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Objective. Phosphoglycerate kinase 1 (PGK1) is an essential enzyme in the process of glycolysis and mitochondrial metabolism.
Herein, we conducted a systematic analysis to uncover the clinical implication of PGK1 deregulation in breast cancer. Methods.
Expression pattern and prognostic significance of PGK1 were comprehensively assessed across pan-cancer based on RNA-seq
profiles from the TCGA project. Associations of PGK1 with immunological features in the tumor microenvironment (immune
checkpoints, immune response predictors (tumor mutation burden (TMB) and microsatellite instability (MSI)), and tumor-
infiltrating immune cells) were systematically analyzed. The role of PGK1 in the prediction of breast cancer prognosis was also
evaluated. GSEA was presented for investigating biological pathways involved in PGK1. Results. PGK1 was specifically
overexpressed in most of cancer types, including breast cancer. High PGK1 expression was indicative of undesirable overall
survival, progression-free interval, disease-specific survival, and disease-free interval for various cancers. Furthermore, high
PGK1 levels exhibited prominent correlations to immune checkpoints and high response to immunotherapy across pan-cancer.
Notably, ROC curves confirmed that PGK1 can robustly predict breast cancer prognosis. Furthermore, PGK1 might shape an
inflamed tumor microenvironment following the evidence that PGK1 was positively correlated to the abundance levels of
tumor-infiltrating immune cells such as CD8+ T cell and NK cell in breast cancer. GSEA results revealed that PGK1
participated in metabolism and carcinogenic pathways. Conclusion. Collectively, PGK1 was capable of robustly predicting the
prognosis and response to cancer immunotherapy in breast cancer.

1. Introduction

Breast cancer represents the dominating cause of cancer-
related deaths among women [1]. This malignancy is mainly
classified as Normal-like, Luminal A, Luminal B, HER2-
enriched, and Basal-like subtypes. Surgery, systemic treat-
ment such as chemotherapy, hormonal therapy, and tar-
geted therapy, is selected in line with the molecular
features to combat this malignancy [2–4]. However, many
patients cannot benefit from conventional treatment, leading
to undesirable survival outcomes. The heterogeneity of

breast cancer biology presents a profound challenge to per-
sonalized therapy [5]. Immune checkpoint inhibitors (ICIs)
have generated durable clinical remissions in several cancer
types [6–8]. Several clinical trials of ICIs have focused on
the effects of CTLA4 and PD1/PDL1 inhibitors on breast
cancer [6–8]. Nevertheless, these ICIs are less effective as a
single agent in breast cancer, partly due to low infiltration
levels of tumor-infiltrating lymphocytes [9]. Tumor immune
evasion and high heterogeneity contribute to the disappoint-
ing outcomes [10]. Strategies to improve immune response
in breast cancer through combination with chemotherapy
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or targeted therapies are urgently required to prolong the
survival duration of patients [11]. For instance, PD-L1
inhibitor combined with chemotherapy has been approved
for metastatic triple-negative breast cancer [12]. Tumor-
infiltrating lymphocytes participate in modulating chemo-
therapeutic responses and their presence ameliorates sur-
vival outcomes of breast cancer [13]. Hence,
comprehensive assessment of tumor-infiltrating lympho-
cytes and their specific modulators is capable of guiding
prognosis as well as appropriate sequencing of treatment in
breast cancer.

Most of tumor cells exhibit increased glycolysis as well as
reduced mitochondrial metabolism, called as Warburg effect
[14]. This phenomenon has become a promising therapeutic
target against cancer. Phosphoglycerate kinase 1 (PGK1) is
the first ATP-producing enzyme in the glycolytic process
[15]. This enzyme catalyzes the transformation of 1,3-dipho-
sphoglycerate to 3-phosphoglycerate, thereby producing one
molecule of ATP [16]. Increasing evidence suggests the
prominent upregulation of PGK1 as an oncogene in various
cancer types [17–19]. For instance, O-GlcNAcylation of
PGK1 may coordinate glycolysis and TCA cycle to enhance
tumor growth [20]. Hypoxia-mediated acetylation of PAK1
promotes autophagy as well as brain tumorigenesis through
phosphorylation of ATG5 [21]. Nevertheless, the role of
PGK1 in breast cancer is needed to be thoroughly investi-
gated. Herein, we conducted a pan-cancer analysis of the
expression pattern and immunological features of PGK1.
Moreover, PGK1 might shape an inflamed tumor microen-
vironment in breast cancer as well as possesses the potential
to estimate breast cancer prognosis.

2. Materials and Methods

2.1. Analysis of Tumor Immune Estimation Resource
(TIMER) Database. TIMER2.0 database (http://timer
.cistrome.org/) represents an integrated resource that pro-
vides gene expression and immune infiltration analyses
across 33 cancer types [22]. TIMER2.0 web server may
enable users to compare a gene in tumor with normal spec-
imens across diverse cancers on the basis of the expression
profiles of the Cancer Genome Atlas (TCGA) [23]. Also, this
web platform estimates the abundance levels of six immune
infiltrates (including B cell, CD4+ T cell, CD8+ T cell, neu-
trophil, macrophage, and dendritic cell) based on the
TIMER algorithm. Here, the TIMER2.0 web server was
employed for analyzing the differential expression of PGK1
in tumor and normal tissue specimens in diverse cancers.
The associations between mRNA expression of PGK1 and
abundance of six lymphocytes were evaluated across breast
cancer samples through Spearman correlation analysis.
Moreover, this study assessed the correlations of PGK1 with
immune checkpoints of 16 immune cells at the mRNA levels
across different cancers. The mRNA expression of PGK1
was expressed as log2 Transcripts Per Million (TPM) value.

2.2. Prognostic Analysis of PGK1 across Pan-Cancer. Level 3
RNA-seq as well as matched follow-up data for 33 cancer
types was acquired from the TCGA database via Genomic

Data Commons (GDC). Univariate-cox regression analyses
were presented for evaluating the correlations of PGK1
mRNA expression with clinical outcomes of 33 cancer types.
Hazard ratio (HR), 95% confidence interval (CI), and p value
were calculated through forestplot package. Kapan-Meier
curves were conducted for investigating the correlations of
PGK1 with overall survival (OS), disease-free interval
(DFI), disease-free survival (DSS), and progression-free
interval (PFI) across pan-cancer samples with log-rank test
utilizing survival and survminer packages.

2.3. Correlation between PGK1 and Immune Checkpoints.
Spearman correlation between PGK1 and immune check-
points including BTLA, CD200, TNFRSF14, NRP1, LAIR1,
TNFSF4, CD244, LAG3, ICOS, CD40LG, CTLA4, CD48,
CD28, CD200R1, HAVCR2, ADORA2A, CD276, KIR3DL1,
CD80, PDCD1, LGALS9, CD160, TNFSF14, IDO2,
ICOSLG, TMIGD2, VTCN1, IDO1, PDCD1LG2, HHLA2,
TNFSF18, BTNL2, CD70, TNFSF9, TNFRSF8, CD27,
TNFRSF25, VSIR, TNFRSF4, CD40, TNFRSF18, TNFSF15,
TIGIT, CD274, CD86, CD44, and TNFRSF9 was assessed
across pan-cancer.

2.4. Correlation between PGK1 and Tumor Mutation Burden
(TMB) and Microsatellite Instability (MSI). TMB, the whole
number of somatic coding mutations within a tumor, repre-
sents an emerging biomarker of sensitivity to ICIs [24]. MSI,
a molecule fingerprint of defects within the mismatch repair
system, represents another predictor to guide immunother-
apy [25]. Associations of PGK1 expression with TMB and
MSI were analyzed with Spearman correlation analysis
across pan-cancer.

2.5. Expression and Prognostic Significance of PGK1 in Breast
Cancer. PGK1 mRNA expression was compared between
1097 breast cancer and 572 normal tissues in the TCGA
cohort with the Wilcoxon test. In line with the median value
of PGK1 mRNA expression, we clustered breast cancer sub-
jects into high as well as low expression subgroups. For eval-
uating the prognostic implication of PGK1, survival analyses
were presented. Survival difference was estimated between
two groups with log-rank tests. Receiver operator character-
istic (ROC) curve was drawn for investigating the predictive
performance of PGK1 expression. Area under the curve
(AUC) of one-, three-, and five-year survival was deter-
mined. Gene Expression Profiling Interactive Analysis 2
(GEPIA2; http://gepia2.cancer-pku.cn/) web server offers
gene expression analysis in tumor and normal specimens
from the TCGA and Genotype-Tissue Expression (GTEx)
projects [26]. PGK1 expression was compared among differ-
ent stages of breast cancer using the GEPIA2 tool.

2.6. Analysis of Association between PGK1 and Clinical
Phenotype. Sankey diagram was conducted for evaluating
the correlations of PGK1 with clinical phenotypes (patho-
logical T stage (T1-4), pathological N stage (N0-3), patho-
logical M stage (M0 and M1), and survival status (alive
and dead)) of breast cancer patients in TCGA dataset utiliz-
ing ggalluvial package.
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2.7. Estimation of Immune Infiltrates. Immunedeconv pack-
age [27] provides an access to six algorithms to reliably
quantify the abundance of lymphocytes from bulk RNA-
seq profiles, including Microenvironment Cell Populations-
counter (MCP-counter) [28], quanTIseq [29], Cell type
Identification By Estimating Relative Subsets Of RNA Tran-
scripts (CIBERSORT) [30], xCell [31], and TIMER [22].

2.8. Gene Set Enrichment Analyses (GSEA). GSEA provides a
robust way to analyze molecular profiling data. To evaluate
biological pathways involved in PGK1, breast cancer sam-
ples were divided into high and low PGK1 subgroups. After-
ward, enrichment score (ES) of Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways and hallmarks of
cancer was calculated utilizing GSEA software (version
4.1.0) [32]. KEGG gene sets and hallmark gene sets were
curated from Molecular Signature Database (MSigDB; ver-
sion 3.0; http://www.broadinstitute.org/msigdb) that offers
the most extensive gene sets for carrying out GSEA [33]. Sig-
nificance level of ES was estimated with empirical
phenotype-based permutation test. Estimated significance
was corrected through multiple hypothesis testing. The ES
was normalized for each gene set to yield a normalized
enrichment score (NES) and false discovery rate (FDR) that
corresponded to each NES was determined through compar-
ison of the tail of the investigated and null distributions for
the NES.

2.9. Statistical Analysis. All analysis was presented with R
software (version 4.0.3; R Foundation for Statistical Com-
puting, Vienna, Austria). Qualitative variables were analyzed
utilizing Fisher’s exact test. Quantitative variables were ana-
lyzed with Student’s t or Wilcoxon tests. Pearson or Spear-
man correlation analyses were utilized for evaluating the
correlation between two variables. p < 0:05 was indicative
of statistical significance.

3. Results

3.1. Pan-Cancer Analysis of Expression and Prognostic
Impacts of PGK1. Through the TIMER2.0 web server, this
study presented the differential expression of PGK1 in nor-
mal and tumor tissue specimens across pan-cancer. We
observed that PGK1 mRNA expression exhibited the prom-
inent upregulation in BLCA, BRCA, CESC, CHOL, COAD,
ESCA, GBM, HNSC, KIRC, LIHC, LUAD, LUSC, READ,
STAD, and UCEC tissues in comparison to controls
(Figure 1(a)). Also, its expression was markedly downregu-
lated in KICH, PRAD, and THCA tissues than normal tis-
sues. Higher mRNA expression of PGK1 was found in
SKCM metastasis than primary SKCM. Univariate-cox
regression analysis uncovered that PGK1 upregulation pre-
dicted undesirable survival outcomes of patients with BRCA
(p < 0:0001; HR: 1.00222 (1.00151-1.00294)), CESC
(p = 1e − 04; HR: 1.00152 (1.00077-1.00227)), HNSC
(p < 0:0001; HR: 1.00117 (1.00063-1.00172)), KICH
(p = 1e − 04; HR: 1.00946 (1.00458-1.01436)), LGG
(p = 0:0056; HR: 1.00289 (1.00085-1.00493)), LIHC
(p = 6e − 04; HR: 1.00182 (1.00078-1.00287)), LUAD

(p = 0:0084; HR: 1.00076 (1.00019-1.00132)), PAAD
(p = 0:0069; HR: 1.0018 (1.00049-1.0031)), and SARC
(p = 0:0304; HR: 1.00067 (1.00006-1.00127); Figure 1(b)).
In contrast, PGK1 downregulation was predictive of unfa-
vorable prognosis of KIRC (p = 3e − 04; HR: 0.99895
(0.99838-0.99952)). Through the Survival Map module of
the GEPIA2 web server, we observed that PGK1 was a risk
factor of BRCA, CESC, ESCA, HNSC, LIHC, and SARC
prognosis while PGK1 was a protective factor of KIRC prog-
nosis (Figure 1(c)). We also investigated the influence of
PGK1 expression on OS, PFI, DSS, and DFI across pan-
cancer. High PGK1 expression markedly predicted poorer
OS of BRCA (p < 0:0001), CESC (p < 0:0001), HNSC
(p < 0:0001), KICH (p < 0:0001), LGG (p = 0:0027), LIHC
(p < 0:0001), LUAD (p < 0:0001), PAAD (p = 0:00026),
and SARC (p < 0:0001) but its upregulation was in relation
to favorable OS of KIRC (p < 0:0001; Figure 2(a)). As
shown in Figure 2(b), PGK1 upregulation was indicative
of unfavorable PFI for ACC (p = 0:0018), BRCA
(p < 0:0001), CESC (p = 0:00034), HNSC (p < 0:0001),
KICH (p < 0:0001), MESO (p = 0:00078), PAAD
(p = 0:00096), and PRAD (p = 4e − 04) but its upregulation
indicated favorable PFI for patients with KIRC (p < 0:0001)
and STAD (p = 0:0037). In Figure 2(c), we observed that high
PGK1 expression was in relation to undesirable DSS of
patients with BRCA (p < 0:0001), CESC (p < 0:0001), HNSC
(p < 0:0001), KICH (p < 0:0001), LGG (p = 0:011), LIHC
(p = 0:012), and PAAD (p = 0:00031). In contrast, low
PGK1 expression contributed to undesirable DSS for KIRC
(p < 0:0001). The differences in DFI were also evaluated
between high and low PGK1 groups. As a result, PGK1
upregulation displayed prominent associations with poorer
DFI for BRCA (p = 0:0022), CESC (p = 0:023), PAAD
(p = 0:0022), and SARC (p = 0:0081; Figure 2(d)). Collec-
tively, PGK1 exerted a carcinogenic role in most of cancers,
especially breast cancer.

3.2. Association between PGK1 and Immune Checkpoint,
TMB, and MSI in Pan-Cancer. Association between PGK1
expression and immune checkpoints was analyzed at the
mRNA levels across pan-cancer. In Figure 3(a), we observed
that PGK1 was prominently associated with immune check-
points across pan-cancer. Especially, PGK1 exhibited signif-
icant correlations to immune checkpoints including
TNFRSF14, TNFSF4, CD40LG, HAVCR2, CD276, CD80,
CD160, PDCD1LG2, TNFSF9, CD27, TNFRSF25, VSIR,
TNFRSF4, TNFRSF18, CD274, CD86, and TNFRSF9. Fur-
thermore, we found that PGK1 displayed significant correla-
tions to TMB in BRCA (p = 2:2e − 19), HNSC (p = 0:025),
LUAD (p = 0:024), PAAD (p = 1:4e − 06), SARC
(p = 8:1e − 05), SKCM (p = 1:8e − 06), STAD (2:6e − 12),
THCA (p = 2:9e − 07), THYM (p = 0:019), and UCEC
(p = 1:4e − 05; Figure 3(b)). Association of PGK1 with MSI
was then evaluated in different cancer types. In Figure 3(c),
our results demonstrated the significant correlations
between PGK1 expression and MSI in CESC (p = 0:021),
COAD (p = 0:0044), KIRC (p = 0:024), LUAD (p = 0:00014),
LUSC (p = 0:0011), PRAD (p = 0:0013), SARC (p = 0:00014),
STAD (p = 0:04), TGCT (p = 0:018), THCA (p = 0:014), and
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Figure 1: Continued.
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UCEC (p = 4:8e − 06). Collectively, PGK1 could be in relation
to immunotherapeutic responses.

3.3. PGK1 Acts as a Robust Risk Factor of Breast Cancer
Outcomes. In the TCGA cohort, we compared the mRNA
expression of PGK1 in normal (n = 572) and breast cancer
(n = 1097) tissues. As a result, PGK1 expression exhibited
marked upregulation in breast cancer in comparison to nor-
mal specimens (p = 2e − 184; Figure 4(a)). In line with the
median value of PGK1 expression, we separated breast can-
cer subjects into two subgroups (Figure 4(b)). We observed
that more patients had alive status in low expression sub-
group. Survival difference between two groups was com-
pared with log-rank test. As depicted in Figure 4(c),
patients with high PGK1 expression (median time = 9:4)
were indicative of unfavorable clinical outcomes than those
with low PGK1 expression (median time = 11:6; p = 3:85e
− 05). ROC curves were conducted for assessing the perfor-
mance of PGK1 in prediction of breast cancer prognosis
(Figure 4(d)). AUC values under 1-, 3-, and 5-year survival
were 0.716, 0.682, and 0.678, indicative of PGK1 as a robust
predictor. Using the GEPIA2 tool, we evaluated the expres-
sion of PGK1 mRNA across distinct pathological stages
(stage I-X) across breast cancer patients. Our results showed
that PGK1 displayed the highest mRNA expression in stage
IV (p = 0:0305; Figure 4(e)). Taken together, PGK1 may act
as a reliable risk factor of breast cancer prognosis.

3.4. Association between PGK1 and Clinical Phenotype of
Breast Cancer. Herein, we evaluated the significant associa-
tions between PGK1 and clinical phenotypes (pathological
T stage (T1-4), pathological N stage (N0-3), pathological
M stage (M0 and M1), and survival status (alive and dead))
of breast cancer patients in TCGA dataset, as shown in San-
key diagram (Figure 5).

3.5. Association between PGK1 and Immune Infiltrates.
Immunedeconv method was used for analyzing the abun-
dance levels of immune cells subpopulations across breast
cancer samples in the TCGA cohort, including MCP-coun-
ter, quanTIseq, CIBERSORT, xCell, and TIMER algorithms.
The associations between PGK1 and immune cell subpopu-
lations were estimated via Spearman correlation analysis.

For the MCP-counter algorithm, we observed that PGK1
expression was positively associated with T cell, myeloid
dendritic cell, endothelial cell, and B cell but negatively asso-
ciated with monocyte and macrophage (Figure 6(a)). For the
quanTIseq algorithm, PGK1 expression displayed positive
correlation to T cell CD4+, NK cell, and macrophage M2
but exhibited negative correlation to T cell regulatory (Treg),
neutrophil, and macrophage M1 (Figure 6(b)). For the
TIMER algorithm, PGK1 expression displayed a positive
association with T cell CD4+ but negative associations with
neutrophil, myeloid dendritic cell, and macrophage
(Figure 6(c)). For the CIBERSORT algorithm, PGK1 was
positively correlated to Treg, T cell gamma delta, T cell
follicular helper, T cell CD8+, NK cell activated, mono-
cyte, mast cell activated, B cell plasma, B cell native, and
B cell memory (Figure 6(d)). In contrast, there were nega-
tive correlations between PGK1 expression and T cell CD4
+ memory activated, neutrophil, NK cell resting, macro-
phage M1, and macrophage M0. For the xCell algorithm,
PGK1 expression had positive correlations to stromal
score, microenvironment score, T cell NK, T cell CD4+
naïve, T cell CD4+ effector memory, T cell CD4+ central
memory, macrophage M2, hematopoietic stem cell, endo-
thelial cell, common myeloid progenitor, and B cell mem-
ory but had negative correlations to T cell CD4+ memory,
T cell CD4+ Th2, plasmacytoid dendritic cell, NK cell,
monocyte, macrophage M1, macrophage, and common
lymphoid progenitor (Figure 6(e)). Collectively, PGK1
was in relation to an inflamed microenvironment in breast
cancer.

3.6. Biological Pathways and Hallmarks of Cancer Involved
in PGK1. Through GSEA method, we investigated biological
pathways and hallmarks of cancer involved in PGK1
through comparison of up- and downregulated PGK1
groups across breast cancer samples from the TCGA dataset.
Our results showed that pyrimidine metabolism (ES = −0:67,
NES = −2:4, p < 0:0001, FDR = 0:001), cell cycle (ES = −0:72,
NES = −2:3, p < 0:0001, FDR = 0:0023), and oocyte meiosis
(ES = −0:62, NES = −2:2, p < 0:0001, FDR = 0:0024) path-
ways were negatively correlated to PGK1 expression
(Figure 7(a)). Meanwhile, taste transduction (ES = 0:46,
NES = 1:4, p = 0:11, FDR = 0:7), arachidonic acid

(PGK1)

BRCA
BLCA

ACC
CESC

CHOL
DLBC

ESC
A

GBM
HNSC

KIC
H
KIR

C
COAD

KIR
P
LAML

LGG
LIH

C
LUAD

LUSC
MESO OV

PAAD
PCPG

PRAD
READ

SA
RC

SK
CM

UVM
UCS –0.50

–0.25
0.00
0.25
0.50

Log10 (HR)

(c)

Figure 1: Expression and prognostic impacts of PGK1 across pan-cancer. (a) Abnormal expression of PGK1 mRNA between control and
cancer tissue specimens based on the TIMER2.0 web server. The red, blue, and purple bubbles separately meant tumor, normal, and
metastatic specimens. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001. (b) Univariate-cox regression analysis for evaluating the correlation between
PGK1 mRNA expression and survival outcomes of cancer patients. Forest plots showed the hazard ratio (HR), 95% confidence interval
(CI), and p of PGK1 in 33 cancer types. (c) Prognostic impacts of PGK1 mRNA expression across pan-cancer utilizing the Survival Map
module of the GEPIA2 web server. The heat map showed the HRs in logarithmic scale (log10) of PGK1. The red and blue blocks
separately denoted increased and reduced risks. The rectangle with frame meant the significantly undesirable and desirable clinical
outcomes according to prognostic analysis.
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Figure 2: Continued.
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Figure 2: Impact of PGK1 expression on overall survival (OS), progression-free interval (PFI), disease-specific survival (DSS), and disease-
free interval (DFI) across pan-cancer. (a) Kaplan-Meier curve depicting the marked difference in OS between up- and downregulated PGK1
samples in diverse cancer types. (b) Kaplan-Meier curve demonstrating the marked difference in PFI between up- and downregulated PGK1
samples in different cancer types. (c) Kaplan-Meier curve depicting the marked difference in DSS between up- and downregulated PGK1
samples in diverse cancer types. (d) Kaplan-Meier curve depicting the marked difference in DFI between up- and downregulated PGK1
samples in diverse cancer types. p value was determined with log-rank test.
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Figure 3: Continued.
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metabolism (ES = 0:4, NES = 1:5, p = 0:058, FDR = 0:8),
alpha linolenic acid metabolism (ES = 0:53, NES = 1:6, p =
0:035, FDR = 0:59), and linoleic acid metabolism
(ES = 0:51, NES = 1:6, p = 0:032, FDR = 1) displayed positive
correlations to PGK1 expression (Figure 7(b)). In
Figures 7(c) and 7(d), PGK1 expression exhibited associa-
tions with hallmarks of cancer including glycolysis
(ES = −0:65, NES = −2:4, p < 0:0001, FDR < 0:0001),
mTORC1 signaling (ES = −0:72, NES = −2:3, p < 0:0001,
FDR < 0:0001), hypoxia (ES = −0:57, NES = −2:2, p < 0:0001,
FDR < 0:0001), Hedgehog signaling (ES = −0:23, NES = −
0:77, p = 0:75, FDR = 0:7), Wnt β-catenin signaling
(ES = −0:22, NES = −0:72, p = 0:8, FDR = 0:75), myogenesis
(ES = 0:17, NES = 0:69, p = 0:9, FDR = 0:8), and KRAS sig-
naling (ES = 0:24, NES = 1:1, p = 0:35, FDR = 0:65).

4. Discussion

In this study, we elucidated that PGK1 shaped an inflamed
tumor microenvironment in line with the evidence that
PGK1 displayed positive correlations to the immunological
status of tumor microenvironment in breast cancer. Further-
more, this study proposed that PGK1 deregulation was capa-
ble of robustly predicting survival outcomes as well as
immunotherapeutic responses.

Our pan-cancer analysis uncovered that PGK1 upregula-
tion contributed to undesirable clinical outcomes for most of

cancer types. ROC curves confirmed the favorable perfor-
mance in prediction of breast cancer prognosis. This demon-
strated that PGK1 possessed the potential as a reliable
prognostic predictor of breast cancer. Patients with high
TMB can benefit from immunotherapeutic agents. Prelimi-
nary evidence suggests that hypermutation of breast cancer
is more likely to benefit from anti-PD-1 therapy [34]. Fur-
thermore, evidence demonstrates prominent response of
cancers with MSI to anti-PD-1 therapy for patients who
failed conventional treatment [35]. Herein, we observed the
positive associations of PGK1 with TMB and MSI across
pan-cancer, especially breast cancer, indicative of the poten-
tial of PGK1 as an immune response predictor. Through six
algorithms including MCP-counter, quanTIseq, CIBER-
SORT, xCell, and TIMER, we estimated the associations of
PGK1 with the infiltration levels of lymphocytes across
breast cancer. We observed that PGK1 displayed positive
correlations to CD8+ T cells and activated NK cells as well
as was prominently associated with immune checkpoints.
This indicated that PGK1 might shape an inflamed pheno-
type of tumor microenvironment in breast cancer.

Our GSEA identified that PGK1 was in relation to
KEGG pathways including pyrimidine metabolism, cell
cycle, oocyte meiosis pathways, taste transduction, arachi-
donic acid metabolism, alpha-linolenic acid metabolism,
and linoleic acid metabolism. Furthermore, we found that
PGK1 displayed correlations to hallmarks of cancer
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Figure 3: Analysis of association between PGK1 and immune checkpoints, TMB, and MSI across pan-cancer. (a) Heat map for the
correlation between PGK1 and immune checkpoints across different cancer types with Pearson correlation analysis. Blue meant negative
correlation while red meant positive correlation. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001. (b) Association between PGK1 expression and tumor
mutation burden (TMB) across pan-cancer utilizing Spearman correlation analysis. (c) Association between PGK1 expression and
microsatellite instability (MSI) across pan-cancer with Spearman correlation analysis.
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Figure 4: Continued.
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including glycolysis, mTORC1 signaling, hypoxia, Hedgehog
signaling, Wnt β-catenin signaling, myogenesis, and KRAS
signaling. Previous experiments have confirmed the regula-
tory roles of PGK1 on above pathways. For instance, PGK1
inhibition could counteract chemoresistance to intraperito-

neal 5-fluorouracil in gastric cancer [36]. Nuclear PGK1
reduces ADP-dependent suppression of CDC7 to enhance
DNA replication [37]. PGK1-coupled HSP90 may stabilize
GSK3β expression to modulate the stemness features in
breast cancer [38].
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Figure 4: PGK1 acts as a robust risk factor of breast cancer prognosis. (a) Comparison of PGK1 expression in normal (n = 572) and breast
cancer (n = 1097) tissues from TCGA cohort. The significant level was estimated with Wilcoxon rank-sum test. (b) Distribution of PGK1
expression (upper and bottom) and survival status (middle) in breast cancer patients from TCGA cohort. Breast cancer subjects were
clustered into up- (red) and downregulated (blue) PGK1 subgroups. Red dots meant alive status while blue dots meant dead status. (c)
Kaplan-Meier curves for estimating the survival difference in patients with high and low expression of PGK1. p value was calculated with
log-rank test. (d) Time-independent ROC curve under one-, three-, and five-year survival for PGK1 expression across breast cancer
patients. (e) Comparison of PGK1 expression across distinct pathological staging (stage I-X) using the GEPIA2 tool.
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Figure 6: Integrated analysis of associations between PGK1 and immune cell subpopulations in breast cancer specimens from TCGA
dataset. (a) Heat map depicting the correlation of PGK1 with the abundance levels of lymphocyte subpopulations through MCP-counter
algorithm. (b) Heat map for the correlation of PGK1 with the abundance levels of lymphocyte subpopulations with quanTIseq
algorithm. (c) Heat map for the associations between PGK1 expression and the abundance levels of lymphocyte subpopulations using
TIMER algorithm. (d) Heat map showing the associations between PGK1 expression and the abundance levels of immune cell
subpopulations utilizing CIBERSORT algorithm. (e) Heat map demonstrating the associations between PGK1 expression and the
abundance levels of lymphocyte subpopulations with xCell algorithm. Red meant positive correlation and blue meant negative
correlation. The darker the color, the stronger the correlation. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.
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Figure 7: GSEA identifies biological pathways and hallmarks of cancer involved in PGK1. (a) and (b) KEGG pathways involved in PGK1
through comparison of up- and downregulated PGK1 groups across breast cancer samples from TCGA dataset. (c) and (d) Hallmarks of
cancer involved in PGK1 via comparison of up- and downregulated PGK1 groups across breast cancer samples from TCGA dataset. The
enrichment score (ES) reflected the degree to which the indicated gene set was overrepresented at the extreme (top or bottom) of the
whole ordered gene list.
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Nevertheless, there are limitations in our study. First,
we cannot identify the optimal cut-off of PGK1 among
breast cancer patients. Hence, the median mRNA expres-
sion of PGK1 was chosen as the cut-off. Second, in-
depth experiments will be presented for determining the
expression profiling of PGK1 in breast cancer cells as well
as tumor-infiltrating immune cells. Third, the predictive
performance of PGK1 should be externally validated in a
larger cohort. Fourth, in vitro and in vivo experiments will
be performed to explore the potential function of PGK1
dysregulation in the proliferation, migration, and invasion
of breast cancer.

5. Conclusion

This study suggested that PGK1 may act as a suitable candi-
date for the prediction of breast cancer prognosis. Moreover,
our findings indicated that PGK1 shaped an inflamed tumor
microenvironment in breast cancer as well as could predict
the clinical response to immunotherapy.
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