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Purpose. Studying the pathogenesis of liver cancer is conducive to the exploration of effective diagnostic and prognostic
biomarkers. In this study, we investigated the expression of FOXA1 and its oncogenic role in hepatocellular carcinoma (HCC).
Methods. Transcriptome data of HCC tissues were downloaded from The Cancer Genome Atlas (TCGA) and GEO databases
and analyzed using R software. We also upregulated FOXA1 expression in HCC cells and investigated the role of FOXA1 in
the proliferation and migration of HCC cells through proliferation, colony formation, wound healing, and Transwell assays.
Results. An analysis of the transcriptome data in TCGA database revealed found that FOXA1 is highly expressed in HCC
tissues and that patients with low FOXA1 expression have a better prognosis. High FOXA1 expression was mainly associated
with extracellular matrix organization, cancer, and mitosis. The results of an immunohistochemistry (IHC) assay showed that
FOXA1 protein was highly expressed in HCC tissues, and patients with low FOXA1 expression showed longer disease-specific
survival times and progression-free intervals. The results from quantitative reverse transcription–PCR (RT–qPCR) and
Western blot experiments showed that the expression of FOXA1 in liver cancer cell lines was higher than that in immortalized
human liver cell lines. Proliferation, wound healing, and Transwell experiments showed that FOXA1 enhanced the
proliferation and migration abilities of liver cancer and immortalized human cell lines. Conclusion. Our research suggests that
FOXA1 plays an important role in promoting the recurrence and metastasis of HCC by increasing cell proliferation and
metastasis.

1. Introduction

Liver cancer is a malignant tumor that seriously harms
human health, is the sixth most common malignant tumor
in the world, and ranks third as the cause of cancer deaths
worldwide [1, 2]. Primary liver cancer is mainly classified
into hepatocellular carcinoma (HCC) and cholangiocarci-
noma (CCA), and HCC accounts for approximately 85-
90% of all primary liver cancers. The main etiologies of pri-
mary liver cancer include chronic infection with hepatitis B
virus or hepatitis C virus, aflatoxin exposure, high alcohol
intake, and metabolic diseases [3]. Most patients with liver
cancer are in the middle and late stages of the disease at
the time of diagnosis, and their prognosis is poor. The five-
year survival rate is lower than 5%, which poses a serious

threat to people’s health [4]. Surgical resection, liver transplan-
tation, chemotherapy, radiotherapy, percutaneous ethanol
injection, radiofrequency ablation, and various embolization
and molecular targeted therapies are currently applied in the
clinical treatment of liver cancer, but these treatments are
not ideal, and the mortality rate remains very high [5–7].
Therefore, determining the pathogenesis of HCC and finding
new therapeutic targets are urgent needs.

Transcription factors (TFs) are proteins that coordinate
gene expression in a spatiotemporal manner in specific cell
types. TFs control chromatin and transcription by recognizing
specific DNA sequences and form a complex system that guides
genome expression [8, 9]. A variety of TFs regulate target genes
in a variety of ways. TFs also play crucial roles in tumor growth;
cell differentiation, apoptosis, metastasis, and invasion; and
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drug resistance [10]. Forkhead box A1 (FOXA1) is the first
transcription factor belonging to the forkhead box family of
proteins [11]. The proteins of the forkhead box family have con-
served DNA-binding domains that play important roles in cell
cycle regulation, lipid metabolism, and embryonic development
[12]. FOXA1, also known as HNF3A, MGC33105, and TCF3A,
is composed of 472 amino acid residues, and its forkhead box
domain (FHD) sequence is highly conserved and consists of
110 amino acid residues [13]. FOXA1 plays an important role
in growth and development and in the occurrence andmetasta-
sis of tumors by playing different roles in different tumors [14].
FOXA1 has been widely studied in urinary system tumors and
breast cancer [13]. As a transcription factor, FOXA1 can bind to
androgen receptor (AR) and is highly expressed at the early
stage of prostate cancer. FOXA1 can also regulate the transcrip-
tion and translation of AR genes and increases androgen syn-
thesis, which results in the promotion of prostate cancer cell
metastasis [15]. In addition, FOXA1 expression is correlated
with estrogen receptor (ER) positivity in breast cancer cell lines
[16]. Some studies have found that FOXA1 plays an important
role in the occurrence and development of liver cancer [17], but
few studies have recently focused on this topic.

Through database analyses and experimental verifica-
tion, this study found that FOXA1 is closely related to the
clinicopathological indicators and prognosis of HCC
patients, and this finding provides a theoretical basis for
the clinical application of FOXA1 and suggests that FOXA1
may become a new target for HCC targeted therapy.

2. Materials and Methods

2.1. Datasets and Sample Collection. The GSE121248 and
GSE62232 mRNA expression datasets were downloaded from
the Integrated Gene Expression Omnibus (GEO) (http://www
.ncbi.nlm.nih.gov/geo), a common repository for data storage
[18]. Both datasets were based on the GPL570 platform. The
GSE121248 dataset included 70 liver cancer tissues and 37
normal tissues, and the GSE622322 dataset included 81 HCC
tissues and 10 normal tissues. The limma package in R soft-
ware was used to analyze differentially expressed genes
(DEGs), and the ClusterProfiler package was used to analyze
the Gene Oncology (GO) functions and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways of the DEGs. Using
the STRING database (https://string.db.org), a network of the
interactions of differentially expressed proteins was con-
structed with P < 0:01 set as the boundary value, and hub
genes were identified and visualized using Cytoscape software.

Transcriptome data from 374 samples of HCC tissues
and 50 samples of normal tissues and patients’ clinical infor-
mation were downloaded from The Cancer Genome Atlas
database (https://portal.gdc.cancer.gov/). Using the Survmi-
ner package surv_cutpoint in R software to determine the
cutoff value, the HCC samples were classified into a group
with low FOXA1 expression and a group with highFOXA1
expression based on the FOXA1 expression levels. The
group with low FOXA1 expression included 125 HCC sam-
ples, and the group with high FOXA1 expression included
240 HCC samples. The Survival package was used for prog-
nostic analysis.

HCC tissue chips were purchased from Shanghai Zholi
Biotechnology Co., Ltd. and included 49 pairs of HCC and
paracancerous tissue samples with complete clinicopatholo-
gical information and detailed follow-up information.

2.2. Main Reagents and Main Instruments. Huh7 cells were
grown in DMEM supplemented with 10% fetal bovine
serum (Gibco, USA). A mouse monoclonal antibody
against FOXA1 (ABclonal, USA, Art.:A15278); an anti-
GAPDH mouse monoclonal antibody (ProteinTech, USA,
Art. HRP-60004) and a bicinchoninic acid ðBCAÞTM pro-
tein assay kit (Thermo Fisher, USA) were used in this
study. Both the pCMV6-FOXA1 vector (Art.: RC206045)
and pCMV6-entry vector used in this study were pur-
chased from the OriGene Company in the United States.

A carbon dioxide incubator (Heraeus, Germany), an
electrophoresis tank with a wet transfer electrometer (Bio-
Rad, USA), a chemiluminescence imaging system (GE,
USA), a real-time quantitative PCR kit (ABI, USA), a
PCR instrument (Biometra, Germany), and a real-time
dynamic living cell monitor (Essen, USA) were used in
the experiments.

2.3. RNA Extraction and qRT–PCR Analysis. TRIzol reagent
was used for the extraction of total cell RNA, and a reverse
transcription reagent was used for cDNA synthesis. The
TB Green™ Premix Ex Taq™TliRnaseH Plus kit (TaKaRa,
Japan, RR420A) was used for PCR with GAPDH (upstream,
5′-TCGGAGTCAACGGATTTGGT-3′, and downstream, 5′
-TTCCCGTTCTCAGCCTTGACGAPDH-3′) as an internal
reference. The following primers for FOXA1 were used:
upstream, 5′-CTACTACgCAGACACGCAGG-3′, and
downstream, 5′-TCATGTTGCCGCTCGTAGTC-3′. The
20μL reaction system was subjected to the following reac-
tion conditions: predenaturation at 95°C for 30 s, 40 cycles
of 95°C for 5 s and 60°C for 34 s, 95°C for 15 s, 60°C for
1min, and 95°C for 15 s. Each experiment was replicated in
three wells. The RT–qPCR results were analyzed by the
2−△△CT method. The experiment was repeated three times.

2.4. Western Blot Analysis. The cells were digested with 0.5%
trypsin-EDTA, centrifuged, precipitated in protein extract
(RIPA lysate : cocktail : PMSF = 100 : 1 : 1), lysed on ice
for 30min, and centrifuged. Total protein was extracted
from the supernatant. A BCA protein quantitative kit was
used for determination of the protein concentration, and a
standard curve was drawn. Samples of 30μg protein per well
were loaded onto electrophoresis gels after mixing and dena-
turation in a metal bath at 100°C for 10min. Electrophoresis
was performed at 80V for 30min and 120V for 1.5 h; the
proteins were transferred to membranes at 250mA for 2 h;
the membranes were blocked with 5% skim milk for 2 h
and incubated overnight with primary antibodies (anti-
FOXA1 mouse monoclonal antibody diluted 1 : 2000 and
anti-GAPDH mouse monoclonal antibody diluted 1 : 4000).
After washing, the membrane was incubated with secondary
antibody (goat anti-rabbit/mouse diluted 1 : 2000 dilution)
for 1 h, exposed and imaged.
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2.5. Proliferation and Colony Formation Assays. Cell lines
carrying no-load and FOXA1-overexpressing plasmids were
evenly seeded in a 96-well plate at 4000 cells/well, with rep-
licates in 5 wells. The cells were incubated overnight in an
incubator at 37°C. The next day, the cells in the two groups
were placed in a live-cell-monitoring instrument for obser-
vation and photographing. Photographs were taken every
12 h to observe the proliferative ability of the two groups of
cells by detecting the degree of cellular convergence. Cell
lines carrying no-load and FOXA1-overexpressing plasmids
were evenly seeded into 6 cm petri dishes at 2000 cells/dish.
The culture was refreshed every 3 days. After 14 days of
incubation, the surviving colonies were fixed with precooled
methanol and stained with 0.5% crystal violet. The colonies
were subsequently counted. Three independent experiments
were performed.

2.6. Wound Healing and Transwell Migration Assay. Cell
lines carrying no-load and FOXA1-overexpressing plasmids
were evenly seeded in a 96-well plate with 3 × 104 cells/well,
and replicates in three wells were included. The cells were
incubated overnight in an incubator at 37°C. On the second
day, the cell monolayers were wounded using a scratch
device, and the medium was replaced with serum-free
medium. The wounded cells were placed in a living cell
monitoring instrument for photography and observation.
Photographs were taken every 12 h to observe the migration
ability of the cells in the two groups by measuring the
changes in the width of the wound. The cells (100,000 cells
per well) were inoculated into a Transwell compartment
containing medium with fetal bovine serum (FBS), and
600μl of medium containing FBS (10%) was then added lat-
erally to the compartment. After culture at 37°C for 16-48 h,
the cells that had migrated to the lower surface of the cham-
ber were fixed and stained with crystal violet. Images of the
cells on the membrane were collected under a microscope.
Different views were randomly selected for counting, the
counts were subjected to statistical analysis, and the average
values were obtained.

2.7. Immunohistochemistry (IHC). A tissue microarray with
49 HCC tissues and adjacent paired tissues was placed in
an oven and baked at 65°C for 4-5 h. The tissue microar-
ray was dewaxed, hydrated with xylene, and then incu-
bated in a 3% H2O2 solution at room temperature for
15min in the dark for the removal of endogenous peroxi-
dase activity. Antigen repair solution was used for antigen
repair, and normal goat serum blocking solution was used
to seal the samples at room temperature for 20min. The
samples were incubated with primary antibody working
solution (anti-FOXA1 mouse monoclonal antibody diluted
1 : 100) overnight at 4°C. The cells were then incubated
with the secondary antibody at room temperature for
20min. The staining intensity of 3,3′-diaminobenzidine
(DAB) was observed under a microscope. Hematoxylin-
stained cells were sealed with neutral resin and observed
under a microscope.

The results were determined as follows: the IHC results
were independently evaluated by 2 pathologists from the

Cancer Hospital, Chinese Academy of Medical Sciences.
Comprehensive scoring was performed based on the per-
centage of positive cells and the cell staining intensity.
The scoring rules used to identify the percentage of positive
cells were as follows: 0 for 0-5% positive cells, 1 for 5-25%
positive cells, 2 for 25-50% positive cells, 3 for 50-75% pos-
itive cells, and 4 for 75-100% positive cells. The scoring
rules for the cell staining intensity were as follows: yellow
(with no brown), 0; light yellow, 1; brownish yellow, 2;
and brown, 3 [19]. The IHC results were then classified into
4 grades as follows: the percentage of positive cells and the
cell staining intensity score were multiplied, and resulting
scores of 0, 1-4, 4-8, and 8-12 were classified into grades
of 0, 1, 2, and 3, respectively. A score of 0 indicated low
protein expression, whereas scores of 1, 2, or 3 indicated
high protein expression.

2.8. Tumor Xenograft Model. NTG mice (female, aged 6
weeks) purchased from Sibafu (Beijing, China) Biotechnol-
ogy Co., Ltd. are a type of mouse with severe combined
immunodeficiency. The mice were randomly divided into
two groups (n = 6 per group). Huh7 cells (2 × 106 per injec-
tion) that were transfected with FOXA1-overexpressing
plasmid and empty plasmid were implanted into the right
flank of the mice via subcutaneous injection. The tumor
volume was measured every 3 days after obvious observa-
tion and calculated using the following formula: volume
= ðlength × width2Þ/2. The tumor growth curve was plot-
ted. After 4 weeks, all the mice were sacrificed under anes-
thesia, and the tumors were removed and weighed. The
animal experiment plan was approved by the Animal
Ethics Committee of Cancer Hospital of Chinese Academy
of Medical Sciences.

2.9. Data Analysis. R software was used to analyze the tran-
scriptome data obtained from the GEO and TCGA data-
bases. The grayscale values from the Western blotting
assay were analyzed using ImageJ 1.8.0 software. SPSS 23.0
and GraphPad Prism 8.0 were used for the statistical analy-
ses. The relationship between FOXA1 expression and clini-
copathological parameters in TCGA database and HCC
tissues was analyzed by the χ2 test. The Kaplan–Meier
method was used to plot the survival curve of HCC patients,
and the log-rank test was performed. The significance level
was set to α = 0:05.

3. Results

3.1. GEO Dataset Screening for Hub Gene Identification. The
GSE121248 and GSE62232 datasets were downloaded from
the GEO database. The limma package in R software was
used to analyze the DEGs in the dataset, and the ClusterPro-
filer package was used for GO function analysis and KEGG
pathway analysis of the DEGs. A total of 3135 and 4106
DEGs were identified in the GSE121248 and GSE62232
datasets, respectively (Figure 1(a)). Among these DEGs,
1713 upregulated genes and 1422 downregulated genes were
identified in the GSE121248 dataset, and 2763 upregulated
genes and 1343 downregulated genes were identified in the
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Figure 1: Identification of DEGs in the GEO dataset. (a) Volcano plot of the DEGs in the GSE121248 and GSE62232 datasets. (b) Cluster
analysis of the DEGs in these two GEO datasets. (c) Venn plots revealed 2271 common DEGs, including 1332 coupregulated genes (left) and
939 codownregulated genes (right).
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GSE62232 dataset. In addition, 2271 common DEGs, includ-
ing 1332 coupregulated genes and 939 codownregulated
genes, were obtained (Figure 1(c)). A cluster analysis of all
the DEGs was performed, and only the first 41 genes with
the most significant differences were selected for visualization
(Figure 1(b)). The GO function analysis of DEGs showed that
the upregulated genes were mainly involved in ATPase activ-
ity, tubulin binding, DNA replication origin binding, and
other related processes, whereas the downregulated genes
were mainly involved in coenzyme binding, heme binding,
monooxygenase activity, and other biological processes
(Figures 2(a) and 2(b)). The KEGG pathway analysis of the
DEGs showed that the upregulated genes were mainly
involved in the cell cycle, DNA replication, P53 signaling
pathway, and other related pathways, whereas the down-
regulated genes were mainly involved in chemical carcino-

genesis, complement and coagulation cascade, retinol
metabolism, and other pathways (Figure 2(c)). A PPI net-
work was constructed using the STRING database and
Cytoscape software (Figure 2(d)), and a total of 10 hub
genes were identified: FOXA1, CCNB1, IGF2BP3, UHRF1,
GPC3, GINS1, FAM83D, CYP39A1, CYP2B6, and DTL. A
literature review [20] revealed that FOXA1 is an essential
TF in liver development; thus, FOXA1 was selected for
further analysis and verification.

3.2. TCGA Bioinformatics Analysis. We utilized the TIMER
database (https://cistrome.shinyapps.io/timer/) to evaluate
the difference in FOXA1 expression among various tumor
types. The gray background indicates that FOXA1 strikingly
differs among cancer types. FOXA1 expression was signifi-
cantly higher in hepatocellular carcinoma (LIHC), lung
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Figure 3: FOXA1 expression in HCC samples in TCGA. (a) The expression of FOXA1 in different cancer species was obtained with the
TIMER database. (b) FOXA1 expression in 374 HCC samples and 50 paracancerous tissue samples from TCGA. (c) FOXA1 expression
in 50 pairs of HCC samples from TCGA.
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adenocarcinoma (LUAD), lung squamous cell carcinoma
(LUSC), and cervical squamous cell carcinoma and cervical
adenocarcinoma (CESC) than in the normal control group
(Figure 3(a)). We obtained 374 HCC transcriptome samples
with complete clinical information and 50 paracancerous tis-
sue transcriptome samples from TCGA public database. The
FOXA1 expression level was analyzed using R software, and

the results showed that the FOXA1 expression level was
higher in the HCC tissue samples (P < 0:05) (Figures 3(b)
and 3(c)). The Survminer package in R software was used
to find the cutoff value, and the FOXA1 expression level data
were classified into a group with low FOXA1 expression and
a group with high FOXA1 expression. The group with low
FOXA1 expression included 125 HCC samples, and the
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Figure 4: TCGA bioinformatics analysis. (a) The Kaplan–Meier analysis results for disease-specific survival (DSS) and progression-free
interval (PFI) were compared between patients with high and low expression of FOXA1. (b) ROC curves of FOXA1. (c) Gene set
enrichment analysis (GSEA) of samples from TCGA with high FOXA1 expression and low FOXA1 expression.
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group with high FOXA1 expression included 240 HCC sam-
ples (the follow-up time/prognosis of 9 samples were miss-
ing). The survival package in R software was used for
prognostic analysis, and the results showed that FOXA1
expression was significantly correlated with the disease-
specific survival and progression-free interval of HCC
patients (Figure 4(a)). The disease-specific survival of
patients with low FOXA1 expression was significantly better
than that of patients with high FOXA1 expression (P = 0:044
), and the progression-free interval of patients with low
FOXA1 expression was also significantly better than that of
patients with high FOXA1 expression (P = 0:01). Receiver
operating characteristic (ROC) curve analysis confirmed
that FOXA1 had a high diagnostic value for HCC
(AUC = 0:686) (Figure 4(b)). Based on the median FOXA1
expression in tissues, the samples were classified into a group

with high FOXA1 expression and a group with low FOXA1
expression (187 cases in each group). An analysis of the
clinicopathological characteristics of HCC patients in the
group with high FOXA1 expression group and the group
with low FOXA1 expression revealed that the group with
high FOXA1 expression had a lower proportion of male
patients, a lower age of onset, and higher AFP expression
than the group with low FOXA1 expression, but no signifi-
cant differences in the race, cancer stage, or vascular inva-
sion were found between the two groups (P > 0:05,
Table 1). TCGA dataset was classified into high-expression
and low-expression groups based on the FOXA1 expression
level, and DEGs were selected for pathway enrichment
analysis. High FOXA1 expression was mainly associated
with extracellular matrix organization, cancer, and mitosis
(Figure 4(c)).

Table 1: Clinicopathological parameters of 374 hepatocellular carcinoma patients in TCGA database.

Characteristic Low expression of FOXA1 High expression of FOXA1 P

N 187 187

Gender, n (%) <0.001
Female 42 (11.2%) 79 (21.1%)

Male 145 (38.8%) 108 (28.9%)

Race, n (%) 0.936

Asian 81 (22.4%) 79 (21.8%)

Black or African American 9 (2.5%) 8 (2.2%)

White 91 (25.1%) 94 (26%)

Age, n (%) 0.011

≤60 76 (20.4%) 101 (27.1%)

>60 111 (29.8%) 85 (22.8%)

AFP (ng/ml), n (%) 0.043

≤400 119 (42.5%) 96 (34.3%)

>400 26 (9.3%) 39 (13.9%)

T stage, n (%) 0.109

T1 102 (27.5%) 81 (21.8%)

T2 42 (11.3%) 53 (14.3%)

T3 37 (10%) 43 (11.6%)

T4 4 (1.1%) 9 (2.4%)

N stage, n (%) 1.000

N0 132 (51.2%) 122 (47.3%)

N1 2 (0.8%) 2 (0.8%)

M stage, n (%) 1.000

M0 140 (51.5%) 128 (47.1%)

M1 2 (0.7%) 2 (0.7%)

Pathologic stage, n (%) 0.280

Stage I 96 (27.4%) 77 (22%)

Stage II 42 (12%) 45 (12.9%)

Stage III 37 (10.6%) 48 (13.7%)

Stage IV 3 (0.9%) 2 (0.6%)

Vascular invasion, n (%) 0.452

No 109 (34.3%) 99 (31.1%)

Yes 52 (16.4%) 58 (18.2%)
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3.3. The Expression of FOXA1 Protein in HCC Tissues Was
Detected by IHC. IHC was performed to detect the FOXA1
protein expression levels in 49 HCC tissues and paired para-
cancerous tissue samples, and the results showed that posi-
tive FOXA1 expression was mainly located in the nucleus
of the HCC cells (Figure 5(a)). FOXA1 protein was highly
expressed in HCC tissues, with a positive expression rate of
40.8% (20/49), whereas FOXA1 protein was expressed at
low levels in paracancerous tissues, with a positive expres-
sion rate of 8.2% (4/49); this difference was significant
(Figure 5(a), P < 0:001). FOXA1 protein expression in
HCC tissues was not significantly correlated with sex, age,
grade, clinical stage, or other factors (P > 0:05) (Table 2).
Based on the IHC score, the HCC samples were classified
into two groups, a group with high HCC expression and a
group with low HCC expression, survival curves were
drawn, and the survival rates of the two groups were com-
pared. The prognostic analysis showed that HCC patients
with low FOXA1 expression had a longer survival time with-
out recurrence (Figure 5(c), P = 0:0406). Although no differ-
ence in the overall survival time was found between patients
with high FOXA1 expression and patients with low FOXA1

expression (Figure 5(c), P = 0:6356), the overall survival
curve of the patients with low FOXA1 expression was higher
than that of the patients with low FOXA1 expression. The
protein level of FOXA1 in HCC patients was verified using
the Human Protein Atlas (HPA) database, and the results
showed that the FOXA1 protein expression level in HCC tis-
sues was significantly higher than that in normal tissues
(Figure 5(b)).

3.4. Construction of FOXA1-Overexpressing Cell Lines. The
expression of FOXA1 in normal liver cell lines and HCC cell
lines was detected by RT–qPCR and Western blotting. The
results showed that FOXA1 expression in HCC cell lines
was significantly higher than that in immortalized human
liver cell lines (P < 0:01) (Figures 6(a) and 6(b)). In addition,
FOXA1 was also expressed at different levels in different
HCC cell lines, and the highest and lowest expression levels
were found in Hep3B and Huh7 cells, respectively. The
mRNA expression level of FOXA1 in Hep3B cells was 5.2-
fold higher than that in Huh7 cells, and the expression in
HepG2 cells was 2.9-fold higher than that in Huh7 cells.
The protein expression level of FOXA1 in Hep3B cells was
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Figure 5: Expression of FOXA1 protein in HCC tissues detected by IHC. (a) IHC staining of an HCC tissue microarray with antibodies
specific to FOXA1 (left). Protein levels of FOXA1 in HCC and adjacent nontumor tissues (right). (b) IHC showed the FOXA1 protein
levels in HCC and adjacent nontumor tissues based on HPA data. (c) Kaplan–Meier analysis of overall survival and relapse-free survival
stratified by the FOXA1 protein expression level. ∗∗∗∗: P < 0:001.
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3-fold higher than that in Huh7 cells, and the expression in
HepG2 cells was 2.5-fold higher than that in Huh7 cells. To
investigate the effect of FOXA1 on the malignant phenotype
of HCC cell lines and immortalized human liver cell lines,
the FOXA1-overexpressing construct and no-load plasmids
were transfected into the Huh7 cell line and L02 immortal-
ized human liver cell line with low FOXA1 expression. The
mRNA and protein expression levels of FOXA1 in the
Huh7 and L02 cell lines were detected by real-time PCR
and Western blotting assays, and the expression levels of
FOXA1 were both significantly increased, indicating the suc-
cessful overexpression of FOXA1 in Huh7 cells (Figures 6(c)
and 6(d)).

3.5. FOXA1 Enhances the Proliferation of Cancer Cells In
Vitro and In Vivo. FOXA1-overexpressing and no-load cells
were seeded on 96-well plates with medium and placed in a
live cell monitoring instrument for dynamic photography
and observation. The results of the proliferation experiment
showed that the FOXA1-overexpressing cells grew signifi-
cantly faster than the no-load group (Figure 7(a)). These
results indicated that the proliferative ability of Huh7 and
L02 cells was significantly improved after the overexpression
of FOXA1.The results of the colony formation assay showed

that FOXA1 significantly facilitated the colony formation
ability of Huh7 and L02 cells (Figures 7(b) and 7(c)). More-
over, to detect the functions of FOXA1 in cancer cells
in vivo, Huh7 cells with FOXA1-overexpressing and no-
load plasmids were hypodermically injected into NTG mice.
The results indicated that FOXA1 overexpression promoted
tumor growth in terms of tumor weight and volume
(Figures 7(d) and 7(e); Figure S1).

3.6. Effects of FOXA1 Overexpression on Cell Migration. To
exploit the role of FOXA1 in hepatocellular carcinoma cells,
we determined the effect of FOXA1 on cell migration by
wound healing and Transwell migration assays. The results
of the wound healing assay showed that the wound width
in the FOXA1-overexpressing group was smaller than that
in the no-load group (Figures 8(a) and 8(b); Figure S2),
indicating that the migration ability of Huh7 and L02 cells
was significantly improved after the overexpression of
FOXA1. Transwell migration experiments showed that the
migration ability of Huh7 and L02 cells overexpressing
FOXA1 was significantly enhanced (P < 0:01) (Figures 8(c)
and 8(d)). To explore the signaling pathway through which
FOXA1 plays a role, we detected the changes in the
invasion and metastasis of marker proteins and c-Myc

Table 2: Relationship between FOXA1 protein expression levels in HCC tissues and clinicopathological parameters.

Characteristic Number
FOXA1

χ2 P
Low expression High expression

Gender

Male 45 28 17 2.107 0.147

Female 4 1 3

Age (years)

>60 5 4 1 0.999 0.318

≤60 44 25 19

Tissue

Para-carcinoma tissue 49 45 4 14.126 P < 0:0001
HCC tissue 49 20 29

Grade

II 22 15 7 2.565 0.277

II-III 9 6 3

III 18 8 10

TNM stage

I-II 25 14 11 0.214 0.644

III-IV 24 15 9

Tumor diameter (cm)

≥3 36 22 14 0.209 0.648

<3 13 7 6

Tumor numbersa

≥2 13 10 3 3.255 0.196

<2 35 18 17

Vascular tumor embolia

Yes 10 4 6 2.202 0.138

No 38 25 13

Note: athis information is missing.
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proteins by Western blot assays. The results showed that
FOXA1 overexpression inhibited the expression of E-
cadherin in Huh7 cells, enhanced the expression of
Vimentin and c-Myc protein, and did not affect the
expression of β-catenin protein (Figure 8(e)).

4. Discussion

As one of the malignant tumors in the digestive system,
HCC is more common in the Asian population [21]. Despite
the increasing number of treatments for HCC, the efficacy of
these therapies remains not ideal. Therefore, an improved
elucidation of the molecular mechanism of HCC and the
identification of new key targets are urgently needed.

The FOXA1 gene is located at the 14q21.1 site on the
human chromosome, and its structure includes an N-
terminal transcriptional activation domain, the FOX domain
binding to DNA in the middle, and the C-terminal and H3/
H4 histone-related transcriptional activation binding
domains [22]. As a pioneer TF, FOXA1 can replace histone
H1 due to its similar structure to maintain other nucleo-
somes for TF binding and the activation of downstream gene
expression [23], which are crucial processes for the normal

development of multiple endoderm-derived organs [24].
Studies have shown that FOXA1 is expressed in a variety of
cancers, but its role varies in different tumors [25–28]. In addi-
tion, FOXA1 has been found to interact directly with andro-
gen receptors and plays a central role in mediating AR-
driven oncogenesis [24]. In a study of HCC, Wang et al.
found that the long noncoding RNA (lncRNA) McM3ap-
as1 directly binds to microRNA miR-194-5p and acts as a
competitive endogenous RNA to regulate FOXA1 expres-
sion in HCC cells, which results in promotion of the occur-
rence and development of HCC [29]. Yuan et al. found that
FOXA1 is the target of miR-212-3p and that FOXA1 exerts
its biological function by regulating the expression of
AGR2. FOXA1 is highly expressed in HCC cells, and this
TF can promote the proliferation and inhibit the apoptosis
of HepG2 cells [30]. In summary, these studies suggest that
FOXA1 may play an important role in the development
and progression of HCC.

In this study, we obtained 2271 common DEGs, includ-
ing 1332 common upregulated genes and 939 common
downregulated genes, through an analysis of the DEGs in
HCC tissues and paracancerous tissues in the GSE121248
and GSE62232 datasets downloaded from the GEO database.
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Figure 6: Construction of FOXA1-overexpressing cell lines. (a) Differential mRNA expression of FOXA1 in HCC cell lines (Huh7, HepG2,
and Hep3B cells) compared with immortalized normal human hepatic LSEC and L02 cell lines. (b) Results from the Western blot analysis:
differential expression of FOXA1 in HCC cell lines and immortalized normal human hepatic cell lines. (c) RT–qPCR assays were performed
to detect FOXA1 expression in FOXA1-overexpressing and no-load cell lines. (d) Western blotting was performed to detect FOXA1 protein
expression in FOXA1-overexpressing and no-load cell lines. ∗: P < 0:05; ∗∗: P < 0:01; and ∗∗∗/∗∗∗∗: P < 0:001.
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Figure 7: Continued.
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The key genes were screened using the STRING database
and visualized using Cytoscape software. A literature review
revealed that FOXA1 is an essential TF in liver development,
and we thus selected FOXA1 for further analysis and verifi-
cation. An analysis of transcriptome data of 374 HCC sam-
ples and 50 paracancerous tissue samples obtained from the
TIMER and TCGA databases revealed that the FOXA1
expression level was significantly higher in HCC tissue sam-
ples. By performing grouping and prognostic analyses of
transcriptomic data in TCGA database, we found that the
progression-free interval and disease-specific survival of
patients with low FOXA1 expression were significantly bet-
ter than those of patients with high FOXA1 expression.
ROC curves were used to assess the prognostic capacity of
FOXA1. The results showed that FOXA1 had a high diag-
nostic value (AUC = 0:686). TCGA data were then classified
into high-expression and low-expression groups according
to FOXA1 expression, and DEGs were selected for pathway
enrichment analysis. High expression of FOXA1 was mainly
related to extracellular matrix organization, cancer, and the
M phase, among other pathways. The expression level of
FOXA1 protein in HCC tissues and paracancerous tissue
samples was detected by IHC, and the results showed that
the FOXA1 protein was significantly overexpressed in
HCC tissues. A prognostic analysis showed that HCC
patients with low FOXA1 expression had longer survival
times without recurrence.

The GSEA results suggest that FOXA1 promotes the
progression of liver cancer by promoting the proliferation
and metastasis of HCC cells. We wanted to test this hypoth-
esis by observing the effect of FOXA1 overexpression on cell
proliferation and migration.

First, RT–qPCR and Western blot experiments showed
that FOXA1 expression in normal liver cell lines was signif-
icantly different from that in HCC cell lines, and FOXA1
expression in HCC cell lines was higher than that in immor-
talized human liver cell lines. FOXA1 was then overex-

pressed in the Huh7 and L02 cell lines. Proliferation,
colony formation, wound healing, and Transwell assays ver-
ified that FOXA1 overexpression affected the malignant phe-
notype of the Huh7 and L02 cell lines and enhanced the
proliferation and migration abilities of the Huh7 and L02
cells were significantly enhanced after FOXA1 overexpres-
sion. Moreover, we generated a xenograft model in NTG
mice by subcutaneous injection with HCC cells, and the
results showed that the overexpression of FOXA1 in xeno-
grafted mice accelerated the growth of HCC.

In addition, previous studies have verified the role of
FOXA1 in tumorigenesis by inhibiting the expression of
FOXA1. Gan et al. found that FOXA1 silencing can suppress
liver cancer stem cell proliferation and regulate cell apoptosis
[31]. A study of nonsmall cell lung cancer found that FOXA1
siRNA transfection caused G0/G1 phase cell cycle arrest and
reduced the invasion, migration, and proliferation abilities of
A549 cells [32]. Imamura et al. found that depletion of
FOXA1 in a prostate cancer cell line using small interfering
RNA significantly inhibits AR activity, leads to cell growth
suppression, and induces G0/G1 arrest [33]. Other studies
have found that FOXA1 suppresses breast cancer cell growth
and inhibits apoptosis [34]. A previous study of endometrial
cancer found that FOXA1 knockdown reduces the rate of
tumor growth in an in vivo xenograft model [35].

In summary, this study found that FOXA1 protein was
significantly overexpressed in HCC cell lines and tissues of
HCC patients, and high FOXA1 expression in HCC tissues
was significantly correlated with poor prognosis in patients.
We also validated the effect of FOXA1 on promoting the
proliferation and migration of HCC cells. FOXA1 is a key
molecule in the occurrence and development of malignant
tumors, which suggests that FOXA1 may play an oncogenic
role in hepatocellular carcinoma. Further study of the TF
FOXA1 in HCC can increasingly clarify its role in the occur-
rence and development of HCC, and FOXA1 will likely
become a new therapeutic target in HCC.

(e)

Figure 7: FOXA1 enhances the proliferation of cancer cells in vitro and in vivo. (a) The growth rates of the FOXA1-overexpressing and no-
load Huh7 and L02 cell lines were compared. (b) A colony formation assay was performed with Huh7 and L02 cells. (c) The results from the
statistical analysis related to colony formation are shown. (d) The tumor volumes were measured during their growth process using a
Vernier caliper and calculated with the formula ðlength × width2Þ/2. (e) The tumor weights were measured after dissection.
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Figure 8: Effects of FOXA1 overexpression on cell migration. (a) Overexpression of FOXA1 in the Huh7 and L02 cell lines led to higher
motility in the wound healing assay compared with that of the control cells. (b) The results from a statistical analysis of the findings
from the wound healing assay are shown. (c) The Transwell method was used to detect the migratory ability of FOXA1-overexpressing
Huh7 and L02 cell lines. Magnification: 10×. (d) Statistical analysis of the results from the Transwell migration assays. (e) The expression
levels of E-cadherin, Vimentin, c-Myc, and β-catenin in FOXA1-overexpressing and no-load Huh7 cells lines were detected by Western
blot analysis. ∗: P < 0:05; ∗∗: P < 0:01; and ∗∗∗/∗∗∗∗: P < 0:001.
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