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Background and Aims. Men who have sex with men (MSM) are at high risk of HIV infection. The nonhomologous end joining
(NHEJ) pathway is the main way of double-stranded DNA break (DSB) repair in the higher eukaryotes and can repair the
DSB timely at any time in cell cycle. It is also indicated that the NHEJ pathway is associated with HIV-1 infection since the
DSB in host genome DNA occurs in the process of HIV-1 integration. The aim of the present investigation was to evaluate
associations of single-nucleotide polymorphisms (SNPs) in NHEJ pathway genes with susceptibility to HIV-1 infection and
AIDS progression among MSM residing in northern China. Methods. A total of 481 HIV-1 seropositive men and 493 HIV-1
seronegative men were included in this case-control study. Genotyping of 22 SNPs in NHEJ pathway genes was performed
using the SNPscan™ Kit. Results. Positive associations were observed between XRCC6 rs132770 and XRCC4 rs1056503
genotypes and the susceptibility to HIV-1 infection. In gene-gene interaction analysis, significant SNP-SNP interactions of
XRCC6 and XRCC4 genetic variations were found to play a potential role in the risk of HIV-1 infection. In stratified analysis,
XRCC5 rs16855458 was significantly associated with CD4+ T cell counts in AIDS patients, whereas LIG4 rs1805388 was linked
to the clinical phases of AIDS patients. Conclusions. NHEJ gene polymorphisms can be considered to be risk factors of HIV-1
infection and AIDS progression in the northern Chinese MSM population.

1. Introduction

Acquired immune deficiency syndrome (AIDS) due to the
infection of human immunodeficiency virus (HIV) is a
chronic infectious disease and continues to be a major global
public health issue. There were approximately 37.7 million
people globally and 1.045 million people in China living with
HIV by the end of 2020 [1]. The significant increase in the

proportion of behavior spread of men who have sex with
men (MSM) is the dominant pathway of all kinds of HIV
infection routes. The individuals with different susceptibility
to HIV infection and clinical disease progression arise from
different genetic backgrounds of the host [2]. The finding of
AIDS-related genes with single-nucleotide polymorphisms
(SNPs) is an important breakthrough that can help us to
explore the role of host genetic background in HIV
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infection, reveal the pathogenesis of AIDS, predict the dis-
ease process, and develop new drugs and vaccines [3].

Double-stranded DNA break (DSB) is one of the main
reasons for the gene mutation and chromosome break and
plays an important role in tumorigenesis and progression
of tumors [4]. The nonhomologous end joining (NHEJ)
pathway is the main approach of DSB repair (DSBR) in
the higher eukaryotes and can repair DSBs timely at any
time in cell cycle [5, 6]. There are five core genes (XRCC7,
XRCC6, XRCC5, XRCC4, and LIG4) in the NHEJ pathway
that encodes five proteins (DNA-PK, Ku70, Ku80, XRCC4,
and LIG4), respectively. Studies have shown that NHEJ gene
polymorphisms are associated with susceptibility to a wide
variety of cancers and disease progression. For instance,
XRCC7 gene polymorphisms play an important role in pros-
tate cancer [7], bladder cancer [8], liver cancer [9], thyroid
cancer [10], and lung cancer [11]. The other gene polymor-
phisms such as XRCC4, XRCC5, XRCC6, and LIG4 SNPs are
also associated with many different types of cancers [12–15].

It has been indicated that the NHEJ pathway is associ-
ated with HIV-1 infection because the DSB in host genome
DNA occurs in the process of HIV-1 integration [16]. How-
ever, the role of SNPs in NHEJ genes and their importance
in HIV-1 infection and AIDS progression remain unclear.
In this study, we conducted a case-control study in the
northern Han Chinese population to investigate associations
of 22 SNPs in XRCC7, XRCC6, XRCC5, XRCC4, and LIG4
genes with the risk of HIV-1 infection and the progression
of AIDS. Furthermore, a gene-gene interaction analysis was
conducted to explore the role of combined effects of SNPs
in the risk of HIV-1 infection.

2. Materials and Methods

2.1. Subjects. A total of 481 HIV-1 seropositive men and 493
health controls were selected for this study. The study partic-
ipants were all of Han descents and had lived in Harbin,
Heilongjiang Province, in North China for at least three gen-
erations. All participants were not genetically related within
three generations.

481 HIV-1 seropositive men were recruited from Hei-
longjiang Center for Disease Control and Prevention. The
age of the subjects ranged from 16 to 75 years (mean age
± SD, 35:3 ± 11:55), and the average CD4+ T lymphocyte
count at that time point was 335 cells/μl (range, 3-1038
cells/μl). All subjects had acquired HIV-1 infection through
male-male homosexual transmission. These patients were
categorized as category 1 (T lymphocytes < 350 cells/μl) or
category 2 (T lymphocytes > 350 cells/μl) by the CD4+ T
lymphocyte count and as category A (clinical phase III
+IV) or category B (clinical phase I+II) by the clinical stage.

493 HIV-1 seronegative men age-matched to the HIV-1
patients were randomly selected as the control group from
the comprehensive medical examination population of the
Second Affiliated Hospital of Harbin Medical University.
The age of the uninfected controls ranged from 16 to 75
years (mean age ± SD, 35:3 ± 11:59). All participants pro-
vided informed consent approved by local ethics review
board.

2.2. SNP Selection and Genotyping. 22 candidate SNPs in
NHEJ pathway genes were included in the present study.
Among them, two SNPs (rs7830743 and rs7003908) were
from XRCC7, four SNPs (rs132770, rs5751129, rs2267437,
and rs132774) were from XRCC6, eight SNPs (rs828907,
rs705649, rs16855458, rs3770502, rs9288516, rs3835,
rs1051677, and rs2440) were from XRCC5, six SNPs
(rs1056503, rs6869366, rs2075685, rs10040363, rs963248,
and rs35268) were from XRCC4, and two SNPs (rs1805388
and rs1805389) were from LIG4.

Genomic DNA was extracted from 200μl of peripheral
blood of all participants using the QIAamp blood kit (Qia-
gen, Germany) according to the manufacturer’s protocol.
All 22 SNPs were genotyped in 481 HIV-1-infected and
493 HIV-1-uninfected individuals using a custom-designed
48-Plex SNPscan™ Kit (supplied by Genesky Bio-
technologies Inc., Shanghai, China), according to the
method of high-throughput SNP genotyping utilizing dou-
ble ligation and multiplex fluorescence PCR. For quality
control, a 5% random sample of cases and controls was
genotyped twice to verify the genotyping accuracy; the
reproducibility was 100%.

2.3. Statistical Analysis. The genotype and allele frequencies
were calculated through directly counting the numbers after
the genotypes of the cases and controls were determined. A
chi-square test was used for examining the deviation from
Hardy-Weinberg’s equilibrium (HWE) for all SNPs of the
control group, the association between genotype frequencies
and susceptibility to HIV-1 infection, and the association
between the genotype frequencies and clinical features (such
as the CD4+ T lymphocyte count and clinical stage) of the
case group. Odds ratios (ORs) and 95% confidence intervals
(95% CI) were estimated as the relative risk associated with
SNPs. The generalized multifactor dimensionality reduction
(GMDR) software [17] was applied to assess SNP-SNP inter-
actions. SPSS 23.0 software (IBM-SPSS, Inc., Chicago, IL,
USA) was used for all statistical analyses. The analyses of
linkage disequilibrium (LD) and the haplotype frequencies
were performed using the HaploView software [18]. The dif-
ferences with a P value less than 0.05 were considered statis-
tically significant.

3. Results

3.1. Hardy-Weinberg Equilibrium Test. The success rates of
genotyping were >98% for all SNPs. As shown in Table 1,
all 22 SNPs did not deviate from the Hardy-Weinberg equi-
librium in the control group (P > 0:05).

3.2. Associations of NHEJ Gene Polymorphisms with HIV-1
Infection. To explore the possible associations, the genotype
distribution of 22 SNPs was investigated. Then, differences
of genotype frequencies between cases and controls were
analyzed under three genetic models (codominant model,
dominant model, and recessive model). As shown in
Figure 1, a significant association was found for XRCC6
rs132770 under codominant (P = 0:005, OR = 10:51, 95%
CI: 2.000-55.251) and recessive (P = 0:006, OR = 10:45,
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95% CI: 1.986-54.933) genetic models. In addition, the geno-
type TT of XRCC4 rs1056503 showed significant association
with increased susceptibility of HIV-1 infection in the
codominant model (TT vs. GG, P = 0:035, OR = 1:698,
95% CI: 1.037-2.779) and recessive model (TT vs. TG+GG,
P = 0:028, OR = 1:707, 95% CI: 1.060-2.750). However, no
association with HIV-1 infection was observed in any
genetic model for the remaining 20 SNPs (P > 0:05).

3.3. Analysis of the SNP-SNP Interaction. The GMDR
method was used to study the association of 10 SNPs in
XRCC6 and XRCC4 genes with high-order interactions on
HIV-1 infection. Through a 10-fold cross-validation, the
best four-locus model involving XRCC6 (rs2267437) and
XRCC4 (rs10040363, rs963248, and rs1056503) was identi-
fied (Figure 2). In order to obtain the ORs for joint effects
of the four SNPs on HIV-1 infection, traditional statistical
methods were applied to this four-locus model to aid in
interpretation, which identified three significant genotype
combinations from all possible high-risk genotype combina-
tions. In this four-locus (rs1056503-rs2267437-rs10040363-
rs963248) model, the ORs for three significant high-risk
genotype combinations (TT)-(CC)-(AG/GG)-(TC/CC),
(TT)-(CC)-(AA)-(TC/CC), and (TT)-(CC)-(AA)-(TT) were
6.667 (P = 0:035), 7.333 (P = 0:026), and 6.667 (P = 0:035),
respectively (Table 2).

3.4. Analysis of Haplotype Associations. LD between SNPs in
NHEJ genes was analyzed using HaploView software. There
was strong LD among four SNPs in XRCC6 gene, eight SNPs
in XRCC5 gene, six SNPs in XRCC4 gene, and two SNPs in
LIG4 gene, respectively. There were no significant differ-
ences in frequencies of all haplotypes between HIV-1-
infected cases and healthy controls (P > 0:05). Table 3 shows
all blocks and haplotypes identified and the frequencies of
these haplotypes.

3.5. Associations of NHEJ Gene SNPs with CD4+ T Cell
Count and Clinical Phase in AIDS Patients. To investigate
the relationship between NHEJ gene polymorphisms and
AIDS progression, differences in allele frequencies were ana-
lyzed between subgroups of HIV-1-infected cases which
were divided using CD4+ T lymphocyte count and clinical
stage as indicators, respectively. The CD4+ T cell counts of
HIV-1-infected cases ranged from 3 to 1038 cells/μl
(mean ± SD, 335:57 ± 198:79). The associations between
SNPs and CD4+ T cell counts were used to assess the influ-
ence of gene polymorphisms on the immunity status of
patients. As shown in Table 4, there were significant differ-
ences in genotype frequencies between different subgroups
of cases for XRCC5 rs16855458 and LIG4 rs1805388
(P < 0:05). In detail, the subjects with AA or AC of
rs16855458 have a significantly lower CD4+ T lymphocyte
count, compared to subjects with CC genotype (P = 0:025,
OR = 1:538, 95% CI: 1.054-2.243). The subjects with AA or
AG of rs1805388 have a later clinical stage of AIDS, com-
pared to subjects with GG genotype (P = 0:036, OR = 1:506
, 95% CI: 1.027-2.209). However, other SNPs were not asso-
ciated with the CD4+ T lymphocyte count and clinical stages

(P > 0:05). These results suggested that rs16855458 and
rs1805388 were associated with the clinical features and pro-
gression of AIDS in the northern Chinese population.

4. Discussion

According to the molecular mechanism of HIV-1 infection,
viral DNA is inserted into the host genomic DNA in the pro-
cess of HIV-1 integration. The integration process was
equivalent to genomic DNA with DSBs in host cells under
the action of HIV-1, and then, the signal of damage repair
would start the NHEJ pathway. For example, the DNA-PK
protein interacts with HIV-1 Tat to regulate HIV-1 replica-
tion and transcription [19, 20]. Therefore, we believed that
the NHEJ genes were involved in HIV-1 infection and the
disease progression. To the best of our knowledge, this com-
prehensive study is the first to systematically evaluate the
association between the polymorphisms in NHEJ genes
and the susceptibility to HIV-1 infection and the progression
of AIDS.

In this study, the differences of genotype frequencies of
XRCC6 rs132770 and XRCC4 rs1056503 were found
between the cases and the controls under different genetic
models. Our results implied a positive association of SNPs
in NEHJ genes with the susceptibility to HIV-1 infection in
the northern Chinese MSM population. The XRCC6 gene
encodes Ku70 protein, which functions as a single-stranded
DNA- and ATP-dependent helicase and may be involved

Table 1: Hardy-Weinberg equilibrium test for 22 NHEJ gene SNPs
in controls.

Gene Chra SNPs Major/minor allele P for HWETb

XRCC7
8 rs7830743 A/G 0.248

8 rs7003908 A/C 0.780

XRCC6

22 rs5751129 T/C 0.677

22 rs2267437 C/G 0.178

22 rs132770 G/A 0.468

22 rs132774 G/C 0.568

XRCC5

2 rs828907 G/T 0.307

2 rs705649 G/A 0.185

2 rs16855458 C/A 0.762

2 rs3770502 C/T 0.501

2 rs9288516 T/A 0.504

2 rs3835 G/A 0.529

2 rs1051677 T/C 0.920

2 rs2440 A/G 0.055

XRCC4

5 rs6869366 T/G 0.936

5 rs2075685 G/T 0.476

5 rs10040363 A/G 0.247

5 rs963248 C/T 0.127

5 rs35268 T/C 0.397

5 rs1056503 G/T 0.051

LIG4
13 rs1805388 G/A 0.810

13 rs1805389 G/A 0.994
aChr: chromosome; bHardy-Weinberg equilibrium test.
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in the repair of nonhomologous DNA ends such as that
required for DSB repair. The Ku70 protein also interacts
with HIV-1 integrase and is beneficial to virus integration

and replication in the process of the HIV-1 infection [21,
22]. Given that rs132770 locates close to the translation
starting point in the XRCC6 promoter, one of the possible
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Figure 1: The genotype distribution map of NHEJ gene polymorphisms and association analysis of HIV-1 infection risk. The bar marked by
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reasons for the positive association is that rs132770 affects
the expression of Ku70 mRNA; or rs132770 may be in high
linkage with some functional variants conferring the etiology
of HIV-1 infection. Similar to our findings, it has been
reported that different XRCC6 genotypes may contribute to
susceptibility to another disease related to virus infection,
namely, hepatocellular carcinoma (HCC) [23–25].

The XRCC4 gene encodes XRCC4 protein, which can
activate and enhance the activity of LIG4 protein and play
an important role in NEHJ repair pathway [26]. Recently,

XRCC4 SNPs have been reported to be associated with the
risk of a variety of diseases. For example, one study found
that XRCC4 mutations may lead to the occurrence of small
head dwarfism [27]. Several other studies have shown that
SNPs in XRCC4 gene could affect the susceptibility and pro-
gression of virus-related HCC [28–30]. Our study implicated
that XRCC4 rs1056503 was associated with HIV-1 infection,
which was consistent with the above reports. Rs1056503 is
located in the 5′ regulatory region of XRCC4 gene, which
may cause changes in mRNA expression level and XRCC4
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protein function. Then, functional changes in XRCC4 pro-
tein may affect NHEJ biological processes in DSBR. Further
experimental assay should be performed to solidify our spec-
ulations. In addition, in the analysis of SNP-SNP interaction,
our results provide evidence for a four-locus interaction
between XRCC6 and XRCC4 variants in the risk of HIV-1
infection and further highlight the role of multilocus effects
in the genetic component of HIV-1 infection.

As an indicator of AIDS clinical characteristics, CD4+ T
cell count reflects the number of immune cells in patients.

The AIDS patients with CD4+ T cell count less than 350
cells/μl should be given antiretroviral therapy or other treat-
ments according to the World Health Organization (WHO)
[31–33]. In the present study, we found a significant differ-
ence in frequencies of XRCC5 rs16855458 genotypes
between the two subgroups of cases, where genotypes AA
and AC were associated with lower numbers of CD4+ T
cells. These results suggest that XRCC5 rs16855458 is
involved in the progression of AIDS. The XRCC5 gene
encodes Ku80 protein which forms a Ku heterodimer with

Table 2: Combined effects of rs1056503, rs2267437, rs10040363, and rs963248 on HIV-1 infection.

rs1056503 rs2267437 rs10040363 rs963248 P value OR (95% CI)

TT CG+GG AG+GG TC+CC — 1.000

TT CC AG+GG TC+CC 0.035 6.667 (1.145-38.833)

TT CG+GG AA TC+CC 0.848 1.200 (0.185-7.770)

TT CG+GG AG+GG TT 1.000 1.000 (0.125-7.995)

TT CC AA TC+CC 0.026 7.333 (1.272-42.294)

TT CC AG+GG TT 0.756 0.667 (0.051-8.639)

TT CG+GG AA TT 0.642 24.556 (1.991-302.866)

TT CC AA TT 0.035 6.667 (1.145-38.833)

Italicized values indicate statistical significance.

Table 3: The frequencies of haplotypes of NHEJ genes in cases and controls.

Gene Haplotype Frequency Haplotype frequencies in the cases Haplotype frequencies in the controls Chi-square P

XRCC6 TCGG 0.671 0.665 0.677 0.309 0.578

TGGG 0.237 0.233 0.241 0.175 0.675

CCAC 0.070 0.081 0.060 3.181 0.075

CCGC 0.021 0.021 0.022 0.012 0.912

XRCC5 Block 1

GG 0.771 0.777 0.765 0.335 0.563

TA 0.223 0.219 0.227 0.169 0.681

Block 2

TG 0.468 0.470 0.466 0.040 0.841

AG 0.452 0.448 0.456 0.149 0.699

TA 0.080 0.082 0.078 0.115 0.735

Block 3

TA 0.693 0.705 0.683 1.101 0.294

CG 0.165 0.164 0.166 0.009 0.923

TG 0.142 0.132 0.152 1.649 0.199

XRCC4 Block 1

TG 0.806 0.806 0.805 0.007 0.931

TT 0.141 0.135 0.147 0.597 0.440

GT 0.053 0.059 0.048 1.095 0.295

Block 2

CT 0.555 0.536 0.573 2.552 0.110

TT 0.308 0.327 0.290 3.095 0.079

CC 0.133 0.132 0.134 0.020 0.888

LIG4 GG 0.814 0.815 0.812 0.035 0.852

AA 0.102 0.101 0.104 0.030 0.863

AG 0.084 0.084 0.084 0.005 0.941
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Ku70 protein. Functional studies showed that changes in
expression levels of Ku80 protein are the main reason of
tumor development and can be used as a predictor of patient
survival as well as treatment outcome [34, 35]. In the process
of HIV-1 infection, the XRCC5 gene is closely related to
HIV-1 integration and translation [36–38]. We propose that
the rs16855458 in XRCC5 intron may regulate the transcrip-
tion and expression of the XRCC5 by alternative splicing,
which interacts with HIV-1 to promote its integration and
translation, leading to the decrease in the CD4+ T lympho-
cyte count and the AIDS acceleration. Similar to our find-
ings, the polymorphisms of XRCC5 gene have also been
reported to be associated with virus-related HCC [24].

In this study, the HIV-1 seropositive cases were divided
into two subgroups based on clinical stage, which is a clinical
feature of AIDS and directly reflects the disease progression.
The clinical symptoms of patients in phases I and II are mild
and just show HIV-1 antibody positive. On the contrary,
patients in phases III and IV have serious clinical symptoms
such as nervous system lesions, continuous fever and diar-
rhea, sepsis, and various kinds of tumors caused by the loss
of immune functions and should be timely given the antire-
troviral therapy or other treatments. The results of our study
revealed that there was a significant difference in genotype
frequencies of LIG4 rs1805388 between MSM cases in clini-
cal phase I+II and those in clinical phase III+IV, and AA/
AG genotypes could significantly promote the disease pro-
gression of AIDS. The LIG4 gene encodes LIG4 protein,
which connects the DSB end and completes NHEJ repair.
Previous studies have shown that LIG4 gene polymorphisms
are associated with many clinical features of lung and ovar-
ian cancer, such as treatment outcome, progression-free sur-
vival, and overall survival [39, 40]. Mutations in the LIG4
gene can not only lead to abnormal development of immune
defects but also cause severe combined immunodeficiency
disease in normal individuals [41]. The rs1805388 is located
in the exon region of LIG4 gene, which is a missense muta-
tion of threonine and isoleucine. Here, we propose that the
reason for this association was the functional changes of
LIG4 protein resulting from the genetic variant directly
affecting the clinical stage of AIDS.

Several limitations of this study should be considered.
First, there is a lack of information on critical factors in
MSM cases, including history of injection drug use, clinical
data on viral loads, and other clinical manifestations. Sec-
ond, cases and controls were not exposed to the same condi-
tions, because we could not collect samples of healthy MSM
controls due to privacy regulations.

For future studies, we recommend that the findings of
this study should be expanded to other ethnic groups in dif-
ferent regions in the world, beyond the northern Chinese
Han population.

5. Conclusions

The study confirmed that NHEJ gene polymorphisms played
an important role in HIV-1 infection and AIDS progression
among MSM populations in northern China. Our study
opens a new field for further investigation of underlying

functional mechanisms of the association between NHEJ
gene polymorphisms and HIV-1/AIDS.
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