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Purpose. Coronary artery disease (CAD) is one of the major cardiovascular diseases and the leading cause of death globally. Blood
lipid profile is associated with CAD early risk. Therefore, we aim to establish machine learning models utilizing blood lipid profile
to predict CAD risk.Methods. In this study, 193 non-CAD controls and 2001 newly-diagnosed CAD patients (1647 CAD patients
who received lipid-lowering therapy and 354 who did not) were recruited. Clinical data and the result of routine blood lipids tests
were collected. Moreover, low-density lipoprotein cholesterol (LDL-C) subfractions (LDLC-1 to LDLC-7) were classified and
quantified using the Lipoprint system. Six predictive models (k-nearest neighbor classifier (KNN), logistic regression (LR),
support vector machine (SVM), decision tree (DT), multilayer perceptron (MLP), and extreme gradient boosting (XGBoost))
were established and evaluated by the confusion matrix, area under the receiver operating characteristic (ROC) curve (AUC),
recall (sensitivity), accuracy, precision, and F1 score. The selected features were analyzed and ranked. Results. While predicting
the CAD development risk of the CAD patients without lipid-lowering therapy in the test set, all models obtained AUC values
above 0.94, and the accuracy, precision, recall, and F1 score were above 0.84, 0.85, 0.92, and 0.88, respectively. While
predicting the CAD development risk of all CAD patients in the test set, all models obtained AUC values above 0.91, and the
accuracy, precision, recall, and F1 score were above 0.87, 0.94, 0.87, and 0.92, respectively. Importantly, small dense LDL-C
(sdLDL-C) and LDLC-4 play pivotal roles in predicting CAD risk. Conclusions. In the present study, machine learning tools
combining both clinical data and blood lipid profile showed excellent overall predictive power. It suggests that machine
learning tools are suitable for predicting the risk of CAD development in the near future.

1. Introduction

Coronary artery disease (CAD) is a cardiovascular disease
(CVD) which has been found to be the leading cause of mor-
tality worldwide [1] and caused by atherosclerosis, which
can be manifested by typical symptoms such as stable
angina, unstable angina, myocardial infarction (MI), or sud-
den cardiac death without any preceding symptoms [2]. So

far, coronary angiography is the gold method for CAD diag-
nosis, but it is an invasive and unpractical for universal
screening [3]. Hence, finding cost-effective methods to pre-
dict CAD are a major challenge in public health.

Being a complex disease, CAD is caused by genetic and
environmental factors as well as the interactions between
these factors [4] The well-known risk factors for CAD devel-
opment include hypertension, dyslipidemia, older age,
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diabetes mellitus, overweight, and smoking [5, 6]. Further-
more, the prevalence of CAD varies greatly according to
the geographical locations, ethnicity, and gender [7].

Besides that, a previous research study indicated that
low-density lipoprotein cholesterol (LDL-C) is a primary
risk factor for CVD [8], and lowering LDL-C levels with
medications have been proved to be effective for primary
and secondary prevention [9]. LDL-C is composed of het-
erogeneous particles with different density and size, which
could be classified into two subgroups including small dense
LDL-C (sdLDL-C) and large buoyant LDL-C (lbLDL-C)
[10]. Moreover, LDL-C was divided into 7 subfractions
(LDLC-1 to LDLC-7), of which LDLC-1 and LDLC-2 belong
to lbLDL-C, while LDLC-3 to LDLC-7 is defined as sdLDL-
C, according to their density and size [10]. Over the past few
years, many preventive and therapeutic methods have sub-
stantially improved the prognosis of patients with CAD or
other CVD [2, 11]. However, the risk of such diseases
remains high, and their progression could be halted only in
a few patients by using drugs including aspirin, statins, and
β-blockers [12]. When lowering LDL-C levels to optimal
levels, the risk of cardiovascular events still exists [13]. The
Atherosclerosis Risk in Communities (ARIC) study showed
that sdLDL-C levels may partly account for this residual risk.
Since sdLDL-C particles contain less cholesterol and are
smaller, increased sdLDL-C levels represent an increase in
the amount of atherogenic LDL particles, which LDL-C
levels may not represent [14]. In addition, a previous
research study has shown that sdLDL-C is considered as
an important biomarker for predicting CVD [15]. It is
reported that sdLDL-C has stronger transfer ability moving
from the vessel lumen into the subintimal space [16], weaker
binding affinity to LDL-C receptors [17], and longer plasma
residence time [18]. Moreover, Srisawasdi et al. reported that
the ratio of sdLDL-C/lbLDL-C was a potential biomarker for
assessing lipid metabolic status in patients with metabolic
syndrome [19]. Numerous epidemiologic studies and ran-
domized clinical trials have suggested that elevated LDL-C
is a major cause of CAD and the target to be controlled to
reduce atherosclerotic cardiovascular disease risk [6, 20,
21]. However, a large proportion of atherosclerosis and
CAD patients have normal range of blood LDL-C level.
Recent large cohort studies have demonstrated that using a
simple homogeneous sdLDL-C assay can predict the cardio-
vascular risk regardless of LDL-C level [15, 22–24]. These
findings suggest that total LDL-C level cannot completely
represent its biological effect and cannot fully represent
blood lipid levels. Although many studies have shown that
10-year Framingham risk score and atherosclerotic CVD
risk score were developed based on hypertension, LDL-C,
HDL-C, TG, TC, age, smoking, and diabetes risk factors
and used to predict CVD risk [25, 26], these prediction
models have been reported that they have limitations to esti-
mate future CVD risk [27, 28]. Hence, it is urgent to explore
more potential risk factors. Therefore, more attention should
be paid to explore the relationship between LDL-C subfrac-
tions and CAD risk, which may help to elucidate the differ-
ences among patients with CAD, and to establish the early
warning to assess the risk of CAD.

In this study, we recruited 193 non-CAD controls and
2001 newly CAD patients including 1647 CAD patients
who received lipid-lowering therapy and 354 who did not,
collected their clinical features, and measured the concentra-
tion of blood lipid profile, including total cholesterol (TC),
triglyceride (TG), high density lipoprotein cholesterol
(HDL-C), LDL-C, and LDL-C subfractions. We aim to
establish and evaluate six machine learning tools combining
clinical features and blood lipid profile could predict the risk
of CAD patients who did not receive lipid-lowering therapy
or all CAD patients including 1647 CAD patients who
received lipid-lowering therapy and 354 who did not.

2. Materials and Methods

2.1. Study Population. A total of 2001 newly diagnosed CAD
consecutive patients including 1647 CAD patients who
received lipid-lowering therapy and 354 who did not, as well
as 193 non-CAD controls were recruited from the First Peo-
ple’s Hospital of Pingdingshan and Luohe Central Hospital,
from July 2018 to October 2019. The inclusion criteria for
participants were as follows: (i) CAD patients were diag-
nosed by coronary angiography, which is defined as coro-
nary artery stenosis ≥50% in at least one main vessel or its
major branches as described [29]; (ii) the non-CAD controls
were diagnosed by coronary angiography without any lumi-
nal stenosis or plaque in main vessels and branches; (iii) the
age of all participates >18 years. The exclusion criteria were
as follows: (i) patients who had prior CAD or revasculariza-
tion (percutaneous or surgical) [30]; (ii) participants who do
not understand this research study [3]; (iii) participants who
had severe medical disease, such as liver or kidney disease,
thyroid disease, and malignant diseases [29], as well as
immune-related sickness, nephropathic diseases, and respi-
ratory diseases and also physiological conditions related to
immune responses such as pregnancy [31]. The exclusion
criteria for the non-CAD controls were the same as what
mentioned above. Clinical information of all participants
was collected including age, gender, body mass index
(BMI), smoking and drinking status, and other diseases his-
tory such as hypertension and diabetes mellitus.

Informed consent was obtained from each participant
included in the study, and the study protocol conforms to
the ethical guidelines of the latest version of Declaration of
Helsinki, and the study protocol has been approved by Eth-
ical Committee of the First People’s Hospital of Pingding-
shan and Luohe Central Hospital.

2.2. Blood Lipid Profile Detection. Blood samples were col-
lected by serum separator tube and anticoagulant tube.
Plasma was separated immediately after collection by 800
× g centrifugation for 10min at 4°C. TC, TG, HDL-C,
LDL-C, and glucose were measured in the Department of
Clinical Laboratory. The reference ranges of TC, TG, HDL-
C, and LDL-C were defined by 2016 Chinese guideline for
the management of dyslipidemia in adults [32].

LDL-C subfractions were classified and quantified by
LDL subfractions kit of Shanghai Biotecan Pharmaceuticals
Co., Ltd. Briefly, the plasma mixed with liquid loading gel
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was added to the top of precast 3% polyacrylamide gel tubes.
After 30min of photopolymerization at room temperature,
samples were electrophoresed in electrophoresis apparatus
(Shanghai Biotecan Pharmaceuticals Co., Ltd.) for 70min
(3mA/tub). Then, the densitometry was determined by Gel
Scanner (Hunan Biotecan Medical Device Co., Ltd.). Last,
LDL-C was separated into 7 subfractions (LDLC-1 to
LDLC-7) as previously described [10].

2.3. Machine Learning Tools In Construction. In the present
study, six machine learning tools were established to predict
CAD risk, including k-nearest neighbor classifier (KNN)
model, logistic regression (LR) model, support vector
machine (SVM) model, decision tree (DT) model, multilayer
perceptron (MLP) model, and extreme gradient boosting
(XGBoost) model. Clinical characteristics and blood lipid
profile are fit in the models. These models were tuned using
a set of parameters, which were adjusted to obtain the aver-
age performance index. The tuning parameters of the six
prediction models are listed for the optimization of the
equations (Table S1). Python (version 3.8) was used as the
basic language in the whole model, and NumPy, pandas,
sklearn, XGBoost, and Matplotlib libraries were used to
process the data and establish the models.

When to predict the CAD development risk in patients
without lipid-lowering therapy, a total of 547 participants
(193 non-CAD controls and 354 CAD patients) were ran-
domly allocated into a training set (80%) and a test set
(20%). When to predict the CAD development risk in all
CAD patients, a total of 2194 participants (193 non-CAD
controls and 2001 CAD patients) were randomly allocated
into a training set (80%) and a test set (20%). In the training
set, StratifiedKFold (k = 5) was used, and various parameter
combinations were exhausted using grid search. For each
model, the confusion matrix, area under the receiver operat-
ing characteristic (ROC) curve (AUC), accuracy, recall (sen-
sitivity), precision, and F1 score were used to evaluate and
compare the comprehensive performance of feature selec-
tion [33]. AUC is the main metric in evaluating binary clas-
sifiers and shows the true positive rate against the false
positive rate [33]. Precision and recall are excellent metrics
for capturing the aspects of model performance [34]. The
F1 score takes the geometric mean of precision and recall
[35]. In addition, the feature score (F score) rankings were
measured by the total_gain metric in XGBoost model [3].

2.4. Statistical Analysis. Statistical analyses were performed
using GraphPad Prism (version 6.0; GraphPad Software,
Inc.) or SPSS 19.0 (IBM, NY, USA) and R 3.5.1 software.
Categorical variables were presented by numbers or propor-
tions, and differences in distribution between two groups
were analyzed by chi-squared test. Continuous variables
were presented using median with interquartile range
(IQR) because they are non-Gaussian distributions data
[36]. Nonparametric Mann–Whitney U test was used to
analyze the difference between two groups or Kruskal-
Wallis H test followed by Dunn’s post hoc test that was used
to analyze the difference among three groups. Correlation
analysis among CAD development, clinical features, and

blood lipid profile was conducted by the Pearson correlation
method. A P < 0:05 was considered statistically significant.

3. Results

3.1. Comparison of Clinical Characteristics between the Non-
CAD Controls and CAD Patients. The clinical characteristics
of all participants (193 non-CAD controls and 2001 CAD
patients) were collected in Table 1. The CAD patients were
older than the non-CAD controls. The median BMI of
CAD patients was significantly higher than that of the
non-CAD controls. Moreover, a noticeably higher preva-
lence of drinking, hypertension, and diabetes mellitus was
observed in CAD patients, comparing to non-CAD controls
(Table 1).

3.2. Comparison of the Blood Lipid Profile Levels among the
Non-CAD Controls, CAD Patients Who Received Lipid-
Lowering Therapy, and those Who Did Not. We detected
the levels of TC, TG, HDL-C, and LDL-C and compared
among 193 non-CAD controls (control group), 1647 CAD
patients who received lipid-lowering therapy (lipid-lowering
therapy group), and 354 CAD patients did not receive any
lipid-lowering therapy (non-lipid-lowering therapy group).
The level of TC is significantly higher in the two groups of
CAD patients than that in the control group. The level of
TG is the highest in the lipid-lowering therapy group than
that in the other two groups (Figures 1(a) and 1(b)). More-
over, HDL-C is the highest in the control group than in
the two groups of CAD patients, while LDL-C was the lowest
in the control group (Figures 1(c) and 1(d)). However, there
are no HDL-C and LDL-C differences between the two
groups of CAD patients.

In addition, we also compared the levels of LDL-C sub-
tractions (LDLC-1 to LDLC-7) among the three groups.
The level of LDLC-1 was significantly lower, while LDLC-2
was noticeably higher in the two groups of CAD patients
than that in the control group. The total lbLDL-C level was
only higher in the control group than in the other two
groups (Figures 2(a)–2(c)). The concentrations of LDLC-3,
LDLC-4, LDLC-5, and sdLDL-C are significantly higher in
both two groups of CAD patients than that in the control
group. Moreover, the concentrations of LDLC-4, LDLC-5,
and sdLDL-C are significantly higher in the lipid-lowering
therapy than that in the non-lipid-lowering therapy group.
However, both LDLC-6 and LDLC-7 showed no significant
differences among the three groups (Figures 2(d)–2(i)).

3.3. The Abnormal Rates of Blood Lipid Profile among in the
Non-CAD Controls and the CAD Patients Who Received
Lipid-Lowering Therapy and those Who Did Not. Besides
that, we found that the abnormal rates of TC, TG, HDL-C,
and LDL-C were 11.92%, 15.03%, 27.98%, and 4.66% in
the control group; 20.34%, 37.57%, 34.46%, and 15.25% in
the non-lipid-lowering therapy group; 19.31%, 47.42%,
35.03%, and 12.26% in the lipid-lowering therapy group
(Table 2), respectively. Moreover, we further investigated
the abnormal rates of LDL-C subfractions separately. Sur-
prisingly, the abnormal rates of LDLC-3, LDLC-4, and
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LDLC-5 were 80.79%, 76.27%, and 24.29% in the non-lipid-
lowering therapy group and 84.52%, 84.46%, and 32.67% in
the lipid-lowering therapy group, respectively. On the con-
trary, the abnormal rates of LDLC-3 (3.11%), LDLC-4
(1.04%), and LDLC-5 (0.52%) were very low in the control
group (Table 2).

3.4. Comparison of the sdLDL-C Subfractions among the
Non-CAD Controls, the CAD Patients Who Received Lipid-
Lowering Therapy, and those Who Did Not. According to
the above results, we found the very high abnormal rates
of LDLC-3 and LDLC-4 in the lipid-lowering therapy and
non-lipid-lowering therapy groups. However, it remains
unknown that whether the abnormal rates of LDLC-3 and
LDLC-4 in CAD patients with normal LDL levels are high
or not. Thus, we divided LDL-C normal and LDL-C high
subgroups among the three groups separately and detected
the abnormal rates of sbLDL-C subtractions in the two sub-
groups. Surprisingly, the abnormal rates of LDLC-3 and
LDLC-4 were still high in all CAD patients with normal
LDL-C levels. To be specific, the abnormal rates of LDLC-
3 and LDLC-4 were 82.98% and 84.43%, respectively, in
the lipid-lowering therapy group, while the abnormal rates
of LDLC-3 and LDLC-4 were 78.33% and 75.67%, respec-
tively, in the non-lipid-lowering therapy group. However,
the abnormal rates of these two LDL-C subfractions
remained low in the non-CAD controls with normal LDL-
C levels (Table 3). These results indicated that LDLC-3 and

LDLC-4 were the main components in the sbLDL-C sub-
tractions and may play an important role in CAD
development.

3.5. Correlation Analysis among CAD Risk, Clinical
Characteristics, and Blood Lipid Profile. In order to analyze
the correlation among clinical data, blood lipid profile, and
CAD risk, Pearson correlation analysis was employed to
evaluate the correlation among them (Figure 3). Since sex
and smoking had no significant differences between the
non-CAD controls and CAD patients (Table 1), and both
LDLC-6 and LDLC-7 were not noticeably expressed among
the three groups (Figures 2(g) and 2(h)), sex, smoking,
LDLC-6, and LDLC-7 were excluded in the Pearson correla-
tion analysis. We found that age (r = 0:2, p < 0:001), hyper-
tension (r = 0:32, p < 0:001), LDLC-3 (r = 0:4, p < 0:001),
LDLC-4 (r = 0:27, p < 0:001), and sdLDL-C (r = 0:36, p <
0:001) were significantly positively correlated with CAD,
while LDLC-1 (r = −0:21, p < 0:001) was significantly nega-
tively correlated with CAD. Moreover, TC was significantly
positively correlated with HDL-C (r = 0.3, p<0.001), LDL-
C (r = 0.89, p < 0:001), LDLC-1 (r = 0:38, p < 0:001),
LDLC-2 (r = 0:41, p < 0:001), LDLC-3 (r = 0:41, p < 0:001),
LDLC-4 (r = 0:35, p < 0:001), sdLDL-C (r = 0:42, p < 0:001
), and lbLDL-C (r = 0:38, p < 0:001). HDL-C had strongly
positive correlation with LDLC-1 (r = 0:4, p < 0:001),
LDLC-2 (r = 0:28, p < 0:001), and lbLDL-C (r = 0:38, p <
0:001). Meanwhile, LDL-C had significantly positive

Table 1: The clinical characteristics of 193 non-CAD controls and 2001 CAD patients.

Characteristics
Non-CAD controls

(n = 193)
CAD patients
(n = 2001) p value

Age (years)
(Median with IRQ)

52 (43-68) 64 (54-72.5) <0.0001

Gender 0.51

(i) Male 99 1076

(ii) Female 94 925

BMI (kg/m2)
(median with IRQ)

22.86 (20.83-26.04) 24.69 (23.40-27.24) <0.0001

Smoking 0.065

(i) Yes 24 354

(ii) No 169 1647

Drinking 0.008

(i) Yes 20 358

(ii) No 173 1643

Hypertension <0.0001
(i) Yes 43 1481

(ii) No 150 520

Diabetes mellitus <0.0001
(i) Yes 43 775

(ii) No 150 1226

Lipid-lowering therapy /

(i) Yes 0 1647

(ii) No 193 354

CAD: coronary artery disease; IRQ: interquartile range; BMI: body mass index; ∗p < 0:05 was considered to be significant.

4 Disease Markers



correlation with LDLC-1 (r = 0:44, p < 0:001), LDLC-2
(r = 0:49, p < 0:001), LDLC-3 (r = 0:45, p < 0:001), and
LDLC-4 (r = 0:31, p < 0:001), as well as sdLDL-C (r = 0:451
, p < 0:001) and lbLDL-C (r = 0:53, p < 0:001). In addition,
lbLDL-C had strongly positive correlation with LDLC-1
(r = 0:89, p < 0:001) and LDLC-2 (r = 0:87, p < 0:001), while
lbLDL-C was significantly negatively correlated with LDLC-
4 (r = −0:26, p < 0:001) and LDLC-5 (r = −0:25, p < 0:001).
Importantly, SdLDL-C had strongly positive correlation
with LDLC-3 (r = 0:86, p < 0:001), LDLC-4 (r = 0:92, p <
0:001), and LDLC-5 (r = 0:61, p < 0:001), while sdLDL-C
was significantly negatively correlated with LDLC-1
(r = −0:3, p < 0:001) (Figure 3).

3.6. Establish and Compare Six Machine Learning Models to
Predict CAD Development. On the one hand, in order to pre-
dict the CAD risk of patients who did not receive lipid-
lowering therapy, we firstly used XGBoost model to analyze
the importance of features including 7 clinical features (age,
sex, BMI, smoking, drinking, hypertension, and diabetes

mellitus) and 14 blood lipid profile (TC, TG, HDL-C,
LDL-C, sdLDL-C, lbLDL-C, LDLC-1 to LDLC-7, and
sdLDL-C/lbLDL-C), and the feature score (F score) rankings
were measured by the total_gain metric in XGBoost. How-
ever, only 16 factors (age, sex, BMI, smoking, drinking,
hypertension, TC, TG, HDL-C, LDL-C, sdLDL-C, lbLDL-
C, LDLC-1, LDLC-2, LDLC-4, and sdLDL-C/lbLDL-C) were
obtained in the rankings (Figure 4(a)). Among them,
sdLDL-C, LDLC-4, and hypertension ranked top 3 in the
feature importance rankings, while sex, TG, and lbLDL-C
ranked lower (Figure 4(a)). Therefore, these 16 factors were
enrolled into the six machine learning tools.

After that, a total of 547 participants (193 non-CAD
controls and 354 CAD patients without receiving lipid-
lowering therapy) were randomly allocated into a training
set (80%) and a test set (20%). StratifiedKFold (k = 5) was
used in the training set. After fitting in the training set, each
model is evaluated by the test set. For each model, the eval-
uation indicators used were the confusion matrix, AUC,
recall (sensitivity), precision, accuracy, and F1 score. The
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Figure 1: Comparison of blood lipids level among non-CAD controls and CAD patients who received lipid-lowering therapy or those who
did not. The different expressions of (a) TC, (b) TG, (c) HDL-C, and (d) LDL-C among three groups. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and
∗∗∗∗p < 0:0001.
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Figure 2: Continued.
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ROC curve is widely used to validate the performance of
prediction models, and the average AUC and 95% CI are
shown in Figures 4(b) and 4(c). In the training set, all
models had AUC values above 0.90 (Figure 4(b)), and the
accuracy, precision, recall, and F1 score were above 0.83,
0.87, 0.85, and 0.86, respectively (Table 4). Among them,
XGBoost model had the highest AUC (0.95), as wells as
the highest accuracy (0.90), precision (0.94), and F1 score
(0.92). In addition, the MLP model also obtained the same
highest F1 score (0.92) and the highest recall (0.91). Impor-
tantly, in the test set, all models obtained the AUC values
above 0.94 (Figure 4(c)), and the accuracy, precision, recall,
and F1 score were above 0.84, 0.85, 0.92 and 0.88, respec-
tively (Table 5). Interestingly, XGBoost still obtained the
highest AUC (0.98), accuracy (0.93), precision (0.93), recall
(0.96), and F1 score (0.94). Meanwhile, the DT model
obtained the same highest precision (0.93) and F1 score
(0.94).

On the other hand, in order to verify whether the six
machine learning tools combing clinical features and blood
lipid profile could predict the risk of all CAD patients
including 1647 CAD patients who received lipid-lowering
therapy and 354 who did not, we enrolled all CAD patients

in the six predictive models. We also used the XGBoost
model to analyze the importance of 21 features as above
mentioned. Finally, only 16 factors obtained the importance
ranking including age, BMI, smoking, drinking, hyperten-
sion, TC, TG, HDL-C, LDL-C, sdLDL-C, lbLDL-C, LDLC-
1, LDLC-2, LDLC-3, LDLC-4, and sdLDL-C/lbLDL-C.
Interestingly, sdLDL-C, LDLC-4, and sdLDL-C/lbLDL-C
ranked top 3 in the feature importance rankings, while
LDLC-2, LDLC-3, and smoking ranked lower (Figure 5(a)).
Thus, these 16 factors were enrolled into the six machine
learning tools.

After that, a total of 2194 participants (193 non-CAD
controls and 2001 CAD patients) were randomly allocated
into a training set (80%) and a test set (20%). In the training
set, all models obtained AUC values above 0.92
(Figure 5(b)), and the accuracy, precision, recall, and F1
score were above 0.89, 0.94, 0.89, and 0.93, respectively
(Table 6). Among them, XGBoost model had the highest
AUC (0.98), as well as the highest accuracy (0.95), recall
(0.98), and F1 score (0.97). Furthermore, the LR, SVM,
and DT model obtained the same highest precision (0.99).
MLP showed the same highest accuracy (0.95) and F1 score
(0.97). Importantly, in the test set, all models obtained the
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Figure 2: Comparison of LDL-C subfractions levels among non-CAD controls and CAD patients who received lipid-lowering therapy or
those who did not. The different expressions of (a) LDLC-1, (b) LDLC-2, (c) lbLDL-C, (d) LDLC-3, (e) LDLC-4, (f) LDLC-5, (g) LDLC-
6, (h) LDLC-7, and (i) sdLDL-C among three groups. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001.
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AUC values above 0.91 (Figure 5(c)), and the accuracy, pre-
cision, recall, and F1 score were above 0.87, 0.94, 0.87, and
0.92, respectively (Table 7). Interestingly, XGBoost still
obtained the highest AUC (0.98), accuracy (0.95), recall
(0.98), and F1 score (0.97). Moreover, KNN and XGBoost
obtained the same highest F1 score (0.97) and recall (0.98).
LR, SVM, and DT models all obtained the same highest pre-
cision (0.99). The results indicated that machine learning
tools combing clinical features and blood lipid profile
showed excellent performance to predict the CAD risk.

4. Discussion

In the past decades, a large number of studies have already
reported many possible CAD risk factors, such as BMI
[37], HDL-C, LDL-C, TG and TC [38], smoking, diabetes,
and hypertension [39], in order to early assess the risk of
CAD. Thus, in this study, we recruited 193 non-CAD con-
trols and 2001 CAD patients and collected related risk clin-
ical data to find out the potential risk factors for CAD. It has
been reported that obesity is a common cause of cardiovas-
cular deaths in the developed countries [40]. Moreover, dia-
betes has been observed to be associated with
hyperlipidemia, which is characterized by increased levels
of TC and decreased levels of HDL-C [41]. It has been
observed that diabetic patients have higher risk of suffering
from CAD than nondiabetic people [42]. Besides that,
hypertension has also been frequently associated with meta-
bolic disorders like insulin resistance or dyslipidemia, which
are also known to be the risk factors of CAD [43]. Similar to
the above-mentioned studies, in this study, we also found
that a significantly higher prevalence of BMI, hypertension,
and diabetes mellitus was observed in the CAD patients.

Besides that, increasing evidence suggests that inflamma-
tion plays an important role in the pathogenesis of CAD [44,
45]. Transforming growth factor-β1 (TGF-β1) is a multi-
functional cytokine that regulates cell growth, differentia-
tion, and matrix production and has a pivotal role in
wound healing [46]. The high expression of TGF-β1 level
was observed during the development of many human dis-
eases, such as periodontal disease [47] and CAD [48].
Matarese et al. reported that both TGF-β1 and vascular
endothelial growth factor (VEGF) played an important reg-
ulating role in the orchestration of the immune response in
periodontal disease [47]. Although the serum level of total
TGF-β1 was upregulated in the CAD patients than in the
control samples, Wang and Zhang have shown that the
AUC of serum levels of total TGF-β1 in the diagnosis of
CAD was only 0.5109 [49]. Moreover, expression of VEGF
is upregulated by hypoxia, inflammation, wound-healing,
and other pathological processes [50]. A previous study
showed that circulating levels of total VEGF-A and VEGF-
A165b in CAD patients were associated with syntax score,
indicating the severity and complexity of CAD [51]. More-
over, transglutaminase 2 (TG2), a protein cross-linking
enzyme according to Matarese and Curro, has showed a pos-
itive correlation between TG2 and RANKL/OPG mRNA
ratio, suggesting that TG2 may be involved in molecular
mechanisms of inflammatory response occurring in peri-
odontal disease [52]. In the acute myocardial infarction
(AMI), model study showed that TGF-β1-induced transition
of cardiofibroblasts into myofibroblast-like cells can be
attenuated by the TG2 inhibitor 1–155, suggesting a new
role for TG2 in regulating TGF-β1 signaling in addition to
its role in latent TGF-β1 activation [53]. Besides that,
cholesterol-induced sterile inflammation is thought to be
central to this process via activation of a protein complex

Table 2: The abnormal rate of blood lipid levels among the non-CAD controls, the CAD patients who received lipid-lowering therapy, and
those who did not.

Variables Threshold
Control group (n = 193) Non-lipid-lowering therapy group

(n = 354)
Lipid-lowering therapy group

(n = 1647)
Abnormal rate Abnormal rate Abnormal rate

TC (mmol/L) ≥5.20 11.92% (23/193) 20.34% (72/354) 19.31% (318/1647)

TG (mmol/L) ≥1.7 15.03% (29/193) 37.57% (133/354) 47.42% (781/1647)

HDL-C (mmol/L) <1 27.98% (54/193) 34.46% (122/354) 35.03% (577/1647)

LDL-C (mmol/L) ≥3.4 4.66% (9/193) 15.25% (54/354) 12.26% (202/1647)

LDLC-1 (mg/dL) / / / /

LDLC-2 (mg/dL) / / / /

LDLC-3 (mg/dL) >6 3.11% (6/193) 80.79% (286/354) 84.52% (1392/1647)

LDLC-4 (mg/dL) >0 1.04% (2/193) 76.27% (270/354) 84.46% (1391/1647)

LDLC-5 (mg/dL) >0 0.52% (1/193) 24.29% (86/354) 32.67% (538/1647)

LDLC-6 (mg/dL) >0 0.00% (0/193) 4.24% (15/354) 5.34% (88/1647)

LDLC-7 (mg/dL) >0 0.00% (0/193) 0.56% (2/354) 1.09% (18/1647)

lbLDL-C (mg/dL) / / / /

sdLDL-C (mg/dL) / / / /

sdLDL-C/lbLDL-C / / / /

CAD: coronary artery disease; TC: total cholesterol; TG: triglyceride; HDL-C: high density lipoprotein cholesterol; LDL-C: low density lipoprotein cholesterol;
sdLDL-C: small dense LDL-C; lbLDL-C: large buoyant LDL-C.
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called the nucleotide-binding oligomerization domain-,
leucine-rich repeat-, and pyrin domain-containing 3
(NLRP3) inflammasome. The comorbidity of smoking,
hypertension, diabetes, elevated LDL-C and lipoprotein(a),
or decreased HDL-C also correlated with increased NLRP3
protein expression in the aorta [54]. Zheng and Xing found
that coronary atherosclerosis patients expressed high levels
of NLRP3 in the aorta, which was correlated to heart disease
severity [55]. However, no study has investigated whether
combing these above-mentioned inflammatory factors could
predict CAD risk. Hence, further researches are required to
establish prediction models combing inflammatory factors
to predict CAD risk in the near future. Interestingly, in
recent years, the gut microbiota has been shown the capacity
to contribute to substantial variation in blood lipid composi-
tion and cause CAD development [56], which can be
detected by metagenomics and 16 s DNA sequencing

approaches [57]. Correlations have been shown between
CAD and the gut microbiota; however, the potential causal
relationships are much more complex and challenging to
demonstrate in the near future. In addition, we detected
the traditional blood lipids in all participates and found that
LDL-C level was significantly higher in the CAD patients.
Large numbers of previous studies have demonstrated that
LDL-C plays a crucial role in the pathogenesis and the devel-
opment of CVD [58, 59]. However, CAD occurred in many
patients with low LDL-C levels, and cardiovascular events
even still appeared in CAD patients with intensive lipid-
lowering therapy [9, 60]. Therefore, we further detected the
concentrations of LDL-C subfractions by Lipoprint LDL
System. Surprisingly, we found that the levels of LDLC-3
and LDL-4 were significantly higher in the CAD patients
than that in the non-CAD controls. Moreover, the very high
abnormal rates of LDLC-3 and LDLC-4 were found in the
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Figure 4: Continued.
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CAD patients, even in the normal LDL-C subgroup of CAD
patients. However, they are very low in the non-CAD con-
trols. These results indicated that specific LDL-C subfrac-
tions showed powerful potential to screen high-risk CAD
patients whose LDL-C levels were in normal range. Mean-
while, it can explain why many studies have reported that
people with abnormal levels of sdLDL-C have high risk of
cardiovascular and cerebrovascular events, even if their
LDL-C levels are in normal range [61, 62]. Besides that, we
found that sdLDL-C was significantly positively correlated
with CAD, which is consistent with many prospective obser-
vational studies that reported sdLDL-C level was positive
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Figure 4: Six models were established to predict the development of risk CAD patients who did not receive any lipid-lowering treatment.
The figure shows the average ROC curves of the 6 models in the training set and test set. (a) Analysis of the importance of each feature
including clinical data and lipid profile in the XGBoost model. The relative importance is quantified by assigning a weight between 0 and
600 for each variable. (b) Mean AUC values and 95% CIs of all models are shown in the training set. (c) The AUC values of all models
are shown in the test set. ROC: receiver operating characteristic; AUC: area under the ROC curve; CI: confidence interval; KNN: k-
nearest neighbors; LR: logistic regression; SVM: support vector machine; DT: decision tree; MLP: multilayer perceptron; XGBoost:
extreme gradient boosting.

Table 4: The performance of six models in the prediction of 354 CAD patients without lipid-lowering therapy in the training set.

Metrics KNN (95% CI) LR (95% CI) SVM (95% CI) DT (95% CI) MLP (95% CI) XGBoost (95% CI)

Accuracy 0.84 (0.79-0.88) 0.86 (0.82-0.93) 0.86 (0.83-0.89) 0.86 (0.82-0.88) 0.89 (0.85-0.93) 0.90 (0.87-0.94)

Precision 0.88 (0.84-0.91) 0.90 (0.85-0.95) 0.92 (0.90-0.94) 0.92 (0.83-0.99) 0.93 (0.91-0.94) 0.94 (0.92-0.98)

Recall 0.87 (0.80-0.91) 0.90 (0.86-0.94) 0.86 (0.823-0.88) 0.87 (0.79-0.93) 0.91 (0.86-0.96) 0.90 (0.86-0.96)

F1 score 0.87 (0.83-0.91) 0.90 (0.86-0.95) 0.89 (0.86-0.91) 0.89 (0.87-0.91) 0.92 (0.88-0.95) 0.92 (0.89-0.95)

KNN: k-nearest neighbors; LR: logistic regression; SVM: support vector machine; DT: decision tree; MLP: multilayer perceptron; XGBoost: extreme gradient
boosting; 95% CI: 95% confidence interval.

Table 5: The performance of six models in the prediction of 354
CAD patients without lipid-lowering therapy in the test set.

Metrics KNN LR SVM DT MLP XGBoost

Accuracy 0.85 0.89 0.91 0.92 0.86 0.93

Precision 0.86 0.89 0.92 0.93 0.87 0.93

Recall 0.93 0.94 0.94 0.94 0.93 0.96

F1 score 0.89 0.92 0.93 0.94 0.9 0.94

KNN: k-nearest neighbors; LR: logistic regression; SVM: support vector
machine; DT: decision tree; MLP: multilayer perceptron; XGBoost:
extreme gradient boosting.
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association with CAD [15, 23, 63]. Meanwhile, we found
that LDLC-3 and LDLC-4 were noticeably correlated with
CAD too. The results suggest that LDLC-3 and LDL-4 make
the great contribution for sdLDL-C composition and might
be the main cause of CAD risk. However, further research
studies are required to elucidate the mechanisms in the near
feature.

With the development of artificial intelligence (AI),
machine learning is a branch of AI that describes computer
models learning how to do tasks on the basis of source data
rather than being rigidly programmed to do them [64, 65]. It
has been attracted substantial attention for its applications in
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Figure 5: Six models were established to predict the development risk of all CAD patients. The figure shows the average ROC curves of the 6
models in the training set and test set. (a) Analysis of the importance of each feature including clinical data and lipid profile in the XGBoost
model. The relative importance is quantified by assigning a weight between 0 and 350 for each variable. (b) Mean AUC values and 95% CIs
of all models are shown in the training set. (c) The AUC values of all models are shown in the test set. ROC: receiver operating characteristic;
AUC: area under the ROC curve; CI: confidence interval; KNN: k-nearest neighbors; LR: logistic regression; SVM: support vector machine;
DT: decision tree; MLP: multilayer perceptron; XGBoost: extreme gradient boosting.

Table 6: The performance of six models in the prediction of all CAD patients in the training set.

Metrics KNN (95% CI) LR (95% CI) SVM (95% CI) DT (95% CI) MLP (95% CI) XGBoost (95% CI)

Accuracy 0.94 (0.93-0.95) 0.90 (0.86-0.93) 0.91 (0.89-0.93) 0.92 (0.91-0.94) 0.95 (0.94-0.96) 0.95 (0.93-0.96)

Precision 0.95 (0.94-0.95) 0.99 (0.99-1.00) 0.99 (0.99-1.00) 0.99 (0.99-1.00) 0.97 (0.96-0.98) 0.97 (0.96-0.98)

Recall 0.99 (0.98-1.00) 0.90 (0.86-0.93) 0.91 (0.90-0.93) 0.92 (0.90-0.93) 0.97 (0.96-0.98) 0.98 (0.97-0.99)

F1 score 0.97 (0.96-0.97) 0.94 (0.92-0.96) 0.95 (0.94-0.96) 0.96 (0.95-0.96) 0.97 (0.96-0.98) 0.97 (0.97-0.98)

KNN: k-nearest neighbors; LR: logistic regression; SVM: support vector machine; DT: decision tree; MLP: multilayer perceptron; XGBoost: extreme gradient
boosting; 95% CI: 95% confidence interval.

Table 7: The performance of six models in the prediction of all
CAD patients in the test set.

Metrics KNN LR SVM DT MLP XGBoost

Accuracy 0.94 0.88 0.90 0.92 0.94 0.95

Precision 0.95 0.99 0.99 0.99 0.97 0.97

Recall 0.98 0.88 0.9 0.91 0.96 0.98

F1 score 0.97 0.93 0.94 0.95 0.96 0.97

KNN: k-nearest neighbors; LR: logistic regression; SVM: support vector
machine; DT: decision tree; MLP: multilayer perceptron; XGBoost:
extreme gradient boosting.
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disease diagnosis, prognosis, and treatment [34]. Machine
learning has been increasingly applied in the cardiovascular
research field. For example, Al’Aref and Maliakal have
shown that using XGBoost model combined with coronary
artery calcium scoring, age, sex, symptoms, and cardiovascu-
lar risk factors can predict obstructive CAD and yield a good
AUC of 0.881 [30]. Gupta and Slater have conducted a
research study that used LR, SVM, artificial neural network,
and Bayesian network models combing 59 variables from
real-world observational data set of 303 Iranian patients at
risk for CAD. The results indicated that four models showed
all AUC above 0.90 for predicting CAD [66]. However, in
the above-mentioned machine learning studies for predict-
ing CAD risk, they did not enroll sdLDL-C subfractions fea-
tures. In the present study, we use six machine learning tools
including KNN, LR, DT, SVM, MLP, and XGBoost-
combined clinical features and blood lipid profile including
sdLDL-C subfractions to predict CAD risk. We found that
all models performed well in the prediction of CAD risk,
which is consistent with a previous study that using above-
mentioned models combing clinical data and sdLDL-C sub-
fractions showed good performance for predicting CAD risk
[3]. In addition, SVM, KNN, LR, and XGBoost models have
also been reported to predict chronic kidney disease [67] and
chronic obstructive pulmonary disease in Chinese popula-
tion [33]. Importantly, we found that sdLDL-C ranked top
1 and LDLC-4 ranked top 2 in the feature rankings, while
the study by Wu and Yang [3] indicated that sdLDL-4
ranked top 1 in the feature rankings, but sdLDL-C seems less
important in that model. Therefore, large samples are
needed to verify this issue in the near future. Surprisingly,
although the very high abnormal rate of LDLC-3 was found
in the CAD patients, it is less important in the models in our
study. Interestingly, hypertension ranked top 5 in all features
but ranked top 1 in the 7 clinical data. Hypertension is a
well-known independent risk factor for CAD, and patients
with hypertension often accompanied with abnormal lipid
metabolism, which could significantly increase the risk of
cardiovascular events [68, 69], which may explain why
hypertension ranked higher in the model. LDL-C level can-
not reflect the risk of CAD and that may explain why
LDL-C ranked lower in the rankings. Meanwhile, the results
indicated that sex, smoking, TC, TG, lbLDL-C as well as
LDLC-1, and LDLC-2 were less important in the model.

There were some limitations in this study. Firstly, the
non-CAD sample size used was relatively small, and the total
CAD patients and non-CAD controls was unbalanced. Sec-
ondly, we did not assess the inflammatory factors associated
with CAD and input the prediction models to predict the
CAD risk. Thus, further studies need to be established pre-
diction combing-related inflammatory factors to predict
CAD risk. Thirdly, these findings should be validated in a
larger cohort in multicenter before these models can be
applied in the clinic for CAD prediction.

In conclusion, we demonstrated that LDLC-3 and
LDLC-4 were the main components of sdLDL-C and may
be the main risk for CAD development. Moreover, LDLC-
3, LDLC-4, and sdLDL-C were significantly positively corre-
lated with CAD. Importantly, we identified that both

sdLDL-C and LDLC-4 play important roles in the prediction
models rather than LDL-C. In addition, this study also
revealed that six machine learning tools combined with clin-
ical features and lipid profile showed excellent overall pre-
dictive power and could potentially be beneficial for the
early prediction of the risk of CAD in the Chinese
population.
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