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Background. Cuproptosis was recently recognized as a novel form of cell death, linked closely to the occurrence and progression of
cancer. We aimed to identify prognostic cuproptosis-related long noncoding RNAs (lncRNAs) and build a risk signature to
predict the prognosis and treatment responses of clear cell renal cell carcinoma (ccRCC) in this work. Methods. LASSO–Cox
regression was conducted to construct the signature based on prognostic cuproptosis-related lncRNAs (CR-lncRNAs). The
signature’s reliability and sensitivity were assessed by the Kaplan-Meier survival analysis and receiver operating characteristic
analysis. External validation was performed via data from the International Cancer Genome Consortium database. On the
basis of CR-lncRNAs, an lncRNA-microRNA-mRNA regulatory network was created, and functional enrichment analysis was
used to investigate the underlying biological roles of these genes. In addition, the relationship between the risk signature and
immunotherapy and targeted therapy responses was examined. Finally, the expression levels of seven candidate lncRNAs
between tumor and normal cells were compared in vitro using quantitative real-time PCR. Results. A seven-CR-lncRNA risk
signature was constructed, which showed a stronger potential for survival prediction than standard clinicopathological features
in patients with kidney cancer. Functional enrichment analysis showed that the CR-lncRNA risk signature was enriched in ion
transport-related molecular functions as well as various immune-related biological processes. Furthermore, we discovered that
individuals in the high-risk group were more likely than those in the low-risk group to respond to immunotherapy and
targeted therapies with medications like sunitinib and pazopanib. Finally, quantitative real-time PCR revealed that the
expression levels of seven candidate lncRNAs differed significantly between RCC and healthy kidney cells. Conclusion. In
summary, we generated a CR-lncRNA risk signature that may be utilized to predict outcomes in patients with ccRCC and
responsiveness to immunotherapy and targeted treatment, potentially serving as a reference for clinical personalized medicine.

1. Introduction

Renal cell carcinoma (RCC) is a prevalent disease in adults
that accounts for around 3% of all malignancies globally [1].
The most common histological subtype of RCC is clear cell
renal cell carcinoma (ccRCC), which accounts for roughly
75% of all cases [2]. The selection of suitable treatment for
patients with ccRCC based on the TNM classification of
malignant tumor system andWorld Health Organization clas-

sification is critical [3]. However, with tumor heterogeneity,
even in patients with identical clinical characteristics and
treatment regimens, the prognosis of ccRCC may vary signif-
icantly, indicating that predicting risk stratification and prog-
nosis according to current classification methods and
clinicopathologic characteristics of patients is insufficient [4].
Therefore, it is crucial to identify novel risk signatures with
stronger predictive capabilities to improve the prognosis of
ccRCC.
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Cuproptosis, a novel copper-dependent form of cell
death proposed by Tsvetkov et al., is caused by the aggrega-
tion of mitochondrial lipoylated proteins and the destabili-
zation of iron–sulfur cluster proteins triggered by the
accumulation of intracellular copper [5, 6]. Several copper
ionophores, such as elesclomol and disulfiram, have been
pursued as cancer therapeutics to induce cuproptosis [7–9].
Recent studies revealed that the combination of copper and
disulfiram copper selectively targeted and killed tumor cells,
contributing to inhibiting tumor recurrence [10, 11]. Addi-
tionally, chemotherapy drugs combined with elesclomol
showed a significant synergistic antitumor effect, which
yielded nearly a doubling of median progression-free sur-
vival (PFS) and increased overall survival (OS) rates [12].
The researches above suggest that there are strong links
between copper and cancer, and identifying the key regula-
tors linked to cuproptosis is critical for expanding the treat-
ment of ccRCC.

Long noncoding RNA (lncRNA) refers to a class of non-
coding RNA whose length exceeds 200 nucleotides, account-
ing for almost 70% of the human transcriptome, which is
essential in regulating the processes of physiology and
pathology, especially those associated with cancer [13, 14].
lncRNAs are widely expressed and modulate the expression
of messenger RNAs (mRNAs) that drive major cellular pro-
cesses by functioning as competing endogenous RNAs [15].
Multiple studies have indicated that lncRNAs are linked
closely to the OS of patients with RCC. The lncRNAs
LSG1 and ENTPD3-AS1 suppress RCC via regulating epi-
thelial splicing regulatory protein 2 ubiquitination and
microRNA- (miRNA-) 155/hypoxia-inducible factor-1α sig-
naling, respectively [16, 17]. The lncRNA GIHCG promotes
RCC progression by modulating the miRNA-499a-5p/X-
linked inhibitor of apoptosis axis [18]. However, the under-
lying mechanism of CR-lncRNAs in RCC is not well under-
stood, and its role in predicting prognosis and therapeutic
responses merits additional investigation.

In this work, we evaluated the prognostic significance of
cuproptosis-related genes (CR-genes) in ccRCC and con-
structed a risk signature using CR-lncRNAs, with the goal
of predicting the survival of patients with ccRCC and
responsiveness to immunotherapy and targeted treatment.
Furthermore, we validated the signature using the Interna-
tional Cancer Genome Consortium database and in vitro
experiments and conducted a functional enrichment analy-
sis to explore the potential mechanisms.

2. Materials and Methods

2.1. Data Acquisition. Gene expression data for ccRCC
(n = 541) and paracancerous samples (n = 72) were down-
loaded from The Cancer Genome Atlas database (TCGA,
http://cancergenome.nih.gov/). Considering the likelihood
of noncancer mortality, we excluded patients with a follow-
up period shorter than 30 days, leaving 515 ccRCC samples
in the final cohort. Then, all ccRCC samples were randomly
assigned to the testing and training sets in a 1 : 1 ratio for
further analysis using the R software package “caret.” Mean-
while, transcriptional data and survival statistics from RCC

(n = 91) were retrieved from the ICGC database (ICGC,
http://icgc.org/) for external validation.

2.2. Analysis of CR-Genes in ccRCC. Searching published
studies yielded a total of 19 CR-genes; all the genes involved
in the cuproptosis mechanism mentioned in this article were
included in our analysis, which were included in Supplemen-
tary Table S1. The “survival” package was then used to
perform a Kaplan-Meier (K-M) survival analysis to further
investigate the prognostic values of CR-genes in ccRCC.
Subsequently, we downloaded the immunohistochemical
staining images of selected prognosis-related genes from the
Human Protein Atlas (HPA, http://www.proteinatlas.org/)
in order to observe differences in expression at the protein
level.

2.3. Identification of CR-lncRNAs. To distinguish between
mRNAs and lncRNAs, gene transfer format annotation files
were obtained from the Ensembl database (http://asia
.ensembl.org/index.html). Then, correlation analysis was
used to assess the coexpression relationships between
lncRNAs and CR-genes using the R package “limma.” With
jcoefficientj > 0:4 and P<0.001 as our screening criteria, a
total of 321 CR-lncRNAs were identified.

2.4. Construction and Estimation of the CR-lncRNA
Prognosis Signature. Using univariate Cox regression analy-
sis, a list of CR-lncRNAs was identified. Then, using the R
package “glmnet,” LASSO regression was carried out on
TCGA training set [19, 20]. Through multivariate Cox
regression analysis, we identified seven lncRNAs that were
significantly associated with prognosis, and a risk signature
was generated subsequently. A risk score (RS) calculation
algorithm was created according to the expression levels
of seven CR-lncRNAs (Exp) and the corresponding regres-
sion coefficients (β) determined by the multivariate Cox
regression:

Risk score = 〠
7

i=7
βi ∗ Expi: ð1Þ

Patients were classified by median RS (high-risk and
low-risk groups). Time-dependent ROC curves (tROC) were
generated to estimate the prediction sensitivity and specific-
ity of the signature. In addition, the differences in OS
between various clinicopathological characteristics classified
by RS were compared in order to evaluate the diagnostic
accuracy of the prognostic signature. Finally, a multivariate
Cox regression analysis was conducted to determine whether
the RS calculated by our signature could serve as a prognos-
tic indicator for ccRCC patients.

2.5. Validation of Predictive Signature. TCGA testing and
entire set and the ICGC data set served as internal and exter-
nal validation, respectively. In the validation set, each patient
was first awarded an RS based on our signature and then
split into high- and low-risk subgroups using the training
set’s median RS. Subsequently, analyses such as K-M sur-
vival and tROC analysis were conducted to further validate
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the risk signature’s predictive potential. In addition, using
qRT-PCR, we validated the expression levels of seven poten-
tial lncRNAs and the impact of these lncRNAs on OS and
PFS in ccRCC patients using K-M survival analysis.

2.6. Cell Culture. The Chinese Academy of Sciences Cell
Resource Center provided us with the human RCC cell line
786-O, as well as normal control cells HK-2 (Shanghai,
China). Procell Life Science and Technology Co., Ltd. pro-
vided the A498 and RC-2 cancer cells (Wuhan, China).
The tumor cells were cultured in the Dulbecco’s modified
Eagle medium with 10% bovine serum albumin, 0.1mg/mL
streptomycin, and 100U/mL penicillin (Gibco, Invitrogen,
Carlsbad, CA, USA). The normal renal cells were cultured
in RPMI-1640 medium with 10% bovine serum albumin,
100U/mL penicillin, and 0.1mg/mL streptomycin (Gibco,
Invitrogen). All cells were cultured in a humidified incubator
at 37°C with 5% CO2.

2.7. RNA Extraction and qRT-PCR Analysis. After two
washes with cold phosphate buffered saline, total RNA was
extracted from cells using the TRIzol RNA extraction
reagent (Invitrogen, Waltham, MA, USA), as directed by
the manufacturer. After that, a reverse transcription kit
(Takara) was used to reverse the cDNA transcription. The
expression of seven potential lncRNAs was assessed using
SYBR Green qPCR. The qRT-PCR primer sequences are
presented in Supplementary Table S2. GAPDH expression
acted as an endogenous control. QuantStudio 3 (Thermo
Fisher Scientific, Waltham, MA, USA) was used to perform

the qRT-PCR, and the data were analyzed using the 2-
ΔΔCT method.

2.8. Establishment and Evaluation of Predictive Nomogram.
To better predict survival at 1, 3, and 5 years, nomograms
were generated using the “rms” R program. Using the R soft-
ware package “survivalROC,” we compared prognostic
nomograms with sex, age, American Joint Committee on
Cancer (AJCC) stage, grade, and RS [21]. The same
approach also validated our results by the testing set and
the entire set.

2.9. Construction of Competing Endogenous RNA Regulatory
Network and Functional Enrichment Analysis. Differentially
expressed mRNAs (DEmRNAs) between subgroups were
detected using the R package “limma” with thresholds of p
< 0:05 and jLog2 FCj > 1. Using the “GSVA” R package,
the enrichment scores of 16 immune cells and 10 immuno-
logical activities were assessed using a single-sample gene
set enrichment analysis (ssGSEA). Using Cytoscape
(V3.9.1), the coexpression network of CR-lncRNAs, miR-
NAs, and mRNAs was uncovered by drawing the competing
endogenous (ceRNA) network. First, 5 of 27 prognostic-
related lncRNAs were enrolled into the miRCode database
to predict 163 target miRNAs. Then, 208 target mRNAs of
30 miRNAs were identified by integrating the results from
the miRDB, miRTarBase, and TargetScan databases and
the DEmRNAs. Finally, 208 target mRNAs from the ceRNA
network were imported into Metascape to perform func-
tional enrichment analysis.

Anticancer drugs sensitivity

Construction of a ceRNA network

Functional enrichment analysis

ICGC RECA-EU cohort (n = 91)
(The external validation)

ssGSEA

TCGA KIRC cohort with clinical data
(T = 515, N = 72)

Entire set
(n = 515)

Testing set
(n = 257)

The internal validation Prognostic cuproptosis-related lncRNAs

Lasso regression analysis
Multivariate Cox regression analysis

K-M survival analysis

Construction of Cuproptosis-related signature

ROC curves

Cox regression analysis

Nomogram

Univariate Cox regression analysis

Identification of Cuproptosis-related lncRNAs

K-M survival analysis and qRT-PCR of
candidate lncRNAs

Training set
(n = 258)

Figure 1: Flowchart of the study.
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2.10. Significance of the Signature in Immunotherapy and
Targeted Therapy. Patients with ccRCC with somatic muta-
tions were obtained from TCGA database. The tumor muta-
tion burden (TMB), a biomarker for estimating the efficacy
of immune therapy, is determined and compared between
two distinct risk subgroups. Subsequently, all patients with
ccRCC were divided into high- and low-TMB subgroups
based on their median TMB value. K-M analysis was per-
formed to determine the differences in survival between
the four groups stratified by median RS and TMB values.
To further investigate the relationship between RS and
immunotherapy response, the expression levels of immune
checkpoint molecules were compared across two distinct
risk subgroups. In addition, we predicted the half-maximal
inhibitory concentration (IC50) for four common targeted
therapy drugs using the R package PRRophetic, which pre-
dicts drug sensitivity by building statistical models from
tumor gene expression levels.

2.11. Statistical Analysis. All data analysis was performed
using the Perl Data Language (http://www.perl.org/), R soft-
ware (version 4.1.1, https://www.r-project.org/), and Graph-
Pad version 8. The Wilcoxon rank-sum test was used for
comparing differences between two groups, while the Krus-
kal–Wallis test was used to compare differences between
two or more groups and p < 0:05 was considered to indicate
a significant difference.

3. Results

Figure 1 shows the flowchart of the current study. A total of
515 samples from TCGA database and 91 samples from the
ICGC database were finally enrolled. Table 1 summarizes the
detailed clinicopathological characteristics of these samples.

3.1. Expression Profiles, IHC, and Survival Analysis of
Cuproptosis-Related Genes in ccRCC. We identified 19 CR-

Table 1: Characteristics of all eligible ccRCC patients from TCGA and ICGC databases.

Covariates
Entire set Testing set Training set ICGC cohort
n = 515 n = 257 n = 258 n = 91

Age, years 60:6 ± 12:1 60:9 ± 12:2 59:7 ± 11:9 60:6 ± 10:1
≤ 65, n (%) 341 (66.2) 166 (65.0) 174 (67.4) 63 (69.2)

> 65, n (%) 174 (33.8) 90 (35.0) 84 (32.6) 28 (30.8)

Gender, n (%)

Female 177 (34.4) 89 (34.6) 88 (34.1) 39 (42.9)

Male 338 (65.6) 168 (65.4) 170 (65.9) 52 (57.1)

Grade, n (%)

G1 12 (2.3) 6 (2.3) 6 (2.3) NA

G2 220 (42.7) 113 (44.0) 107 (41.5) NA

G3 201 (39.0) 91 (35.4) 110 (42.6) NA

G4 74 (14.4) 43 (16.7) 31 (12.0) NA

Unknown 8 (1.6) 4 (1.6) 4 (1.6) NA

Stage, n (%)

Stage I 256 (49.7) 135 (52.5) 121 (47.0) NA

Stage II 56 (10.9) 28 (10.9) 28 (10.9) NA

Stage III 117 (22.7) 48 (18.7) 69 (26.7) NA

Stage IV 83 (16.1) 44 (17.1) 39 (15.1) NA

Unknown 3 (0.6) 2 (0.8) 1 (0.3) NA

T, n (%)

T1 262 (50.9) 138 (53.7) 124 (48.1) 54 (59.3)

T2 68 (13.2) 34 (13.2) 34 (13.2) 13 (14.3)

T3 174 (33.8) 81 (31.5) 93 (36.0) 22 (24.2)

T4 11 (2.1) 4 (1.6) 7 (2.7) 2 (2.2)

N, n (%)

N0 230 (44.7) 117 (45.5) 113 (43.8) 79 (86.8)

N1 16 (3.1) 7 (2.7) 9 (3.5) 2 (2.2)

Unknown 269 (52.2) 133 (51.8) 136 (52.7) 10 (11.0)

M, n (%)

M0 408 (79.2) 205 (79.8) 203 (78.7) 81 (89.0)

M1 79 (15.3) 42 (16.3) 37 (14.3) 9 (9.9)

Unknown 28 (5.5) 10 (3.9) 18 (7.0) 1 (1.1)

ccRCC: clear cell renal cell carcinoma.
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Male, age 59
Kidney (T-71000)
Normal tissue
Patient id: 3229
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Intensity: Moderate
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Male, age 56
Kidney (T-71000)
Adenocarcinoma
Patient id: 1752
Staining: Not detected
Intensity: Weak
Quantity: <25%

Female, age 56
Kidney (T-71000)
Normal tissue
Patient id: 1933
Staining: High
Intensity: Strong
Quantity: 75%−25%

Female, age 54
Kidney (T-71000)
Adenocarcinoma
Patient id: 3533
Staining: Not detected
Intensity: Negative
Quantity: None

Female, age 41
Kidney (T-71000)
Normal tissue
Patient id: 2530
Staining: High
Intensity: Strong
Quantity: >75%

Female, age 64
Kidney (T-71000)
Adenocarcinoma
Patient id: 2210
Staining: Not detected
Intensity: Weak
Quantity: <25%

Female, age 56
Kidney (T-71000)
Normal tissue
Patient id: 1933
Staining: High
Intensity: Strong
Quantity: >75%

Female, age 64
Kidney (T-71000)
Adenocarcinoma
Patient id: 2210
Staining: Low
Intensity: Weak
Quantity: >75%

Female, age 56
Kidney (T-71000)
Normal tissue
Patient id: 1933
Staining: High
Intensity: Strong
Quantity: >75%

Female, age 72
Kidney (T-71000)
Adenocarcinoma
Patient id: 2067
Staining: Low
Intensity: Weak
Quantity: >75%

Male, age 61
Kidney (T-71000)
Normal tissue
Patient id: 185
Staining: Medium
Intensity: Moderate
Quantity: >75%

Female, age 70
Kidney (T-71000)
Adenocarcinoma
Patient id: 373
Staining: Not detected
Intensity: Negative
Quantity: None

Female, age 56
Kidney (T-71000)
Normal tissue
Patient id: 1933
Staining: High
Intensity: Strong
Quantity: >75%

Female, age 54
Kidney (T-71000)
Adenocarcinoma
Patient id: 3533
Staining: Not detected
Intensity: Negative
Quantity: None

Female, age 56
Kidney (T-71000)
Normal tissue
Patient id: 1933
Staining: High
Intensity: Strong
Quantity: >75%

Female, age 56
Kidney (T-71000)
Adenocarcinoma
Patient id: 1933
Staining: Low
Intensity: Weak
Quantity: 75%−25%

Female, age 56
Kidney (T-71000)
Normal tissue
Patient id: 1933
Staining: Medium
Intensity: Modeate
Quantity: 75%−25%

Male, age 56
Kidney (T-71000)
Adenocarcinoma
Patient id: 1752
Staining: Not detected
Intensity: Weak
Quantity: <25%

Male, age 59
Kidney (T-71000)
Normal tissue
Patient id: 3229
Staining: Medium
Intensity: Moderate
Quantity: 75%−25%

Female, age 57
Kidney (T-71000)
Adenocarcinoma
Patient id: 3061
Staining: Not detected
Intensity: Weak
Quantity: <25%

(c)

Figure 2: Identifying prognostic CR-genes and their expression levels in clear cell renal cell carcinoma: (a) expression comparison of 19 CR-
genes in kidney tumor and normal tissues; (b) the association between 10 differentially expressed genes and clear cell renal cell carcinoma
survival was investigated; (c) immunohistochemistry (IHC) images for 10 genes; ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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genes from published studies. The expression levels of these
genes were compared between normal and tumor samples,
and the results were shown in Figure 2(a); this showed that
13 genes, including ATP7A, NFE2L2, DLD, DBT, DLAT,
DLST, FDX1, PDHA1, PDHB, MTF1, GLS, SLC31A1, and
GCSH, were significantly downregulated in tumor tissues,
while 3 genes, including ATP7B, NLRP3, and CDKN2A, were
significantly upregulated (p < 0:001). The survival analysis of
these differentially expressed genes was then performed to
investigate their effects on OS and PFS in ccRCC patients.
According to the K-M curves, low expression of 10 genes
was associated with poor OS and PFS (Figure 2(b) and
Figure S1). Supplementary Figure S2 depicted the K-M
curves of six other genes with no statistically significant
differences. The HPA database results showed that all ten
prognostic CR-genes were overexpressed in normal tissues at
the protein expression level (Figure 2(c)).

3.2. Construction of a Risk Signature Based on CR-lncRNAs.
The matrix expression of 10 prognostic CR-genes and
16,876 lncRNAs was extracted. Subsequently, we conducted
Pearson’s correlation analysis and identified 321 CR-
lncRNAs (jPearsonRj > 0:4 and p < 0:001). A Sankey dia-
gram was used to depict the co-expression network of CR-
lncRNAs (Figure S3). Next, 27 of the 321 CR-lncRNAs
were screened that linked closely to the patient OS via a
univariate Cox regression analysis (Figure 3(a)). A
heatmap showed that the expression levels of 27 prognostic

lncRNAs in tumor and normal tissues were significantly
different (Figure 3(b)). LASSO–Cox regression analysis was
implemented to simplify signatures, and 10 CR-lncRNAs
were identified when partial likelihood deviance was at the
minimum (Figures 3(c) and 3(d)). After multivariate Cox
regression analysis, seven candidate lncRNAs significantly
correlated with prognosis were recognized to construct a
risk signature. Four lncRNAs, including MINCR, FOXD2-
AS1, LINC02154, and AC004837.2, were risk factors
(hazard ratio > 1), whereas the other three lncRNAs
AL078581.2, SMARCA5-AS1, and LINC01671 were
protective factors (hazard ratio < 1) (Figure 3(e)). The
correlation between seven candidate lncRNAs and CR-
genes is shown in Figure 3(f). Based on the expression
levels of seven candidate lncRNAs and their Cox
coefficients, the RS of patients with ccRCC were calculated
as follows:

RS = 0:442 ∗ ExpMINCRð Þ + −0:622 ∗ ExpAL078581:2ð Þ
+ 0:496 ∗ ExpFOXD2−AS1ð Þ + 0:438 ∗ ExpLINC02154ð Þ
+ 1:255 ∗ ExpAC004837:2ð Þ + −1:481 ∗ ExpSMARCA5−AS1ð Þ
+ −0:245 ∗ ExpLINC01671ð Þ:

ð2Þ

3.3. Evaluating and Validating the Risk Signatures. The risk
curves and scatter plots demonstrated that the quantity of
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Figure 3: Construction of a novel seven-CR-lncRNA signature: (a) forest plot shows univariate Cox regression analysis of 27 CR-lncRNAs;
(b) heatmap shows the expression profiles of 27 prognostic lncRNAs; (c) LASSO coefficient curves for 27 prognostic CR-lncRNAs; (d)
options for the parameter (λ) by tenfold cross-validation; (e) multivariate Cox regression analysis of 7 lncRNAs screened using LASSO–
Cox regression analysis; (f) cooccurrence and an exclusive association between candidate lncRNAs and CR-genes.
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Figure 4: Estimation and internal validation of the risk signature of seven lncRNAs: (a) the risk score (RS) was significantly correlated with
survival rate; (b) scatter plots of patient survival status; (c) the Kaplan-Meier curves exhibited that the RS was significantly associated with
the overall survival (OS) and progression-free survival (PFS); (d) receiver operating characteristic (ROC) curve of the seven-lncRNA risk
signature; (e) heatmap of seven candidate lncRNAs between two risk groups; (f–j) the risk curves, scatter plots, heatmaps, survival
curves, and ROC curves of the internal validation sets; (k–o) the entire set.
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Figure 5: The Kaplan-Meier survival curves for the risk score (RS) level in different subgroups: (a) younger, older; (b) male, female; (c)
lower grade, higher grade; (d) stages 1–2, stages 3–4; (e) T1–2, T3–4; (f) without or with recurrence.
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deaths increased as RS increased (Figures 4(a) and 4(b)). The
OS and PFS of high-risk patients were significantly shorter
than in low-risk patients, according to the K-M curves
(Figure 4(c)). ROC curves were used to evaluate the predic-
tive value of the risk signature (Figure 4(d)). The area under
the ROC curve (AUC) values of 1-, 3-, and 5-year OS for the
training sets were 0.760, 0.785, and 0.838. Figure 4(e) pre-
sents the expression heatmap of these seven candidate
lncRNAs in two different risk groups. Risk factors including
MINCR, FOXD2-AS1, LINC02154, and AC004837.2 were
overexpressed in the high-risk group, whereas AL078581.2,
SMARCA5-AS1, and LINC01671, as protective factors, were
overexpressed in the low-risk group.

The accuracy of the risk signature was further validated
by the internal validation (the testing) set and the entire
set (Figures 4(f)–4(o)). Consistent with the results of train-
ing sets, in the internal validation set and entire data set,
the probability of death was higher in patients with high
RS. The AUC values of 1-, 3-, and 5-year OS were 0.722,
0.650, and 0.671 for the internal validation sets and 0.741,
0.713, and 0.754 for entire sets, respectively. To summarize,
our seven-lncRNA risk signature performed well in predict-
ing the prognosis for patients with ccRCC.

3.4. Subset Analysis of the Prognostic Value of the Risk
Signature. For further investigating the relationship between
the risk signature and the prognosis of patients with ccRCC,
a stratification analysis was performed by examining a vari-
ety of clinicopathological factors, including gender, age,
grade, AJCC stage, pathological T stage, and recurrence
(Figure 5). Patients with high RS had a worse prognosis than
patients with low RS, whether they were younger (≤60 years,
p = 5:691E − 09) or older (>60 years, p = 1:392E − 05), male
(p = 1:683E − 07) or female (p = 1:773E − 08), lower grade
(grades 1–2, p = 2:459E − 02) or higher grade (grades 3–4,
p = 2:201E − 11), stages 1–2 (p = 4:734E − 04) or stages 3–4
(p = 4:297E − 06), T1–2 (p = 4:259E − 05) or T3–4

(p = 2:288E − 06), and without recurrence (p = 7:539E − 05)
or with recurrence (p = 6:926E − 04). In each stratification
of gender, age, stage, T stage, and recurrence, the results
showed that our risk profile remained a reliable tool for pre-
dicting ccRCC survival.

3.5. Construction and Validation of the Prognostic Predictive
Nomogram. The Cox regression analysis was conducted to
determine whether the seven-lncRNA risk signature could
function as an independent prognostic predictor for ccRCC.
Several available clinical parameters including age, gender,
grade, AJCC stage, and our risk signature were included in
the analysis. The results of the univariate and multivariate
Cox regressions in both the training (Figures 6(a) and
6(b)) and validation sets (Figure S4) indicated that the
seven-lncRNA risk signature, as well as other clinical
factors such as age, grade, and AJCC stage, could be
independent predictive criteria. Following that, a more
reliable compound nomogram based on age, grade, AJCC
stage, and RS was developed (Figure 6(c)). The calibration
plots at 1, 3, and 5 years showed excellent agreement
between the nomogram’s anticipated survival probability
and the actual survival outcome of patients (Figure 6(d)).
Furthermore, when compared to other clinical factors such
as RS, age, grade, and AJCC stage, nomogram points had
the highest AUC values, implying that nomogram may be
the best tool for predicting prognosis (Figures 7(a)–7(c)).
The findings above were verified using the internal
validation set and the entire set. At 1, 3, and 5 years, the
calibration plots of two validation sets also exhibited
excellent consistency between nomogram predictions and
actual survival probabilities (Figures 6(e) and 6(f)). In
addition, the ROC curves demonstrated that the
nomogram points no matter in which set possessed better
prediction performance than the RS and other clinical
parameters (Figures 7(d)–7(i)).
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Figure 6: Development of a prediction nomogram using independent prognostic factors. (a, b) Univariate and multivariate Cox regression
analyses are shown in forest plots. (c) Risk score, age, grade, and American Joint Committee on Cancer (AJCC) stage were used to create a
nomogram. (d–f) The nomogram’s calibration plot in the training set, internal validation set, and entire set.
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3.6. External Validation of Risk Signature. Data from the
ICGC database functioned as the external validation set
(n = 91) to further verify the robustness of the seven-
lncRNA risk signature. The RS of the ICGC patients was cal-
culated using our risk signature, and all patients were then
split into two subgroups based on the median RS from
TCGA training set. Patients with higher RS had a signifi-
cantly lower survival rate than those with lower RS
(Figures 8(a)–8(c)). According to the tROC analysis, the risk
signature’s AUC values were 0.644 in the first year, 0.608 in

the third year, and 0.675 in the fifth year (Figure 8(d)). Fur-
thermore, the Cox regression analyses revealed that the RS
could be used as an independent prognostic predictor for
ICGC database patients (Figures 8(e) and 8(f)).

3.7. Verification of Seven Candidate CR-lncRNAs. The K-M
survival curves certified that higher expression levels of
four risk factors, including AC004837.2, FOXD2-AS1,
LINC02154, and MINCR, were associated with lower overall
survival rates and PFS (Figures 9(a)–9(d) and Figure S5). On
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Figure 8: Continued.
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the contrary, higher expression levels of AL078581.2,
LINC01671, and SMARCA5-AS1, identified as three
protective factors, corresponded with better OS and PFS in
ccRCC (Figures 9(e)–9(g) and Figure S5). Additionally, the
expression levels of seven CR-lncRNAs were determined
using qRT-PCR in kidney normal and cancer cells. The
results showed that the expression levels of AC004837.2,
FOXD2-AS1, LINC02154, and MINCR were significantly
increased in kidney cancer cells compared with normal cells,
whereas AL078581.2, LINC01671, and SMARCA5-AS1 were
downregulated in kidney cancer cells (Figures 9(h)–9(n)).

3.8. Competing Endogenous RNA Regulatory Network and
Functional Enrichment Analysis. Subsequently, a ceRNA
regulatory network was constructed to explore how the
CR-lncRNAs regulate gene expression by functioning as
miRNA sponges in ccRCC. Based on the 27 prognostic
CR-lncRNAs above, 5 lncRNAs and 30 target miRNAs were
extracted from the miRcode database. Then, a total of 208
mRNAs were identified by integrating the DEmRNAs and
the results from the miRDB, miRTarBase, and TargetScan
databases. Ultimately, a ceRNA network comprising 5
lncRNAs, 27 miRNAs, and 208 mRNAs was constructed
(Figure S6 and Supplementary Table S3). The online tool
Metascape was used to explore the biological functions of
the 208 target mRNAs. The results showed that several ion
transport-related molecular functions, including metal ion
transport, anion transport, and regulation of ion transport,
were enriched, which suggested that these lncRNAs may
affect the process of cuproptosis (Figures 10(a) and 10(b)
and Supplementary Table S4).

To elucidate the underlying pathways between the high-
and low-risk subgroups, a total of 420 differentially
expressed genes (DEGs) were identified and the biological

functions of DEGs were explored using GO and KEGG
enrichment analyses (Supplementary Table S5). The results
of GO showed that the genes were enriched in positive
regulation of leukocyte activation, blood microparticle,
defense response to bacteria, humoral immune response,
negative regulation of endopeptidase activity, and other
factors (Figure 10(c) and Table 2). In the KEGG pathway
analysis, cytokine–cytokine receptor interaction, viral
protein interaction with cytokine and cytokine receptors,
complement and coagulation cascades, and the nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-
kappa B) and interleukin- (IL-) 17 signaling pathways were
identified (Figure 10(d)).

3.9. Prediction of Cancer Immunotherapy Response Using
the Risk Signature. The enrichment scores of ssGSEA for
16 immune cell subpopulations and 10 immune-related
activities or pathways were quantified to explore the link
between the RS and immune status, which may contribute
to determining whether the signature could serve for pre-
dicting immunotherapy responses. The results showed that
B cells, CD8+ T cells, immature dendritic cells, natural killer
cells, mast cells, neutrophils, T follicular helper cells, type 1
T helper cells, and tumor-infiltrating lymphocytes were sig-
nificantly different between two subgroups (Figure 11(a)).
Moreover, immune activities such as the interferon (IFN)
response, cytolytic activity, and inflammation-promoting
function were stronger in the high-risk group, implying that
patients with immunity suppression in the high-risk group
could benefit from immunotherapy (Figure 11(b)).

TMB values, serving as a biomarker for evaluating
immune checkpoint inhibitor (ICI) efficiency, were calcu-
lated in the present study. The TMB values in the high-risk
group were higher than in the low-risk group, as shown in
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Figure 8: Validation of CR-lncRNA risk signature using the International Cancer Genome Consortium (ICGC) database: (a) risk curve; (b)
survival status scatter plot; (c) Kaplan-Meier survival curves; (d) time-dependent receiver operating characteristic (tROC) analysis; (e, f)
forest plots exhibiting the results of the univariate and multivariate Cox regression analyses.
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Figure 9: Continued.
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Figure 11(c), suggesting that patients with high RS may be
more likely to respond to ICI therapy. Furthermore, based
on the TMB values and RS, the patients were divided into
four subgroups. The survival probability of patients in the
high-TMB groups was lower than patients in the low-TMB
groups, and the prognosis of patients in the high-risk and

high-TMB groups was the poorest of the four groups
(Figures 11(d) and 11(e)).

Finally, to confirm the findings above, we investigate the
relationship between the risk signature and the expression
levels of immune checkpoint genes such as PD-1, CTLA-4,
LAG3, TIGIT, and LMTK3. These findings suggest that the
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Figure 9: Survival analysis and expression levels of seven candidate CR-lncRNAs. (a–g) The Kaplan-Meier survival analysis of seven
candidate CR-lncRNAs. (h–n) The expression of the seven candidate CR-lncRNAs in human kidney normal cell and three kidney cancer
cell lines. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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CR-lncRNA risk signature could be used as a biomarker to
predict immunotherapy responses.

3.10. Correlation between the Risk Signature and Response to
Targeted Therapy. We investigated the differences in
response to four representative targeted therapy medicines,
including sunitinib, sorafenib, pazopanib, and erlotinib,
between two different risk subgroups. The estimated IC50
levels of these four targeted drugs in the two groups were
compared and exhibited via scatter plots and boxplots. Suni-
tinib and pazopanib were discovered to be potential candi-
date medications for patients in the high-risk group
(Figures 12(a) and 12(b)), whereas sorafenib and erlotinib
may be more suitable for patients in the low-risk group
(Figures 12(c) and 12(d)).

4. Discussion

Copper is a mineral nutrient that is essential for a host of
cellular functions, such as mitochondrial respiration, antiox-
idant defense, and biosynthetic process [22]. In addition,
many studies have shown that copper is also implicated in
cancer cell growth, proliferation, and metastasis [23–28].
However, it is crucial that cellular copper is present in the
right amount, and excess copper can cause cellular toxicity,
leading to death [29]. Cuproptosis was first presented by
Tsvetkov et al. to be different from other regulated cell death
caused by oxidative stress; it is triggered by mitochondrial
protein aggregation with the accumulation of intracellular

copper [5]. Copper ionophores, such as disulfiram and ele-
sclomol, have been proven to be effective in treating various
cancers by inducing cuproptosis [7, 12, 30, 31]. In the pres-
ent study, we found that a total of 10 key regulatory genes
for cuproptosis correlated closely with the prognosis of
patients with ccRCC, which showed that cuproptosis may
have important implications for the occurrence and develop-
ment of renal cell cancers.

Given the wide variation of prognostic outcomes of
patients with ccRCC, developing a robust classifier model
to stratify patients with varied risks and predict therapeutic
drug responses is crucial. lncRNAs play a key role in various
diseases, especially malignancies, the mutations and misre-
gulation of which exhibit tumor-suppressive and -promot-
ing (oncogenic) functions [31]. Considering the significant
effect of cuproptosis and lncRNAs on prognosis of patients
with cancer, we used LASSO regression and Cox regression
analyses to construct a CR-lncRNA risk signature for
patients with ccRCC, and we explored how signaling path-
ways are involved with the risk signature.

The OS and PFS survival curves demonstrated the power
of the signature in predicting prognosis of patients with
ccRCC. The risk signature could also be applied to various
subsets, such as ages, gender, stage, grade, or tumor status,
which may assist clinicians in making clinical decisions.
The tROC analysis was performed, and the AUC of the risk
signature was slightly smaller than that of the AJCC staging
system, which was one of the most widely used classification
systems for describing the extent of disease development in
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Figure 10: Functional enrichment analysis: (a) bar graph of enriched terms across the 208 target mRNAs; (b) network of enriched terms
colored according to cluster ID; (c, d) Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses of differentially expressed genes (DEGs) between high- and low-risk groups.
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kidney cancer [32]. However, a predictive nomogram was
composed based on the risk signature and showed superior
specificity and sensitivity in predicting the patient’s 1-, 3-,
and 5-year survival probability in comparison with the
AJCC stage. Moreover, the Cox regression analyses revealed
that risk signatures could serve as independent prediction
factors in ccRCC. Analyses were repeated with both the
internal and external validation sets and yielded similar
results, confirming the risk signature’s predictive value.

Seven candidate lncRNAs linked closely to prognosis,
including MINCR, FOXD2-AS1, LINC02154, AL078581.2,
SMARCA5-AS1, AC004837.2, and LINC01671, were identi-
fied and employed to construct the risk signature. The MYC-
induced lncRNA MINCR is a newly identified lncRNA
linked to MYC expression in the Burkitt lymphoma [33].
The overexpression of MINCR could trigger cancer-related
gene alterations, causing disruptions in the cell cycle and
growth factor signaling [34]. MINCR functions as an onco-
genic gene in various malignancies. For example, MINCR
aggravates colon cancer and glioma via the miR-708-5p-
mediated Wnt/β-catenin pathway and miR-876-5p/GSPT1
axis, respectively [35, 36]. Moreover, MINCR is also overex-
pressed in hepatocellular carcinoma and gall bladder cancer,
and its overexpression promotes cell proliferation, migra-
tion, and invasion [37, 38]. The lncRNA FOXD2-AS1 is
abnormally expressed in a number of cancers and affects
tumor progression [39]. Ni et al. revealed that FoxD2-AS1
regulates the miR-185-5P/HMGA2 axis and the PI3K/AKT
signaling pathway to promote glioma progression [40].
LINC02154 is also overexpressed in tumor tissues, and Yue
et al. found that LINC02154 overexpression leads to prolifer-
ation and metastasis of hepatocellular carcinoma via modu-

lating cellular activities [41, 42]. In the present study, we
conducted qRT-PCR and K-M survival analyses to confirm
the effects of these genes in patients with RCC. Consistent
with the findings above, four risk lncRNAs (MINCR,
FOXD2-AS1, LINC02154, and AC004837.2) were overex-
pressed in renal cancer cells and correlated with poor OS
and PFS in ccRCC. Some researchers have selected
LINC01671 into their prognostic models as a risk factor to
predict survival in lung adenocarcinoma and found no dif-
ference in lncRNA expression between tumor and normal
tissues [43]. However, in our risk signature, LINC01671 is
a protective gene, and the relative expression level is lower
in cancer cells than healthy cells, implying that further con-
firmation is needed. The function and in-depth molecular
interactions of the remaining three lncRNAs have not been
reported in tumors, which merits further exploration.

Emerging evidence indicates that lncRNAs can function as
ceRNAs by binding to miRNAs, thereby regulating target
mRNA expression levels. It has been proposed that the
lncRNA-miRNA-mRNA-ceRNA regulatory network plays
an essential role in multiple types of cancer [44]. We created
a ceRNA regulatory network to illustrate the relationship
between CR-lncRNAs, their binding miRNAs, and target
mRNAs in this study. The underlying biological activities
and pathways of target mRNAs were then investigated using
functional enrichment analysis. As expected, the results exhib-
ited that these target mRNAs enriched several ion transport-
related molecular functions, indicating that these lncRNAs
may affect the process of cuproptosis. Furthermore, we carried
out GO and KEGG analyses using the DEGs between two
different risk groups and unexpectedly found that several
immune-related biological functions and pathways were
enriched. Therefore, it is reasonable to assume that cupropto-
sis might be linked closely to tumor immunity.

With few effective treatments for RCC other than surgi-
cal resection, many novel therapies, such as targeted thera-
pies and ICI agents, have been emerging or available and
show significant efficacy. Recently, ICI-based combinations
(ICI-targeted agents or ICI–ICI) have gained widespread
acceptance as an effective therapy and have been authorized
as a first-line treatment for advanced RCC [45–47]. There-
fore, identifying patients who are candidates for ICI in clin-
ical practice is critical. The findings of ssGSEA indicated
that, in the high-risk group, various immune functions were
activated, including the IFN response, inflammation-
promoting functions, and cytolytic activity. IFN was pro-
duced by activated natural killer and T cells, which are crit-
ical in enhancing the efficacy of ICI [48]. The cytolytic
activity score has been proven to function as a biomarker
for antitumor immunity and prognosis in patients with can-
cer. Wang et al. revealed that the cytolytic activity score was
an independent unfavorable prognostic factor in glioma and
was significantly positively linked to immune checkpoint
expression, which is in accordance with our findings [49].

The TMB may be used to predict patient responses to
immunotherapy and as a marker of immune checkpoint
inhibitor treatment failure in a variety of cancers [50].
Patients in the high-risk group had a greater TMB value
than those in the low-risk group, suggesting that patients

Table 2: Results of Gene Ontology analysis.

Ontology Description p value

BP Acute inflammatory response 3.12E-11

BP Humoral immune response 1.38E-08

BP Defense response to bacterium 1.42E-08

BP Acute-phase response 1.73E-08

BP Positive regulation of leukocyte activation 4.51E-08

BP
Negative regulation of endopeptidase

activity
6.61E-08

CC Blood microparticle 6.22E-16

CC High-density lipoprotein particle 5.20E-08

CC Immunoglobulin complex 4.37E-07

CC Plasma lipoprotein particle 4.40E-07

CC Lipoprotein particle 4.40E-07

CC Protein-lipid complex 7.84E-07

MF Endopeptidase inhibitor activity 1.47E-07

MF Peptidase inhibitor activity 2.36E-07

MF Endopeptidase regulator activity 3.70E-07

MF Serine-type endopeptidase inhibitor activity 7.72E-07

MF Peptidase regulator activity 2.82E-06

MF Chemokine activity 3.77E-06

BP: biological process; CC: cellular component; MF: molecular function.
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Figure 11: The role of risk signature in immunotherapy: (a) comparison of the single-sample gene set enrichment analysis (ssGSEA) scores
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in the high-risk group are candidates for ICI treatment. Sev-
eral popular immune checkpoint molecules, including PD-1,
CTLA4, TIGIT, LAG3, and LMTK3, were also overex-
pressed in the high-risk groups, also supporting the argu-
ment that ICI treatment is suitable for patients with high-
risk scores. Finally, we analyzed the sensitivity of four com-
mon targeted agents between two different risk groups,
which may assist clinicians in making comprehensive and
personalized treatment plans for patients with ccRCC.

Some limitations of this study should be acknowledged.
First, all data used to construct and validate the signature
were downloaded from public databases. More real-world

data of RCC cohorts should be collected to verify the accu-
racy and clinical utility of the signature. Second, more
in vitro or in vivo experiments are needed subsequently to
find out the potential functions of the screened lncRNAs in
cuproptosis.

5. Conclusions

In summary, a risk signature composed of seven prognostic
CR-lncRNAs and a predictive nomogram based on the sig-
nature were constructed for the sake of predicting outcomes
for patients with ccRCC. The predictive power of the
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Figure 12: Prediction of sensitivity to common targeted therapeutic drugs: (a, b) scatter plots and boxplots demonstrating the IC50 of
sunitinib and pazopanib; (c, d) scatter plots and boxplots demonstrating the IC50 of sorafenib and erlotinib.
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nomogram was proven superior to that of the conventional
AJCC staging. In addition, our risk signature could predict
the responses to targeted therapy and immunotherapy,
which is critical for relieving patient suffering, enhancing
treatment effectiveness, and reducing healthcare costs.
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