and 1870 genes (dark green
dots) showing significant negative correlations, as shown in
a volcano plot (Figure 11(a)) (false discovery rate ½FDR� <
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Figure 9: Survival analyses of the FLAD1 expression in cancers: (a) kidney renal clear cell carcinoma, (b) kidney renal papillary cell
carcinoma, (c) liver hepatocellular carcinoma, (d) sarcoma, and (e) thymoma.
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0:01). The top 50 genes exhibiting positive or negative corre-
lations with FLAD1 were evaluated in a heat map
(Figures 11(b) and 11(c)).

The FLAD1 expression showed a strong positive associa-
tion with the expression of NLN (Spearman’s correlation =
0:69, p < 0:001), UFC1 (Spearman’s correlation = 0:68, p <
0:001), and UCHL5 (Spearman’s correlation = 0:67, p <
0:001), which function in metalloendopeptidase activity and
peptide binding, UFM1 transferase activity, and endopepti-
dase inhibitor activity.

We also conducted a KEGG analysis of positively and
negatively correlated genes (Figures 12(a) and 12(b), respec-
tively) and found the enrichment for metabolic processes,
biological regulation, nucleus, and protein binding.

4. Discussion

FLAD1 is related to the metabolism of water-soluble vitamins
and cofactors, and FLAD1 mutations cause a FAD synthase
deficiency, which is a rare genetic disease affecting mitochon-
drial energy metabolism and other riboflavin metabolism
[33, 34]. The overexpression of FLAD1 has been reported in
various cancers such as hepatocellular carcinoma [8], gastric
cancer [10], and breast cancer [11]. In this study, we analyzed
the transcription levels of FLAD1 in pan-cancer analysis with
a focus on breast cancer and further classified the results on
the basis of the clinicopathologic parameters. These results

provide evidences for FLAD1 as a new biomarker of breast
cancer and suggest its clinical significance.

Based on extensive database mining, FLAD1was found to
be overexpressed in various cancers, including kidney renal
papillary cell carcinoma, head-neck squamous cell carci-
noma, esophageal cancers, colon adenocarcinoma, cholan-
giocarcinoma, breast invasive carcinoma, bladder urothelial
carcinoma, and liver hepatocellular carcinoma. Amplifica-
tion was the most frequent FLAD1 alteration type identified
in breast cancer. We observed higher FLAD1 expression in
the ER− and PR− group, HER2+ NPI stage 3, basal-like group,
and triple-negative group. ER has two forms, α and β, which
are encoded by ESR1 and ESR2, respectively [35]. PR also has
two different isoforms, PRA and PRB, encoded by the same
PR gene [36]. Since ER-positive patients are eligible for hor-
monal therapy [37], ER status plays an important role in
treatment decisions. A study based on the SEER database
illustrated that patients with ER+PR+ status had better sur-
vival than those who with an ER−PR− in each stage and age
group [38]. In addition, patients with ER+PR+ breast cancer
respond better to tamoxifen than ER+PR− patients [39]. In
our study, the FLAD1 expression was correlated with ER−

and PR−, which are related to poorer survival. The basal-
like group showed higher FLAD1 expression than that in
other groups. Previous studies have shown that patients with
basal-like cancers have significantly worse OS and
recurrence-free survival than those of their luminal A coun-
terparts [40–42]. Similar results have been found in a breast
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Figure 11: Genes differentially expressed in correlation with FLAD1 in breast invasive carcinoma (LinkedOmics). (a) Correlations between
FLAD1 and genes differentially expressed in breast invasive carcinoma. (b, c) Heat maps showing genes positively and negatively correlated
with FLAD1.
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cancer-specific survival analysis [43]. Triple-negative breast
cancer lacks a therapeutic target owing to its negative profile
for PR, ER, and HER2 [44]. Triple-negative breast cancer has
a lower five-year survival rate compared with those of other
breast cancers [45]. FLAD1 was also related to nodal status,
which is a practical parameter for estimating prognosis [46].

We further analyzed clinical parameters in breast inva-
sive carcinoma. The expression levels were higher in patients
who were 21–40 years old than at those from other age
groups and were higher in the African-American group than
in the Caucasian group. In addition, the FLAD1 expression
levels in the luminal subclass were significantly lower than
those in the HER2-positive and triple-negative groups.

We also analyzed the significance and potential clinical
application of FLAD1-related miRNAs. In previous studies,
the FLAD1 expression was found to be linked to let-7b with
respect to tumorigenesis in breast cancer, based on the anal-
ysis of somatic single-nucleotide variants and miRNA–
mRNA pairs [47]. In the present study, we found some
FLAD1-related miRNAs, which showed significant differ-
ences in the cancer and normal samples, indicating their
potential prognostic value.

We also found that the expression of FLAD1 in breast
cancer is associated with the expression of genes involved

in metabolic processes, including NLN, UFC1, and UCHL5.
Among these, UCHL5 is reversibly recruited and activated
by the 19 S proteasome and shows potential as a novel target
for anticancer therapy [48]. Further research on the possibil-
ity of the application of FLAD1 as a therapeutic target based
on small-molecule probes has yielded initial results [49],
indicating that FLAD1 also has certain potential as a target
for cancer treatment.

This study reports the significance of FLAD1 in cancer
based onmultilevel data in public databases and provides evi-
dence for its potential as a biomarker for the diagnosis and
prognosis of various cancers. One of the limitations of this
study is its retrospective nature, because the analysis was only
based on current databases and did not involve any prospec-
tive research for validation. In addition, this study mainly
relies on bioinformatics, without a summary of detailed clin-
ical information. Therefore, further research is needed to val-
idate the results of this study and elucidate the biological
mechanism underlying the role of FLAD1 in cancers.

Data Availability

The datasets in this study can be obtained from the listed
database (Oncomine, cBioPortal, Breast cancer Gene-
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Figure 12: Bar charts showed KEGG pathway analysis of FLAD1 corrected genes (Linkomics). (a) KEGG pathway analysis of positive
correlated genes. (B) KEGG pathway analysis of negative correlated genes.
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