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Background and Aim. This exploratory study explored single-stranded DNA (ssDNA) for hepatocellular carcinoma (HCC)
diagnosis and prognosis. Methods. This prospective study enrolled 102 patients with newly diagnosed HCC, 21 with cirrhosis,
20 with chronic hepatitis, 284 with nonliver diseases, and 45 healthy individuals at the Affiliated Wuxi No. 2 People’s Hospital
of Nanjing Medical University (May-October 2018). ssDNA was extracted using magnetic beads and quantified using the Qubit
ssDNA assay. ssDNA levels were compared among the disease groups and in HCC vs. non-HCC. Receiver operating
characteristic (ROC) curves were used to determine the diagnostic value of ssDNA. In patients with resectable HCC, ssDNA
and α-fetoprotein (AFP) levels were measured during follow-up and compared with HCC recurrence detected by imaging.
Results. The median ssDNA levels were higher in HCC than in healthy individuals, cirrhosis, and chronic hepatitis (median,
23.20 vs. 9.36, 9.64, and 9.76 ng/μL, respectively, P < 0:001). ssDNA levels in HCC were higher than those in cirrhosis and
chronic hepatitis (both P < 0:001); there were no differences in ssDNA levels between healthy controls and patients with
cirrhosis (P = 0:15) or chronic liver disease (P = 0:39). The area under the curve of ssDNA for HCC diagnosis was 0.909 (95%
CI: 0.879-0.933). The ssDNA levels decreased by 3.19-fold (P < 0:001) after HCC radical resection. In six patients, the ssDNA
levels increased about 3-6 months before a recurrence was detected by AFP and imaging. Conclusions. ssDNA might be a
noninvasive indicator for HCC diagnosis and prognosis. ssDNA could eventually be complementary to AFP levels and imaging,
but confirmatory studies are necessary.

1. Introduction

Hepatocellular carcinoma (HCC) is the fifth most common
cancer and the third more important cause of cancer-
related mortality worldwide [1]. A major etiology of HCC
is chronic hepatitis B and C, which are endemic in countries

like China, resulting in a high incidence of HCC [2], with 40.0
per 100,000 males and 15.3 per 100,000 females [3]. HCC
develops due to hepatic injury and/or inflammation that leads
to fibrosis and cirrhosis, abnormal hepatocyte regeneration,
and the formation of preneoplastic lesions [4, 5]. Otherwise,
the specific pathogenesis depends upon the specific etiology.
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Hepatotropic viruses cause inflammation, cell injury,
increased cell turnover, fibrosis, and cirrhosis [5]. Alcohol-
related HCC is related to oxidative stress due to ethanol
metabolism and inflammation [5]. Nonalcoholic steatohepati-
tis (NASH) is associated with oxidative stress, insulin resis-
tance, adipocytokine functional disorder, and cell hyperplasia
leading to carcinogenesis [5].

Alpha-fetoprotein (AFP) is a biomarker for HCC diagno-
sis and monitoring, and increased AFP levels can be detected
in 39%-65% of HCC patients, but many patients with HCC
have low AFP levels (i.e., AFP < 20ng/mL) [6]. Therefore,
there is a need for complementary biomarkers. The combina-
tion of AFP and other traditional tumor markers (TTMs) for
the diagnosis of HCC is a possible strategy [7–9]. New bio-
markers such as Golgi protein 73 (GP73) [10], glypican-3
(GPC-3) [11], and microRNAs [12–14] are under investiga-
tion, but low sensitivity and/or specificity for HCC limit their
application in clinical practice [10–14].

Cell-free DNA (cfDNA) mostly comes from apoptotic
and necrotic cells and contains the complete genetic informa-
tion of their tissue of origin. cfDNA has been suggested as a
dynamic real-time marker of HCC burden in patients with
various treatments and as a possible means to detect tumor
mutations [15]. Studies on cfDNA in HCC diagnosis focused
on detecting tumor mutation and methylation information
using various techniques, but these techniques are expensive,
and the results are conflicting [16–20]. Previous studies sug-
gested that the quantitative measurement of cfDNA might
have diagnostic and prognostic values for HCC [21, 22],
but the quantitative analysis of cfDNA does not provide
information about the biological and molecular characteris-
tics of HCC. Although the usefulness of cfDNA quantitative
analysis in HCC is controversial, it has advantages such as
being simple, fast, and inexpensive [23, 24].

When considering the high proportion of AFP-negative
HCC [6] and the association between cfDNA and HCC [21,
22], cfDNA could be used to detect HCC among AFP-
negative patients. cfDNA consists of double-stranded DNA
(dsDNA) and single-stranded DNA (ssDNA). Previous stud-
ies on the quantitative changes of cfDNA focused on dsDNA.
ssDNA is an earlier marker of replication stress than dsDNA
[25–27]. In cells with high replication stress and uncontrolled
replication (such as cancer cells), stalling or collapse of the
replication fork due to uncoordinated enzymes leads to
ssDNA formation and release by apoptotic cells [25, 26]. In
addition, the plasma levels of ssDNA are much higher than
that of dsDNA [23, 24].

Therefore, it could be hypothesized that the plasma
ssDNA is a marker of HCC. This exploratory study is aimed
at exploring the diagnostic and prognostic values of ssDNA
for HCC.

2. Materials and Methods

2.1. Study Design and Patients. This prospective exploratory
study enrolled patients with newly diagnosed HCC (n = 102
), cirrhosis (n = 21), chronic hepatitis (n = 20), and nonliver
conditions (n = 284) at the Affiliated Wuxi No. 2 People’s
Hospital of Nanjing Medical University between May and

October 2018. They were identified based on symptoms,
imaging findings, biopsy, TTMs including AFP and cancer
antigen (CA) 12-5, and other serum markers [28–30]. A
given patient was included only once at its first admission.
The study was approved by the ethics committee of the Affil-
iated Wuxi No. 2 People’s Hospital of Nanjing Medical Uni-
versity (#Y-25). The participants provided written informed
consent before any study procedure.

Healthy individuals (n = 45) were enrolled when they vis-
ited the hospital for a routine checkup. The inclusion criteria
were no tumor and liver markers above the upper limit of
normal and normal physical examination (computed tomog-
raphy (CT), upper gastrointestinal endoscopy, and abdomi-
nal ultrasound). The exclusion criteria were (1) <30 years
of age, (2) previous therapies (major surgery, chemotherapy,
endocrine therapy, or chronic treatment with any drug), (3)
benign tumors, (4) chronic inflammatory disease (diabetes,
cardiovascular diseases, or rheumatoid diseases), or (5) any
autoimmune disease.

For the analysis of the ssDNA levels in liver conditions,
the participants were grouped as HCC (n = 102), cirrhosis
(n = 21), chronic hepatitis (n = 20), and healthy individuals
(n = 45). For the diagnostic value analysis, the participants
were grouped as the HCC (n = 102) and non-HCC (n = 325
) groups. Resectable HCC was defined as any HCC that was
judged to be resectable by surgeons specialized in oncological
liver surgery according to the Child-Pugh classification [28,
30]. AFP-positive HCC was defined as patients with AFP >
20ng/mL [31].

2.2. Blood Sampling. Fasting peripheral blood was sampled
before any treatment using 4mL EDTA vacuum tubes (BD
Biosciences, Franklin Lakes, NJ, USA) and 4mL gel procoa-
gulation vacuum tubes (BD Biosciences, Franklin Lakes, NJ,
USA). For patients with resectable HCC, blood was sampled
on days 3, 14, 30, and 60 after surgery. The resected specimen
was examined. The clinical or pathological staging of HCC
was performed according to the tumor node metastasis
(TNM) classification [32]. The tumor size was according to
the Response Evaluation Criteria in Solid Tumor (RECIST)
1.1 [33]. Abdomen and pelvic CT was performed 60 days
after surgery (before chemotherapy) and as the baseline for
RECIST assessment.

For patients with HCC and ssDNA levels > 12:36ng/μL
after radical resection, CT scan and blood sampling were per-
formed every 3 months. Disease response was evaluated
according to RECIST version 1.1: complete response (CR),
partial response (PR), progressive disease (PD), and stable
disease (SD).

2.3. ssDNA Quantification. The blood samples were proc-
essed within 1 h of the drawing. The plasma was obtained
by centrifugation at 1900 × g for 10min. The plasma was cen-
trifuged again at 16,000 × g for 10min. The collected plasma
was stored at -80°C.

cfDNA extraction was performed using the Cell-free
DNA Extraction Kit (Yuan Biotechnology, Jiangsu, China),
based on the magnetic bead method and according to the
manufacturer’s instructions, within 2 h of sample thawing.

2 Disease Markers



Briefly, 1mL of lysis adsorbent and 12.5μL of protease K
were added to 0.5mL of plasma and centrifuged at
1500 rpm and 60°C for 10min. Then, 10μL of magnetic
beads was added and centrifuged at 1500 rpm at room tem-
perature for 10min. The magnetic beads were captured on
a magnetic frame. The cfDNA was eluted with 25μL of elu-
tion buffer B and stored at -20°C. Pooled plasma was used
as quality control to monitor the changes in extraction
efficiency.

The ssDNA levels were measured using 5μL of each sam-
ple and the Qubit ssDNA Assay Kit (Life Technologies,
Carlsbad, CA, USA), according to the manufacturer’s
instructions. The quantification of ssDNA was performed at
the 1μL mode using the Qubit 3.0 Fluorometer (Life Tech-
nologies, Carlsbad, CA, USA). Two replicates were per-

formed for each sample. The coefficient of variation of the
ssDNA concentration in the quality control had to be <5%.

2.4. Serum AFP, CA19-9, CA12-5, and CEA. The serum AFP,
CA19-9, CA12-5, and carcinoembryonic antigen (CEA)
levels were determined within 2 h using commercial test kits
(Roche Diagnostics, Basel, Switzerland) on a Cobas e601
Analyzer (Roche Diagnostics, Basel, Switzerland), with an
upper limit of normal of 9 ng/mL, 35U/mL, 35U/mL, and
5ng/mL, respectively.

2.5. Statistical Analysis. The characteristics of the patients
were presented according to the cut-off points of the
BCLC classification [34]. The continuous variables were
analyzed using the Mann–Whitney U-test or the

Table 1: Relationship between ssDNA levels and clinical characteristics of 102 patients with HCC.

Characteristics n (%) ssDNA levels (ng/μL), median (IQR) P

All 102 (100) 23.20 (16.86-44.40)

Age (years)

≤60 33 (32.4) 21.20 (15.75-58.60)

60+ 69 (67.6) 23.80 (18.05-39.84) 0.99a

Sex

Male 77 (75.5) 23.80 (17.30-51.69)

Female 25 (24.5) 21.20 (15.75-37.87) 0.42a

AFP level

AFP-negative HCC 61 (59.8) 20.20 (15.88-50.33)

AFP > 20 ng/mL 41 (40.2) 31.50 (18.69-37.58) 0.33a

Cirrhosis

Cirrhosis-negative HCC 47 (46.1) 26.64 (16.34-52.35)

Cirrhosis-positive HCC 55 (43.9) 21.46 (18.02-40.91) 0.64a

Tumor size (mm) (sum of all tumors)

≤20 30 (29.4) 19.60 (15.20-48.60)

20-50 35 (34.3) 19.20 (15.83-47.55)

≥50 37 (36.3) 30.80 (20.07-38.39) 0.13b

Tumor stage (TNM)

I 37 (36.3) 18.93 (15.98-34.70)

II 42 (41.2) 22.63 (16.86-49.80)

III-IV 23 (22.6) 34.80 (22.25-54.58) 0.02b

Resected HCC

Yes 62 (60.8) 19.70 (15.80-37.80)

No 40 (39.2) 28.50 (19.34-54.05) 0.02a

Lymph node metastasis

Yes 13 (12.8) 48.60 (19.65-60.60)

No 89 (87.2) 21.20 (16.85-38.39) 0.09a

Distant metastasis

Yes 9 (8.8) 53.20 (25.85-96.00)

No 93 (91.2) 21.20 (16.65-39.84) 0.04a

HBV infection

HBV+ 76 (74.5) 21.00 (16.49-44.40)

HBV- 26 (25.5) 32.70 (18.18-48.60) 0.36a

Note: IQR: interquartile range. aComparison between the two groups was analyzed using the Mann–Whitney test; bcomparison among the multiple groups was
analyzed using the Kruskal-Wallis test.
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Kruskal-Wallis test. Paired continuous variables were ana-
lyzed using the Wilcoxon test. Categorical variables were
analyzed using the chi-squared test or the chi-squared test
with correction for continuity. A receiver operating char-
acteristic (ROC) curve analysis was used to analyze the

diagnostic value of ssDNA. The value with the largest
Youden index was selected as the optimal cut-off value.
A value greater than or equal to the cut-off value was
regarded as positive, and smaller values were regarded as
negative. The relationships between the ssDNA levels and

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎
⁎⁎

⁎

⁎⁎

⁎⁎
⁎⁎

600
400
200

40
ss

D
N

A
 co

nc
en

tr
at

io
n 

(n
g/
μ

L)

30

20

10

0

Autoim
mune d

ise
ase

Diab
ete

s

Head
 an

d neck
 tu

mor

Gast
roduoden

al t
umor

Colorec
tal

 tu
mor

Coronary
 hear

t d
ise

ase

Heal
thy i

ndivi
duals

Cirr
hosis

Esophage
al t

umor

Chronic h
epati

tis

Gen
ito

urin
ary

 sy
ste

m tu
mor

Other 
tumors

Lung c
an

cer

Pan
cre

ati
c c

an
cer

HCC

Gyn
eco

logic
 oncology

Figure 1: Comparison of single-stranded DNA (ssDNA) levels among patients with hepatocellular carcinoma (HCC), chronic liver diseases,
nonliver conditions, and healthy individuals. The values (medians) are sorted from low to high. ∗P < 0:05 vs. HCC; ∗∗P < 0:01 vs. HCC.
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Figure 2: Comparison of the positive rate of single-stranded DNA (ssDNA) levels among patients with hepatocellular carcinoma (HCC),
chronic liver diseases, nonliver conditions, and healthy individuals. The values (medians) are sorted from low to high.
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tumor size were analyzed by linear regression. P values <
0.05 were considered statistically significant. The area
under the ROC curve (AUC) was reported using a two-
sided 95% confidence interval (CI). The statistical analysis
was performed using SPSS 16.0 (IBM, Armonk, NY, USA).

3. Results

3.1. Characteristics of the Subjects. Finally, 472 subjects were
enrolled: 61 patients with AFP-negative HCC, 41 patients
with AFP-positive HCC, 21 with cirrhosis, 20 with chronic
hepatitis, 28 with coronary heart disease, 34 with autoim-
mune disease, 20 with diabetes, 53 with lung cancer, 43 with
a colorectal tumor, 30 with a gastroduodenal tumor, 16 with
head and neck tumor, five with genitourinary tumor, 19 with
esophageal tumor, 11 with gynecologic tumor, nine with
pancreatic cancer, and 16 with other tumors; 45 healthy indi-
viduals were also enrolled. Among the 102 patients with
HCC, 37 were stage I, 42 were stage II, and 23 were stages
III-IV. Among the 102 patients, 62 had resectable HCC
(Table 1), 13 (12.8%) had lymph node metastases, nine
(8.8%) had distant metastases, and 76 (74.5%) were hepatitis
B virus- (HBV-) positive.

3.2. ssDNA Levels. As shown in Figures 1 and 2, the levels of
ssDNA were higher in HCC (n = 102) compared with other
diseases (all P < 0:01, except for pancreatic cancer, with P <
0:05). Among the three liver diseases, the ssDNA levels in
HCC were higher than in cirrhosis (n = 21) and chronic hep-
atitis (n = 20) (both P < 0:001). There were no differences in
ssDNA levels between healthy controls (n = 45) and patients
with cirrhosis (n = 102) (P = 0:15) or chronic liver disease
(P = 0:39) (Table 2).

3.3. ssDNA Levels in Patients with HCC. In HCC patients,
there were no differences in ssDNA levels in different ages
(P = 0:99), sex (P = 0:42), AFP-negative/positive HCC
(P = 0:33), and cirrhosis HCC (P = 0:64) subgroups
(Table 1). The ssDNA levels in unresectable HCC were
higher than in resectable HCC (P = 0:02). There were no dif-
ferences in ssDNA levels among subgroups of tumor size
(P = 0:13) and no correlation between ssDNA levels and
HCC size (r = 0:17, P = 0:10) (Supplementary Figure S1A).
There were significant differences in ssDNA levels among

patients with different TNM stages (P = 0:02) (Table 1).
There was a rank correlation between ssDNA levels and
TNM staging (rho = 0:274, 95% CI: 0.084-0.444, P = 0:005).

3.4. Diagnostic Value of ssDNA for HCC. Table 3 and
Figure 3(a) present the diagnostic values of ssDNA in
patients with HCC (n = 102) and non-HCC subjects
(n = 370). The AUC of ssDNA alone for HCC was 0.909
(95% CI: 0.879-0.933), with 95.1% sensitivity and 76.5%
specificity (Table 3). The diagnostic efficiency and positive
rates of ssDNA levels were similar between HCC with AFP
< 20ng/mL and AFP > 20ng/mL and between cirrhosis-
negative and cirrhosis-positive HCC (Supplementary
Table S1 and Supplementary Figure S2). All combinations
of ssDNA with the other TTMs did not significantly
improve the diagnosis value of ssDNA alone for HCC
(Table 3 and Figure 3(b)).

3.5. Diagnostic Value of TTMs in Patients with HCC. Table 3
presents the diagnostic values of the TTMs in patients with
HCC (n = 102) and in non-HCC subjects (n = 370). The
AUC of CA12-5 alone for HCC was 0.742 (95% CI: 0.700-
0.781), with 90.2% sensitivity and 46.2% specificity. The
AUC of AFP alone for HCC was 0.733 (95% CI: 0.691-
0.722), with 56.9% sensitivity and 89.2% specificity. The
AUCs of CA19-9 and CEA alone for HCCwere all lower than
those for CA12-5 and AFP. The sensitivity of combined
TTMs (AFP, CA19-9, CA12-5, and CEA) was 62.8%, with
84.1% specificity, and the AUC was 0.772 (95% CI: 0.732-
0.809). Multiple combinations were tested; all combinations
that included ssDNA had higher AUCs than the combina-
tions not including ssDNA.

3.6. Comparison of the Positive Rates of ssDNA among
Different Diseases. Using ssDNA > 12:36ng/μL as the opti-
mal cut-off value, the positive rate of ssDNA in patients with
HCC (97/102) was significantly higher than that in the non-
HCC subjects (P < 0:001) (Figure 2).

3.7. Changes in ssDNA Levels Pre- and Postradical Surgery in
Patients with HCC. The paired ssDNA results showed that
the ssDNA levels of 62 patients with resectable HCC peaked
at 3 days after surgery and declined along with the decline of
AFP levels (Supplementary Figure S3). The levels of ssDNA
were stable around 60 days after surgery, and the levels
decreased by 3.19-fold on average (P < 0:001) compared
with baseline. According to the optimal cut-off values of
ssDNA (>12.36 ng/μL), the ssDNA levels of 11 patients
with resectable HCC did not return to low levels (i.e.,
<12.36 ng/μL) at 60 days after surgery, and six of those 11
patients were evaluated as CR based on RECIST.

3.8. Relationship between ssDNA Levels and Disease
Prognosis. A long-term follow-up of ssDNA levels in the six
patients with CR mentioned above was performed to identify
the prognosis value of ssDNA for HCC (Supplementary
Table S2). The disease responses were evaluated according
to RECIST 1.1. The line charts were plotted to describe the
changes in ssDNA levels during follow-up. As shown in
Figure 4, the ssDNA levels of the six patients increased at

Table 2: Comparison of ssDNA levels between different liver
diseases and healthy individuals.

Subjects No.
ssDNA (ng/μL),
median (IQR)

P

Healthy individuals 45 9.36 (8.01-10.90)

Cirrhosis 21 9.64 (8.93-11.68) 0.15a

Chronic hepatitis 20 9.76 (8.52-11.28) 0.39a

HCC 102 23.20 (16.86-44.40) <0.001b

IQR: interquartile range. aComparison with healthy individuals was analyzed
using the Mann–Whitney test; bcomparison among the multiple groups was
analyzed using the Kruskal-Wallis test.
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6-12 months of follow-up but before disease progression was
determined by RECIST.

3.9. Differences in ssDNA and dsDNA Levels according to the
Extraction Method. Supplementary Figure S4 shows that the
magnetic bead method yielded a better extraction efficiency
than the QIAmp Circulating Nucleic Acid kit (Qiagen,
Venlo, The Netherlands) (P < 0:01), while there were no
differences for dsDNA between the two methods. In
addition, the AUCs of ssDNA and dsDNA for the diagnosis
of HCC were 0.909 and 0.880, respectively, with 95.1% and
88.2% sensitivity and 76.5% and 79.7% specificity.

4. Discussion

There is a lack of reliable biomarkers for HCC [7–9]. High
plasma levels of ssDNA are a marker of genomic instability.
This exploratory study is aimed at exploring the value of

ssDNA as a marker of HCC diagnosis and prognosis by ana-
lyzing 102 patients with HCC and 370 controls. The results
suggest that ssDNA might be a noninvasive indicator for
HCC diagnosis and prognosis and might complement AFP
and imaging, but studies are needed to confirm and validate
the results. Still, the results suggest that ssDNA could be used
to screen for HCC in patients with suspected HCC but nega-
tive AFP and inconclusive imaging.

The use of cfDNA in tumor diagnosis, treatment, and
prognosis is promising [16–20]. The magnetic bead extrac-
tion of cfDNA yields high efficiency and quality [19–27, 32,
33, 35]. Therefore, in this study, magnetic beads were used
to extract cfDNA. The Qubit ssDNA Assay Kit is not specific
for ssDNA, and it will also detect dsDNA and RNA. There-
fore, a methodological evaluation was performed to verify
the extraction method of cfDNA. The results suggest that
the ssDNA extraction efficiency using magnetic beads could
be about twice that of the QIAmp Circulating Nucleic Acid

Table 3: Diagnostic efficiency of various variables for HCC.

Variable Optimal cut-off value SEN% SPE% AUC 95% CI P

AFP (ng/mL) >4.95 56.86 89.19 0.733 0.691-0.772 <0.001
CA19-9 (U/mL) >38.8 50.98 84.05 0.700 0.656-0.741 <0.001
CA12-5 (U/mL) >10.4 90.20 46.22 0.742 0.700-0.781 <0.001
CEA (ng/mL) >2.57 66.67 54.59 0.595 0.549-0.640 0.002

AFP+CA19-9+CA12-5+CEA >0.1763 62.75 84.05 0.772 0.732-0.809 <0.001
ssDNA (ng/μL) >12.36 95.10 76.49 0.909 0.879-0.933 <0.001
AFP+CA199 >0.1824 64.08 84.28 0.771 0.730-0.808 <0.001
AFP+CA125 >0.1891 66.99 74.53 0.771 0.730-0.808 <0.001
AFP+CEA >0.2010 54.37 81.30 0.710 0.667-0.751 <0.001
CA199+CA125 >0 0.00 100.00 0.500 0.454-0.546 <0.001
CA199+CEA >0.19279 71.84 61.52 0.705 0.662-0.746 <0.001
CA125+CEA >0.20725 47.57 88.89 0.736 0.694-0.775 <0.001
AFP+CA199+CEA >0.185 60.19 86.99 0.777 0.736-0.813 <0.001
AFP+CA199+CA125 >0.17613 66.02 82.11 0.783 0.743-0.819 <0.001
CA199+CA125+CEA >0.18432 59.22 82.38 0.751 0.710-0.790 <0.001
ssDNA+AFP+CA199 >0.16065 87.38 81.30 0.902 0.872-0.927 <0.001
ssDNA+AFP+CA125 >0.1669 85.44 83.47 0.905 0.875-0.930 <0.001
ssDNA+AFP+CEA >0.15144 93.20 78.05 0.907 0.877-0.932 <0.001
ssDNA+CA199+CA125 >0.16608 84.47 82.66 0.900 0.869-0.925 <0.001
ssDNA+CA199+CEA >0.17043 85.44 83.47 0.900 0.869-0.925 <0.001
ssDNA+CA125+CEA >0.17867 83.50 85.91 0.905 0.875-0.930 <0.001
ssDNA+AFP+CA199+CA125 >0.15393 89.32 78.86 0.902 0.872-0.927 <0.001
ssDNA+AFP+CA199+CEA >0.16522 86.41 83.47 0.901 0.871-0.927 <0.001
ssDNA+CA199+CA125+CEA >0.16153 87.38 81.57 0.901 0.870-0.926 <0.001
ssDNA+AFP >0.1448 95.10 76.49 0.911 0.882-0.935 <0.001
ssDNA+CA19-9 >0.1433 95.10 74.59 0.904 0.874-0.929 <0.001
ssDNA+CA12-5 >0.1533 90.20 78.65 0.906 0.876-0.931 <0.001
ssDNA+CEA >0.1529 94.12 78.38 0.909 0.880-0.934 <0.001
ssDNA+AFP+CA19-9+CA12-5+CEA >0.1555 89.22 81.89 0.905 0.875-0.930 <0.001
AFP: alpha-fetoprotein; CA: cancer antigen; CEA: carcinoembryonic antigen; ssDNA: single-stranded DNA; SEN: sensitivity; SPE: specificity; AUC: area under
the curve; CI: confidence interval.
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Figure 3: Receiver operating characteristic (ROC) curve of different markers for HCC diagnosis: α-fetoprotein (AFP), cancer antigen (CA)
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ROC curves of traditional tumor markers (TTMs) (AFP, CA19-9, CA12-5, and CEA) and ssDNA; (b) ROC of ssDNA combined with TTMs.
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Figure 4: Line charts of single-stranded DNA (ssDNA) levels at serial time-points in patients with hepatocellular carcinoma (HCC) who
achieved a complete response (CR) after radical surgery and confirmed with a recurrence during follow-up. SD: stable disease; PD:
progressive disease. α-fetoprotein- (AFP-) positive HCC was defined as patients with AFP > 20 ng/mL.
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kit (Qiagen, Venlo, The Netherlands), and the extracted
nucleic acid was confirmed to be DNA. Since the ssDNA
levels in cfDNA are much higher than dsDNA [23, 24], the
interference of dsDNA on ssDNA determination might not
affect the conclusions, but this will have to be validated in a
specific methodological study.

The blood levels of cfDNA increase significantly when a
patient suffers from tumors, autoimmune diseases, infectious
diseases, stroke, and myocardial infarction [36]. In order to
exclude the influence of those diseases on the diagnostic
value of ssDNA levels for HCC, healthy individuals and
patients with cirrhosis, chronic hepatitis, metabolic diseases,
circulatory system diseases, autoimmune diseases, and vari-
ous tumors other than HCC were used as various control
groups. The results showed that the ssDNA levels were sig-
nificantly higher in patients with HCC than all other diseases,
and the ROC curve had an AUC of 0.909 for HCC diagnosis.
Therefore, ssDNA seems to be a biomarker specific to HCC
without interference from other diseases. Compared with
AFP and TTMs, ssDNA might improve HCC diagnosis.
The combination of ssDNA with any TTMs did not effec-
tively improve the diagnostic value, suggesting that ssDNA
might play a crucial diagnostic role for the diagnosis of
HCC, as supported by a previous study [37]. Furthermore,
the ssDNA levels in HCC were higher than those in chronic
conditions associated with a higher risk of HCC (cirrhosis
and chronic hepatitis) [7]. On the other hand, there were
no differences in the diagnostic value among HCC patients
with vs. without cirrhosis or with vs. without hepatitis, indi-
cating that ssDNA is specific to HCC and has no interfer-
ences from concomitant liver conditions. Although
replication stress is important but controllable in cirrhosis
and chronic hepatitis, HCC has higher replication stress.
Those results suggest that ssDNA had a good differential
diagnosis effect on HCC and that it is possibly independent
of cirrhosis and hepatitis. Indirectly supporting the present
study, Kim et al. [38] showed that the expression of the
ssDNA-binding protein 2 was elevated in patients with
aggressive HCC. Du et al. [39] and Dong et al. [40] showed
that aptamers specific to ssDNA could identify HCC. Never-
theless, the ssDNA cut-off value will have to be determined
using large-scale multicenter studies. Indeed, the optimal
cut-off ssDNA value in this study was >12.36 ng/μL, while
Chen et al. reported an optimal value of >509.98 ng/mL [41].

Interestingly, same as for cirrhosis-associated HCC, there
were no differences in ssDNA levels, ssDNA diagnosis effi-
ciency, and ssDNA positive rates between HCC with AFP
< 20ng/mL vs. >20 ng/mL. These results imply that ssDNA
levels are possibly not related to AFP expression and that
ssDNA could make up for the deficiency of AFP in the diag-
nosis of AFP-negative HCC.

ssDNAmight be of use for the follow-up of patients. This
study showed that, unlike AFP levels, the ssDNA levels began
to decline after reaching a peak 3 days after surgery, which
might reflect a rapid release of circulating tumor DNA after
resection [42]. It is well known that the decline in postoper-
ative AFP levels usually reflects the effectiveness of HCC
treatment [43, 44]. In the present study, the ssDNA levels
were stable over 60 days after surgery. When analyzing six

patients with a complete response and whose ssDNA levels
did not return to low levels (i.e., <12.36 ng/μL) after surgery,
ssDNA peaked at 6-12 months of follow-up, which was later
followed by a confirmation of HCC recurrence by imaging.
These results suggest that ssDNA might be used to indicate
the effectiveness of HCC radical resection and for HCC prog-
nosis before AFP and imaging. It is supported by Kim et al.
[38], who showed that the levels of the ssDNA-binding pro-
tein 2 were associated with survival to HCC. Additional stud-
ies are necessary to confirm those results.

There were several limitations to the present study. First,
since no data were available from the literature when this
study was performed, a convenience sample of the patients
who met the eligibility criteria during the study period had
to be used. Second, the thresholds for the cut-off values were
based on ROC analyses and need to be validated in an inde-
pendent validation cohort. Third, given the modest number
of HCC patients included in this study, the conclusion should
be viewed with caution, especially in the presence of marginal
P values. As this was an exploratory analysis, the subjects for
the ROC analysis were simply grouped as HCC and non-
HCC. Formal comparisons among different types of cancers
and their characteristics will be the focus of future studies.
Fourth, due to the small number of patients with follow-up,
the applications of ssDNA in HCC progression and progno-
sis need further exploration. Fifth, the relationships between
ssDNA and the efficacy of other HCC-related treatments
have not been evaluated. Lastly, the ssDNA levels of unre-
sectable HCC patients were higher than that of resectable
HCC patients, but the present study did not explore whether
ssDNA could be used to determine resectability. These issues
still need further study.

5. Conclusions

This study suggests that ssDNA might be a noninvasive indi-
cator for HCC diagnosis and prognosis. Confirmation of the
results is necessary and the determination of the ssDNA cut-
off value for HCC diagnosis.
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