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Gestational diabetes mellitus (GDM) is the most common metabolic disturbance during pregnancy, with adverse effects on
both mother and fetus. The establishment of early diagnosis and risk assessment model is of great significance for
preventing and reducing adverse outcomes of GDM. In this study, the broad-scale perturbations related to GDM were
explored through the integration analysis of metabolic and clinical phenotypes. Maternal serum samples from the first
trimester were collected for targeted metabolomics analysis by using ultra-high performance liquid chromatography-tandem
mass spectrometry (UHPLC-MS/MS). Statistical analysis was conducted based on the levels of the 184 metabolites and 76
clinical indicators from GDM women (n=60) and matched healthy controls (n=90). Metabolomics analysis revealed the
down-regulation of fatty acid oxidation in the first trimester of GDM women, which was supposed to be related to the
low serum level of dehydroepiandrosterone.While the significantly altered clinical phenotypes were mainly related to the
increased risk of cardiovascular disease, abnormal iron metabolism, and inflammation. A phenotype panel established from
the significantly changed serum indicators can be used for the early prediction of GDM, with the area under the receiver-
operating characteristic curve (ROC) 0.83. High serum uric acid and C-reaction protein levels were risk factors for GDM
independent of body mass indexes, with ORs 4.76 (95% CI: 2.08-10.90) and 3.10 (95% CI: 1.38-6.96), respectively.
Predictive phenotype panel of GDM, together with the risk factors of GDM, will provide novel perspectives for the early
clinical warning and diagnosis of GDM.

1. Introduction

Glucose metabolism during pregnancy differs from that of
non-pregnancy because pregnant women must meet the
energy needs of both themselves and the embryo [1–3].
Therefore, gestational women are usually associated with
insulin resistance and hyperinsulinemia, which can lead to
diabetes in some expectant mothers [1, 4]. Gestational dia-
betes mellitus (GDM) is defined as varying degrees of glu-
cose intolerance that develops or is first detected during
pregnancy [5]. Risk factors of GDM include overweight,

high-fat diet, high-sugar diet, micronutrient deficiencies,
advanced gestational age, and family history of diabetes [6,
7]. In recent decades, with the improvement of quality of life,
the incidence of GDM in China has been on the rise. The
high prevalence of GDM is of great concern because gesta-
tional women suffering from GDM have a much higher risk
of type 2 diabetes, cardiovascular diseases (CVD), and
female malignancies after delivery compared to the healthy
controls [5, 7]. About 15-45% of the offspring of GDM
mothers are macrosomia, which is a 3-fold higher rate com-
pared to normal controls [8]. In addition, GDM can also
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cause abnormal development of the embryo and increase the
rate of miscarriage [9, 10].

The pathogenesis of GDM is not fully understood. The
maternal-fetal and lifestyle factors are interrelated and acted
in an integrated manner in the development of GDM. A
study of healthy, thin women showed a 56% decrease in
insulin sensitivity and a 30% increase in basal endogenous
glucose production in the third trimester compared to pre-
pregnancy [5, 11, 12]. Insulin resistance develops around
the second trimester and progresses throughout the rest of
the pregnancy [5]. GDM is usually the result of β-cell dys-
function on a background of chronic insulin resistance dur-
ing pregnancy [13]. Increased steroid hormones like
estrogen, progesterone, and cortisol during pregnancy can
also contribute to the disruption of balance existed between
glucose and insulin. In addition, unhealthy lifestyles and
high caloric intake are also important factors for the occur-
rence of GDM [8].

Screening for GDM is usually performed between 24 and
28 weeks’ gestation using the 75 g oral glucose tolerance test
(OGTT). A “one-step” 2 hours 75 g OGTT is endorsed by
the International Association of Diabetes and Pregnancy
Study Groups (IADPSG) and World Health Organization
(WHO) [5]. Lifestyle interventions and occasional insulin
therapy are currently the only strategies to prevent or treat
GDM, but their effect is limited due to insulin resistance.
The risk assessment of diabetes in the first trimester is of
great significance for the prevention of GDM. As the levels
of endogenous metabolites are usually influenced by both
genetic and environmental factors, metabolomics analysis
has proved to be an important method to elucidate meta-
bolic changes underlying the pathogenesis of GDM and lead
to the discovery of potential diagnostic biomarkers for GDM
[14–16]. However, current studies mostly focused on the
variation of metabolite concentrations and the disturbance
of metabolite pathway, while ignored the clinical phenotypes
[14, 17]. This is not conducive to comprehensively elucidate
the physiological function of the significantly changed
metabolites and explore the actual pathogenesis of GDM.

Considering the adverse effects of maternal hyperglycemia
on the mothers and their offspring, this study investigated the
metabolic and clinical phenotypic disturbances associated
with GDM in early pregnancy. A targeted metabolomic
study was performed using ultra-high performance liquid
chromatography-tandem mass spectrometry (UHPLC-MS/
MS) on serum samples from 60 GDM mothers and 90
controls in the first trimester. A total of 184 metabolites were
detected in the serum samples. Integration analysis was
conducted based on the levels of the 184 metabolites and 76
clinical indicators to explore early diagnostic biomarkers and
risk factors for GDM.

2. Experimental Section

2.1. Chemicals and Reagents. The commercial metabolites
standards were purchased from Cayman Chemical (Ann
Arbor, MI, USA), Bidepharm (Shanghai, China), Sigma-
Aldrich (St. Louis, MO, USA), or Steraloids (Newport, RI,
USA). Eight isotopic internal standards (ISs), including thy-

mine-d4, valine-d8, phenylalanine-d8, 17-hydroxyprogester-
one-d8, docosahexaenoic acid-d5, cholic acid-d4,
chenodeoxycholic acid-d4, and glycocholic acid-d4, were
obtained from Cambridge Isotope Laboratories (Cambridge,
MA, USA). Ultrapure water was prepared by a Milli-Q puri-
fication system (Bedford, MA, USA). HPLC or MS grade
solvents, including acetonitrile, methanol, isopropyl alcohol,
and formic acid, were purchased from Fisher Scientific
(Pittsburgh, PA, USA).

2.2. Ethical Statement. This study was approved by the ethics
committees of Peking Union Medical College Hospital of the
Chinese Academy of Medical Science. The study was regis-
tered on http://www.ClinicalTrials.gov (registration ID:
NCT03651934) and conducted in accordance with the Dec-
laration of Helsinki. All the participants received details of
the study and signed consent forms. The participants were
free to withdraw from the study at any time.

2.3. Study Population. An aliquot of 2mL fasting blood sam-
ple was collected from each of 414 pregnant women who
attended their first pregnancy test at the outpatient of the
Shunyi District Maternal and Child Health Hospital (Bei-
jing, China) from October to December 2018. The blood
was centrifuged at 3000 g for 10min, and the upper serum
was collected. All samples were stored at -70°C for subse-
quent analysis. Later, a face-to-face interview was conducted
to collect basic demographic information of the participants,
including exercise contraindication, food allergy history,
medication history, previous pregnancy history, and family
disease history. Clinical chemistry parameters at blood collec-
tion time points were collected from the hospital medical
record system. The 75g OGTT was conducted for the diagno-
sis of GDM between 24th and 28th gestational weeks according
to the criteria of IADPSG [5]. GDM can be diagnosed if any of
the following conditions of OGTT were obtained: fasting
plasma glucose ≥5.1mmol/L, 1h glucose level≥10mmol/L,
or 2h glucose level≥8.5mmol/L. [5] The information on
Infant birth weight and body length was recorded.

All the serum samples from 414 participants were applied
for metabolomics analysis. In a subsequent statistical analysis,
205 participants with incomplete clinical indicators were
excluded. Another 20 participants with a history of severe
lung, heart, liver, kidney, or tumor disease were excluded.
Thirty-nine participants with too young or too old embryonic
age were excluded. Finally, data from 150 participants with
embryonic age between 6 and 14 weeks were included in the
final statistical analysis, including 60 GDM cases and 90
healthy controls. A flow chart of the inclusion and exclusion
of the participants is shown in Figure 1.

2.4. Targeted Metabolomics Analysis by UHPLC-MS/MS.
Targeted metabolomics analysis was conducted by reverse
phase ultra-high performance liquid chromatography
coupled with tandem mass spectrometry. A Spark Holland
liquid chromatography system (Spark, Holland) coupled
with an API 5500 mass spectrometer (AB Sciex, Canada)
with an electrospray ionization (ESI) source was employed
for the targeted metabolomics analysis. Chromatographic

2 Disease Markers

http://www.ClinicalTrials.gov
https://www.clinicaltrials.gov/ct2/show/NCT03651934?term=NCT03651934&draw=2&rank=1


separation was performed on a HSS T3 (150× 2.1mm,
3.5μm) column. Protein precipitation method was used for
biological sample preparation. Each 50μL serum sample
was mixed with 10μL ISs solution and 140μL cold methanol
(-20°C). The mixture was vortexed for 2min and then cen-
trifuged for 10min at 4°C. The supernatants were collected
and directly injected to the liquid chromatography for meta-
bolomics analysis.

All metabolites and isotope ISs were analyzed in a single
injection using both negative and positive modes with rapid
polarity switching (50ms) and advanced scheduled multiple
reaction monitoring (s-MRM) algorithm. More detailed
parameters regarding the methods were published in our
previous report [18]. The pooled serum mixed by equal ali-
quot of serum samples from dozens of healthy volunteers
was used as quality control (QC) samples during metabolo-
mics analysis. For data quality assessment during batch anal-
ysis, pooled QC samples were processed as real samples and
inserted into the analytical runs every 12 samples. The MRM
parameters were listed in Supplementary Table S1.

2.5. Data Processing and Statistical Analysis. Raw data files
from the UHPLC-MS/MS analysis were processed using
MultiQuant software (version 3.0.2, AB SCIEX). All peak
areas were divided by their corresponding IS peak areas,
and the ratios were plotted against the real concentrations
to construct calibration curves by the least squares method
with a 1/x2 weighting factor. The absolute concentration of
each metabolite was calculated according to the calibration
curve. For some fatty acids and acyl carnitines without stan-
dards, their relative concentrations were calculated accord-
ing to the peak area ratio of an analyte to the
corresponding IS. SIMCA 14.1 (Umetrics AB, Umeå, Swe-
den) was employed for multivariate statistical analysis,

including principle component analysis (PCA) and orthogo-
nal partial least squares discriminant analysis (OPLS-DA).
The quality of each OPLS-DA model was evaluated using
R2ðcumÞ values, which identify the variations described by
all components in the model. Q2ðcumÞ was a value calcu-
lated from sevenfold cross-validation, which represents the
predictability of the modeling [19]. Besides, the permutation
test was used to investigate whether the OPLS-DA model
was overfitted. The variable importance in projection (VIP)
is the most important parameter for the evaluation of each var-
iable in the OPLS-DA model, with VIP>1 considered to be an
important contribution to the classification model. IBM SPSS
21 (Armonk, New York, United States) was used for t-test,
Spearman’s correlation, and binary logistic regression analysis
(backward stepwise: Wald), with P < 0:05 considered statisti-
cally significant. The open source tool of Metaboanalyst
(HYPERLINK: https://www.metaboanalyst.ca/) was also
employed for calculating of false discovery rate (FDR). The cor-
relation networks of metabolic and clinical phenotypes were
generated by Cytoscape 3.5.0. The correlation coefficients
obtained from Spearman’s rank correlation analysis were
imported to the Cytoscape 3.5.0 to generate the correlation net-
works. GraphPad Prism 7 was used for receiver-operating
characteristic (ROC) and histogram analysis.

3. Results

3.1. Demographic and Clinical Characteristics of the
Participants. Of the 150 participants included in the final
statistical analysis, 60 participants who met the diagnostic
criteria for GDM were assigned to the GDM group, and 90
participants with normal glucose tolerance were assigned
to the control group. The demographic and clinical charac-
teristics of the 150 participants are listed in Table 1. There
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Figure 1: Participant flow chart and research schematic.
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was no significant difference in the age of pregnant women
between the GMD group and the control group, with aver-
age ages all about 30 years old. There was also no significant
difference in the gestational age at the time point of blood
sample collection. All the participants were Chinese, with
more than 90% of themwere the Han nationality. Significantly
higher pre-pregnancy body mass index (BMI) was observed in
the GDM group compared to the control group. As shown in
Table 1, more than 50% of GDM women had pre-pregnancy
weight above the upper limit of normal BMI (normal BMI:
18.5-24kg/m2 for Chinese), while only 30% of control women
had pre-pregnancy weight larger than the upper BMI limit.
According to the previous literature report, overweight was a
risk factor for GDM. High pre-pregnancy BMI level was asso-
ciated with a higher risk of GDM [6]. Approximately 53% of
the GDM women were primipara and 47% were multiparas,
with no obvious difference between the GDM and control
groups. Eighteen percent of the GDM cases and 10% of the
control cases had a family history of diabetes, with no signifi-
cant differences observed.

Offspring information, including infant gender, infant
birth weight, and infant length, were recorded for these 150
participants (Table 1). No significant difference was found in
infant gender and infant length. However, the infant birth

weight of the GDM participants was significantly higher than
the infants delivered by the control mothers. GDM mothers
were more likely to deliver overweight babies.

3.2. Variation of Metabolic Phenotype Related to GDM. A
targeted metabolomics method established in our laboratory
was employed for the metabolites profiling in serum. A total
of 289 endogenous metabolites with physiological signifi-
cance were covered in this targeted metabolomics method
(Figure 1). Finally, 184 metabolites were detected in the
serum samples of this study. Pooled serum QC samples were
evenly inserted throughout the sample analytical batch to
monitor the deviation introduced from sample pretreatment
and instrumental analysis. A rapid systematic check of the
data quality before data processing was made by performing
PCA on the complete data set. As shown in Figure 2(a), 78%
and 88% peaks detected in QC samples had coefficients of
variation (CV) below 15% and 30%, respectively. Of the
other 12% peaks with CV values in QC samples above
30%, only 7 metabolites had CV values of QC above 40%.
These metabolites with large CV values were basically
caused by low endogenous concentrations. Quantitative data
of all the 184 metabolites detected in serum were included in
subsequent statistical analysis [20, 21].

Table 1: Demographic and clinical characteristics of the GDM group and the control group.

Characteristic GDM group Control group P value

Number (n) 60 90

Maternal age (mean± SD, years) 30.8± 4.0 30.4± 2.6 0.86

Embryonic age at collection (mean± SD, weeks) 9.7± 1.8 10.2± 1.8 0.08

Nationality 0.42

Han 56 (93)∗ 87 (97)

Manchu 2 (3) 2 (2)

Hui 1 (2) 0

Ewenki 1 (2) 0

Korean 0 (0) 1 (1)

Pre-pregnancy BMI (mean± SD, kg/m2) 25.1± 4.0 22.4± 4.1 <0.01
Low 0 (0) 8 (9)

Normal 28 (47) 55 (61)

Overweight 32 (53) 27 (30)

Parity 0.59

Primipara 32 (53) 44 (49)

Multiparas 28 (47) 46 (51)

Family history of diabetes 0.14

Yes 11 (18) 9 (10)

No 49 (82) 81 (90)

Infant gender 0.64

Male 35 (58) 49 (54)

Female 25 (42) 41 (46)

Infant birth weight (mean± SD, g) 3481.1± 617.7 3345.1± 514.2 0.03

Infant length (mean± SD, cm) 50.0± 2.1 49.7± 1.4 0.07
∗Data are presented as mean ± SD or participant numbers (%), unless otherwise specified. P values were calculated by hypothesis testing. For continuous
variables, the distribution of the variable was first assessed by the Shapiro-Wilk test. Bilateral Student’st-test was used for normally distributed data, while
the Mann–WhitneyUtest was used for nonparametric data. For categorical variables, P values were calculated using the chi-square test.
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PCA was performed based on the quantification data of
the 184 metabolites, and the score plot was shown in
Figure S1A. The samples of the control group and the
GDM group showed a slight trend of separation on the
PCA score plot. The supervised OPLS-DA was further
used to investigate the metabolic phenotype variation
related to GDM. As shown in Figure 2(b), samples within
groups were segregated into clusters in the score plot of
OPLS-DA. A random permutation test with 100 iterations
was performed to validate the OPLS-DA model. As shown
in Figure S2, the permuted y-variables were all lower than
the original y-variables. No overfitting of the OPLS-DA
mode was observed. Furthermore, a bilateral t-test was
conducted to investigate the metabolite changes related to
GDM. Based on the criteria of P < 0:05 and VIP>1, 36
metabolites were significantly different between GDM and
control groups (Figure 2(c), Table S2). PCA score plot
based on the concentration levels of these 36 metabolites
was shown in Figure S1B, with a more obviously
separation trend between control and GDM groups than

Figure S1A. The average values of the 36 metabolites in each
group were presented as heat maps in Figure 2(d). Of the 36
significantly changed metabolites, a dozen of acyl carnitines
were down-regulated and fatty acids were up-regulated in
the first trimester of GDM gestational women compared to
the normal control maternity. Finally, all the metabolites
were used for FDR test. The main goal of FDR control is to
set significance levels for a collection of tests in such a way
that among tests declared significant; the proportion of true
null hypotheses is lower than a specified threshold [22]. Five
of these 36 significantly changed metabolites exhibited a
FDR less than 0.05, including L-phenylalanine, α-keto-
glutarate, DL 11 : 0-iso2 (acyl carnitine, with fatty acid
carbon chain length of 11 and saturation of 0), DL 12 : 0-iso2
(acyl carnitine, with fatty acid carbon chain length of 12 and
saturation of 0), and L-tryptophan. The histograms of these
5 metabolites were shown in Figure 2(e).

3.3. Correlation Analysis of the Significantly Changed
Metabolites. Since the endogenous metabolites present a
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complex network, a correlation analysis would help reveal
the key nodes disturbed by the GDM pathological state.
The correlations of the 36 significantly changed metabolites
between GDM and control groups are shown in Figure 3(a)
based on Spearman’s rank correlation analysis. Only those
correlations with P < 0:01 were shown in the figure. The
majority of the metabolites presented positive correlations
with each other. Due to the similarity of biosynthesis, acyl
carnitines and fatty acids show strong correlations within
the class. An example of the strong correlation that existed
among acyl carnitines is shown in Figure 3(b), and the cor-
relation coefficient between DL 10 : 0 (acyl carnitine, with

fatty acid carbon chain length of 10 and saturation of 0)
and octanoyl-L-carnitine was 0.997. It was also worth noting
that dehydroepiandrosterone was strongly correlated with
all acyl carnitines. As shown in Figure 3(b), the correlation
coefficient between dehydroepiandrosterone and DL 10 : 0
was 0.983.

L-Phenylalanine and L-tryptophan are essential amino
acids, both belonging to the aromatic amino acid. The nor-
mal metabolism of L-phenylalanine and L-tryptophan
requires the participation of niacin and vitamin B6
[23–26]. A strong positive correlation was found to be
existed between L-phenylalanine and L-tryptophan, with a
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0.875 correlation coefficient (Figure 3(b)). They were all sig-
nificantly lower in the GDM group compared to the control
group (Figure 2(d)). To our knowledge, this may be the first
report of the positive correlation between L-phenylalanine
and L-tryptophan, suggesting that there may be some correla-
tion between these two essential amino acids in endogenous
metabolism. L-Asparagine and L-serine are nonessential
amino acids that derived from oxaloacetate and L-serine,
respectively. A significantly positive correlation was also found
between L-asparagine and L-serine, with a 0.613 correlation
coefficient (Figure 3(b)). Besides, those metabolites with clear
upstream and downstreammetabolic correlation, such as ura-
cil/xanthosine and L-alanine/pyruvate, all exhibited strong
positive correlations within each other (Figure 3(b)).

3.4. Variation of Clinical Phenotype Related to GDM. A total
of 76 clinical phenotypes were finally included in the statis-
tical analysis, mainly including the microelement test, blood
routine test, blood biochemical test, thyroid function test,
and vitamin test (Figure 1). The phenotypes, with P < 0:05
in t-test and VIP>1 in OPLS-DA analysis, were defined as
significantly variated clinical phenotypes related to GDM.
Based on the criteria, 22 clinical phenotypes were signifi-
cantly changed between GDM and control groups, with their
P values shown in Figure 4.

The levels of C-reactive protein, cholinesterase, low-
density lipoprotein (LDL), and triglyceride were significantly
increased in the GDM group, which are recognized clinical

indicators that significantly increase the risk of cardiovascular
disease (Figure 4), while the high density lipoprotein (HDL),
which is commonly known as “vascular scavenger,”was found
to be significantly lower in the GDM pregnancy than the con-
trols in the first trimester of pregnancy. The low serum HDL
levels may also contribute to the risk of cardiovascular disease.
Clinical indicators related to ironmetabolismwere found to be
significantly changed between the GDM and the control
groups, indicating that abnormal iron metabolism would
occur in women with GDM in the first trimester (Figure 4).
Inflammation-related indicators, including mean platelet vol-
ume, large platelet ratio, platelet volume distribution width,
absolute value of neutrophils, leukocyte, platelet, and C-
reactive protein, were all significantly different between
GDM and control groups (Figure 4).

3.5. Defining of Potential Biomarkers for the Early Diagnosis
of GDM. To investigate the predictive potential of these
serum phenotypes in the first trimester for GDM, all the sig-
nificantly changed phenotypes, including 36 metabolites and
22 clinical indicators, were submitted to ROC analysis. As
shown in Figure 5(a), 8 phenotypes were found to the pos-
sessed area under the ROC curve (AUC) larger than 0.68,
including BMI, uric acid, glucose, C-reaction protein, α-
keto-glutarate, L-phenylalanine, DL 11 : 0-iso2, and direct
bilirubin. Among these 8 phenotypes, the AUC value of
pre-pregnancy BMI was the highest. Stratification of GDM
population according to the pre-pregnancy BMI was shown
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Figure 4: Twenty-two significantly changed (P < 0:05 and VIP>1) clinical phenotypes and the related disease risks related to GDM.
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in Figure S3. High pre-pregnancy BMI level has been widely
proved to be associated with higher risk of GDM [6].

Subsequently, a binary logistic regression analysis and
optimized algorithm of the backward stepwise (Wald)
method were used to construct the optimal model for
GDM prediction using these 8 potential phenotypes. Result
showed statistically significant differences in glucose, uric
acid, DL 11 : 0-iso2, L-phenylalanine, and direct bilirubin
levels between GDM and controls even after adjusting for
age.While the BMI, C-reaction protein, andα-keto-glutarate
were not independent risk or protective factors for GDM.
The phenotype panel for the early prediction of GDM was
constructed as follows: logitðp = GDMÞ = 1:124 × ½Glucose�
+ 0:0111 × ½Uric acid� − 48:868 × ½DL 11 : 0 − iso2� −
0:000754 × ½L − phenylalanine� − 0:297 × ½Direct bilirubin� −
1:454. In this equation, logitðp = GDMÞ is the predicted
probability of GDM. A ROC curve and scatter plot based
on the logitðp = GDMÞ values are shown in Figure 5(b).
The phenotype panel showed a higher prediction perfor-
mance for GDM than any of the individual phenotype, with
AUC 0.83. All these results demonstrated the phenotype
panel established from the serum metabolites and clinical
indicators in the first trimester can be used for the early pre-
diction of GDM with good sensitivity and specificity.

To further investigate whether these phenotypes are risk
factors or protective factors for GDM, the concentrations
values of uric acid, glucose, C-reaction protein, α-keto-gluta-
rate, L-phenylalanine, DL 11 : 0-iso2, and direct bilirubin in
each sample were all converted to ordered binary variables,
with the minimum 50% defined as low level, while the max-
imum 50% defined as high level. The converted ordered
binary variables, together with the BMI values, were used
for binary logistic regression analysis. Odds ratio (OR)
values and the corresponding 95% CI of the four most sig-
nificantly changed phenotypes are shown in Figure 5(c) in
the form of a forest map. High serum uric acid and C-
reactive protein levels in early pregnancy were discovered to
be the risk factors of GDM, with ORs 4.76 (95% CI: 2.08-
10.90) and 3.10 (95% CI: 1.38-6.96), respectively.While high
DL 11 : 0-iso2 and L-phenylalanine levels in early pregnancy
were the protective factors of GDM, with ORs 0.18 (95% CI:
0.08-0.41) and 0.34 (95% CI: 0.15-0.76), respectively.

4. Discussion

In this study, perturbations of metabolites and clinical indi-
cators related to GDM were comprehensively explored based
on the results of targeted metabolomics analysis and clinical
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laboratory test results. A dozen of acyl carnitines were signif-
icantly lower in the GDM group compared to the control
group (Figure 2(d)), while levels of fatty acids were the
opposite of acyl carnitines. Acyl carnitines are generated by
the combination of fatty acids and carnitine [27]. They are
the intermediate products of fatty acid oxidation, facilitating
the transporting of fatty acids to mitochondria [27, 28]. The
down-regulation of acyl carnitines and up-regulation of fatty
acids indicated that the oxidation level of fatty acids was
reduced in the first trimester of GDM mothers. According
to the previous literature report, high glucose levels reduced
fatty acid oxidation and increased triglyceride accumulation
in the placenta of GDM pregnant women [29]. They
revealed an unrecognized regulatory mechanism on placen-
tal fatty acid metabolism by which high glucose levels
reduced mitochondrial fatty acid oxidation of carnitine pal-
mitoyl transferase І, shifting flux of fatty acid away from oxi-
dation toward the esterification pathway, thus leading to the
accumulation of placental triglycerides. In the present study,
the metabolic phenotype variation related to GDM revealed
the down-regulation of fatty acid oxidation even in the first
trimester of GDM mothers. Actually, the decreased fatty
acid oxidation may already present in GDM women before
gestation. As shown in Table 1, significant higher pre-
pregnancy BMI values were observed in the GDM women
compared to the controls, indicating that the women with
GDM have a higher rate of obesity before gestation. Evi-
dence indicated that obesity causes a decrease in fatty acid
oxidation, which contributes to lipid accumulation within
the cells, conferring more susceptibility to cell dysfunction
and increasing the risk of type 2 diabetes mellitus [30].

The content of pyruvate (Figure 2(d)), a product of gly-
colysis, was significantly higher in the GDM group than the
control group. Approximately, 16-20% of plasma pyruvate
stems from alanine, which results in a strong positive corre-
lation between alanine and pyruvate (Figure 3) [31]. In this
study, the serum level of alanine was significantly higher in
the GDM women than the controls. The elevated alanine, a
highly gluconeogenic amino acid, was proved to contribute
to the glucose intolerance and insulin resistance [32].

Correlation analysis revealed that the acyl carnitines
showed strong correlations with dehydroepiandrosterone
(Figure 3(a)). Dehydroepiandrosterone is a natural steroid
hormone produced from cholesterol by the adrenal glands
[33]. Consolidated data showed that the dehydroepiandros-
terone regulated the metabolism of lipid compounds
[34–36]. Hepatocytes treated by dehydroepiandrosterone
exhibited a decline in acyl carnitines, which reflected the
decline in fatty acid catabolism [37]. The strong correlations
existed between dehydroepiandrosterone and acyl carnitines
indicated that dehydroepiandrosterone may regulate the oxi-
dation of fatty acids by regulating the metabolism of acyl
carnitine, thus regulating the whole lipid metabolism net-
work. The low serum level of dehydroepiandrosterone in
the first trimester of pregnancy (Figure 2(d)) might be one
of the reasons why GDM mother has a higher risk of lipid
metabolism disorder and cardiovascular disease. Besides
the regulation of lipid metabolism, dehydroepiandrosterone
was also proved to decrease hyperglycemia and increase

insulin sensitivity [38, 39]. Administration of dehydroepian-
drosterone can decrease the levels of hepatic gluconeogenic
enzyme [39]. Cho et al. proved that dehydroepiandrosterone
may suppress gluconeogenesis by increasing Akt phosphor-
ylation [40].

On the other hand, the significantly variated clinical
phenotypes mainly involved in the increased risk of cardio-
vascular disease, inflammation, and iron deficiency anemia.
Actually, cardiovascular risk postpartum of GDM women
has been widely proved and gained widespread attention.
As reported in a previously published systematic review,
the GDM women have a two-fold higher risk of cardiovascu-
lar events postpartum compared with their peers [5]. This
risk is not dependent upon intercurrent type 2 diabetes
and is apparent within the first decade after pregnancy.
Thus, even without progressing to type 2 diabetes, women
with GDM comprise an at-risk population for cardiovascu-
lar disease [5]. Studies have shown that platelets play an
important role in the intercellular community, immuniza-
tion, and inflammatory activity [41]. Previous literature
reports showed that women with GDM had significantly
higher values of platelet than healthy pregnant women in
the second trimester [42]. In the present study, the high
platelet level of GDM was observed in the first trimester of
pregnancy. Besides the platelet indices, leukocyte, neutro-
phils, and C-reactive protein were also significantly higher
in the GDM group than the control group, which was also
consistent with the research results reported in the literature.
All these indicated that pregnant women with GDM had
higher levels of inflammation even in their early pregnancy.

Serum transferrin is essential for the regulation of iron
metabolism. It is responsible for the transport of iron in a
soluble, nontoxic form among different tissues and organs.
In this study, serum transferrin levels were significantly
higher in the diabetic group than in the control group. Both
iron deficiency and hypoxia were proved to increase the
serum levels of transferring [43–45]. Considering that there
was no significant difference in serum iron content between
the two groups, we hypothesized that hypoxia caused the up-
regulation of transferrin in GDM women. Hypoxia increased
the rate of erythropoiesis and also the level of circulating
transferring [45]. Chronic intrauterine hypoxia caused by
GDM was proved to be the most likely cause of stillbirths
during the last weeks of pregnancy [46]. The high serum
transferrin level suggested that hypoxia may occur in the
first trimester of GDMmothers. Since transferrin is the main
transport protein for iron, levels of total ion binding capacity
can be estimated by multiplying the transferrin concentra-
tion by a converting factor. Consistent with transferrin, the
total ion binding capacity also presented a significantly
higher level in GDM women [44]. The other two indices,
including iron saturation and transferrin saturation, are neg-
atively correlated with transferring [44]. The negative rela-
tionships are given an explanation of the lower levels of
iron saturation and transferrin saturation in GDM women.

Besides these findings above, several limitations also
need to be addressed in this study. First, this study is a
single-hospital center clinical study that only included Chi-
nese pregnant women. Therefore, the predictive phenotype
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panel cannot be directly applied to the other GDM popula-
tion or to other ethnic groups. Second, as a pilot study, the
number of participants was relatively small. The predictive
phenotype panel needs to be validated in larger sample sizes
and in broader populations. Third, this study only looked at
data from a single point in the first trimester and did not
track changes of the predictive phenotype panel throughout
the whole pregnancy.

5. Conclusions

In summary, biomarkers were explored for the early diagno-
sis of GDM in the first trimester. A phenotype panel was
established for the early diagnosis of GDM based on the
serum concentrations of glucose, uric acid, DL 11 : 0-iso2,
L-phenylalanine, and direct bilirubin, with AUC 0.83 (95%
CI: 0.76-0.90). Binary logistic regression analysis revealed
that uric acid and C-reactive protein levels were the risk fac-
tors of GDM, while DL 11 : 0-iso2 and L-phenylalanine
levels were the protective factors of GDM. The current find-
ings suggested that women with GDM exhibited broad-scale
perturbation of metabolic and clinical phenotypes even in
the first trimester of pregnancy. Through further validation
with a larger sample size, the phenotype panel established
in this study is expected to be clinically used for the early
warning and diagnosis of GDM in the first trimester of
pregnancy.
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