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Wireless rechargeable sensor network (WRSN) uses mobile chargers (MCs) to charge sensor nodes wirelessly to solve the energy
problems faced by traditional wireless sensor network. In WRSN, mobile charging schemes with multiple MCs supplementing
energy are quite common. How to properly plan the MC’s moving path to reduce the charge energy loss and deploy nodes to
improve network coverage rate has become a huge research challenge. In this paper, a collaborative energy optimization
algorithm (CEOA) is proposed for multiple chargers based on k-mean++ and node collaborative scheduling. The CEOA
combines internal energy optimization and external device power supply, effectively prolongs network lifetime, and improves
network coverage rate. It uses the k-mean++ to cluster nodes in the network; then, the nodes in the network are scheduled to
sleep based on the confident information coverage (CIC) model. Finally, the CEOA uses a main mobile charger to carry
multiple auxiliary mobile chargers to charge all the nodes in the cluster. Simulation results show that the proposed algorithm
increases the network lifetime by more than 8 times and the coverage rate by about 20%.

1. Introduction

Wireless sensor network(WSN) is composed of several sensor
nodes and one or more data centers. The advantages of small
sensor node size and low cost make WSN play an important
role in natural and production fields, such as forest fire pre-
vention, harsh environment monitoring, and large-area envi-
ronmental monitoring [1–3]. At present, the sensor began
miniaturization, integration, intelligence, biochemical, and
other modular direction development. Low power consump-
tion, low cost, standardization, and other industrial character-
istics of the trend are increasingly obvious [4]. However,
energy consumption is still a difficult problem in WSN. To
solve the problem of energy consumption inWSN, researchers
have put forward a variety of solutions. They are mainly the
following three: energy saving [5], natural energy collection
[6], and wireless charging [7]. Energy saving scheme mainly
reduces network energy consumption by optimizing the rout-
ing structure. The main methods include energy balance tree,
network clustering, and packet compression.

Although the energy saving scheme can effectively
reduce the network energy consumption, the sensor nodes
will eventually die due to energy exhaustion, resulting in
network breakdown. So the researchers set out to solve
this problem from the energy supply side and came up
with different solutions.

In the early 21st century, due to the application of solar
energy, wind energy, and other new energy technologies,
energy collection technology has been widely used in WSN
[8]. This technology is used to equip sensor nodes with cor-
responding energy collection modules and energy conver-
sion modules so that natural energy can be converted into
electricity to supply energy for WSN and extend the network
lifetime. With the development of technology, energy collec-
tion technology is also equipped with mobile energy collec-
tion and conversion equipment to supply energy to sensor
nodes in a small range [9]. However, energy conversion
technology still needs to be equipped with a large number
of professional equipment, which increases the network cost
and takes up too much space. In addition, the variability of
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the natural environment also makes energy harvesting tech-
nology unstable and cannot guarantee continuous power
supply, so researchers are trying to use wireless rechargeable
devices to provide power to the network.

At present, wireless rechargeable sensor network
(WRSN) is developing rapidly due to the flexibility, stability,
and security of wireless rechargeable devices. Generally,
wireless rechargeable devices can carry energy over long dis-
tances and move independently. Using electromagnetic
induction technology or radio frequency technology, they
can replenish energy to rechargeable wireless sensor nodes,
thus extending network lifetime [10]. With the progress of
technology, the realization of a permanent wireless sensor
network will become a reality.

Researchers have designed a variety of WRSN. From the
initial use of a single mobile device to provide energy to the
network, Wei et al. and Mo et al. [11, 12] use multiple
devices to jointly supply energy, and finally, Han et al. [13]
use multiple devices to cooperate to jointly complete the
energy supply task. As for the mobile path of charging
devices, researchers have also proposed many schemes, but
the shortest path for the cooperation of multiple charging
devices remains to be optimized.

The WRSN nodes described above all work indepen-
dently of each other. They all use the disk model and its
derivative model to complete the sensing task [14]. The sen-
sors work independently, which consume a lot of energy and
has a poor sensing effect. The CIC model overcomes this
defect by fully exploiting and utilizing the spatial character-
istics of the monitored physical quantity and the collabora-
tion ability between adjacent nodes to extend the sensing
area of these nodes, thus reducing the number of active
nodes and improving the coverage of the network.

Aiming at the internal energy saving optimization and
external energy supply path optimization in WRSN, this
paper proposes a multicharger collaborative energy supply
scheme based on node collaborative scheduling. The main
contributions of this paper are as follows:

(1) To better balance the number of nodes in each clus-
ter and achieve a better clustering effect, the k-mean
++ clustering model is adopted to reduce the energy
loss in the transmission process and reduce the wait-
ing time of charging

(2) To optimize the internal energy saving of WSN, we
propose a confident information coverage model. It
can increase network coverage while reducing work-
ing nodes

(3) To reduce the loss of external power supply, we pro-
pose a collaborative charging scheme with multiple
chargers. It can reduce the moving path of MC, save
the charging time of the network, and improve the
stability of the network

The content of this paper is arranged as follows. In Sec-
tion 2, we introduce the current research on wireless
rechargeable sensor networks and node sleep scheduling.
The basic composition and selection of the basic coverage

model in the network are described in Section 3. Section 4
describes the data transmission mechanism and movement
path planning of the network in detail. In section 5, the sim-
ulation results are listed and compared with other algo-
rithms in detail. Section 6 summarizes the whole paper
and looks into the future research direction.

2. Related Works

Various wireless charging schemes have been proposed to
extend the lifetime of WRSN. These charging methods
include static charging and dynamic charging. Zhang et al.
proposed fixed placement of chargers and rechargeable
devices within the two-dimensional target area to maximize
charging quality by considering charger placement and
power distribution [15]. Arivudainambi and Balaji used the
Daubechies wavelet algorithm to enhance sensor coverage
to identify the optimal location of wireless chargers and, at
the same time, transferred redundant chargers to the opti-
mal location. Wireless chargers transmitted power to sensor
nodes through the air, solving the problem of energy
shortage [16]. Static charge can solve the problem of
energy supply in a small area, it is difficult to overcome
the energy loss in the long-distance charge, and fixed
charging device will take up a lot of space. In some harsh
environments, fixed charging device is difficult to main-
tain. Therefore, dynamic charging schemes are now widely
used. The charging scheme also includes partial charging
and full charging. Priyadarshani et al. proposed an on-
demand multinode charging scheme based on a partial
charging model, which combines the advantages of partial
charging and multinode charging to optimize the charging
travel of multiple charging vehicles (MCVs). Minimize the
energy spent by MCVs during travel and maximize the
network life cycle [17]. Liang et al. expressed the mobile
charging scheduling problem as the problem of full and
partial charging reward maximization, aiming to maximize
the total return obtained by the charged sensor under the
limitation of the energy capacity of the mobile charger
[10]. Wang et al. proposed a partial charge scheduling
scheme that allows partial charging of sensor nodes to
minimize the overall stagnation time of nodes, thereby
extending the lifetime of the network [18].

For the dynamic charging scheme, researchers also put
forward different ideas. He et al. proposed an on-demand
charging scheme that sends MC to charge nodes once nodes
in the network send charging requests [19], and this lays a
theoretical foundation for the on-demand charging scheme.
To improve the lifetime of WSN, Wang et al. proposed a
dynamic charging algorithm based on on-demand charging.
It uses MC to collect node data and provide energy [20]. The
above two schemes are both proposed for on-demand charg-
ing. In this case, once the node sends a charging request, the
MC will go to the network to recharge the node. So, MCs
move frequently, resulting in increased energy loss and
resource waste. To solve this problem, Shu et al. proposed
a periodic charging scheme. In this scheme, the base station
charges the sensor nodes according to a certain period of
time, and the optimal moving speed of MC is approximated
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by the spatiotemporal discretization method [21]. It reduces
the movement loss of MC but also leads to increased node
mortality of the network to a certain extent.

To reduce the mortality of nodes in the network, the
researchers considered the use of multiple MCs for network
power supply. But in this way, how to allocate MCs’ charg-
ing tasks is a difficult problem. Han et al. proposed to divide
the network into multiple clusters based on the k-means
algorithm and then used two MCs to visit the nodes to be
charged in each cluster through the shortest Hamiltonian
period [22]. If any of the two MCs runs out of energy before
reaching the base station (BS), the BS will automatically send
standby MCs to continue to replenish energy. This situation
can temporarily relieve the MC’s charging pressure. How-
ever, for small-scale networks, the movement loss of two
MCs is too large. For a large-scale network, there are too
many nodes in the network, and two MCs are not enough
to complete the charging task. At this time, Han et al. pro-
posed a WRSN mobile charging algorithm based on a non-
uniform cluster, which uses multihop wireless energy
transmission technology to charge multiple nodes in the net-
work at the same time, and the nodes also transmit data to
MC through multihop [23]. Ma et al. also proposed to
charge multiple sensors simultaneously considering the loca-
tion information of sensor nodes when the mobile charging
vehicle has limited energy. In this case, the moving distance
of MC is greatly reduced, and the movement loss is also rel-
atively reduced [24]. However, multihop charging is subject
to various limitations and time delays, and some nodes may
die under the condition of energy delay.

At present, most charging schemes use one-to-one
charging. To prolong the lifetime of the network, Nguyen
et al. proposed a weighted algorithm based on the impor-
tance of sensor nodes, which solved the PERDCLMD prob-
lem and had some effect on improving the stability of the
network [25]. However, this method can only ensure the
survival of some important functional nodes. To ensure the
overall survival rate of nodes and solve the overall energy
shortage problem of WSN, Zhang et al. proposed scheduling
multiple MCs to optimize energy use efficiency and allow
collaborative mobile charging among MCs to ensure that
each sensor node would not be exhausted, which verified
the advantages of the PW algorithm in energy use efficiency
and charging coverage [26].

Qian et al. proposed an optimal charging scheduling
algorithm that maximizes the charging energy of the
equipment and minimizes the discharge energy of the
MC by combining the methods of evolution and cluster-
ing, thus improving the execution speed of the algorithm
[27]. Han et al. proposed a collaborative energy supply
scheme using MWCV to carry SWCV, which effectively
reduced the death rate of nodes and saved the charging
cost. However, the above algorithms only consider the
extension of network life from the aspect of external
power supply, without considering the internal energy sav-
ing. Although the energy loss of data collected by mobile
charging devices is reduced, the sensing loss of sensor
nodes and communication loss between nodes are not
considered. In addition, none of the algorithms mentioned

above takes network coverage into account. Although they
prolong the network life, they cannot guarantee the stabil-
ity of the network. When some nodes die, network cover-
age is greatly reduced.

In this paper, we propose a collaborative energy optimi-
zation algorithm for multiple chargers based on k-mean++
and node collaborative scheduling (CEOA). It uses the coop-
eration of the main mobile charger (MMC) device and the
auxiliary mobile charger (AMC) to design a mobile path
with low mobile cost and short charging time, effectively
prolong the network lifetime, improve the coverage rate,
and save the cost of charging.

3. Network Model

In this section, we describe in detail the basic components
and some assumptions of WRSN. Then, the basic coverage
model and energy transfer model are introduced.

3.1. Network Model and Assumptions. In this article, the
base station(BS) is located in the center of the WRSN. It
acts as a charging center for the MCs, equips with multiple
backup chargers, and collects data information from sen-
sors. Therefore, it is responsible for allocating routes for
mobile charging devices, which return to the BS to recharge
after a charging round. N static sensor nodes are deployed
in a two-dimensional region, which is divided into clusters.
Each cluster contains an unequal number of sensor nodes,
which will be described in detail in the clustering algorithm.
The abscissa of node i is xi, the ordinate is yi, and the node
is represented by SðiÞ. Each node has a battery of the same
capacity, which is denoted by E. Each node goes to sleep
when its capacity falls below the minimum and dies when
its capacity falls below 0. Table 1 lists some of the symbols
used in this article.

In a network environment, it is equipped with one MMC
and several AMCs. Chargers all start from the BS. When
MCs arrive at the charging docking point, MMC releases
AMC to provide energy to each cluster. The MMC can
charge the AMC. AMC can supply energy to the sensor
node. In this paper, we assume that MMC has infinite
energy, and the moving speed is expressed as VM . The bat-
tery capacity of AMC is small, which is represented by
EAMC, and the moving speed is represented by VA. The
speed of the secondary charging device is significantly faster
than that of the primary charging device, because the size of
the primary charging device is significantly larger than that
of the secondary charging device, and the speed of the pri-
mary charging device is much smaller under the same power
supply.

The assumptions in this paper are as follows: (1) BS is
located in the center of the network. (2) BS can locate the
coordinates of all nodes in the network. (3) The power of
the MMC is enough to complete the task allocation of a
charging cycle. (4) When the energy of the AMC is too
low, it can actively return to the main charging device to
replenish energy. (5) The charging time of AMC equipment
is ignored.
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3.2. Confident Information Coverage Model. In this paper,
the confident information coverage model is used as the
basic coverage model for node deployment and scheduling.
This model describes the sensor perception quality and
capability from the perspective of information collaborative
reconstruction. The core ideas and principles of the trusted
information coverage model are described as follows. Please
refer to the literature [28, 29] for a detailed process and
analysis.

In physical space, there is a strong correlation between
environmental variables, and they can be represented by cor-
relation range. Different physical quantities have different
spatial correlation ranges. This means that the physical
quantity to be measured has spatial correlation only in the
range of variation. As shown in Figure 1, P1 represents the
position of reconstructed points. S1, S2, and S3 are three sen-
sors. If the disk model is used, the information of P1 point
will not be sensed by sensors, while the confident informa-
tion coverage model can cover positions similar to P1 point,
increase the coverage area of the network, and reduce the
deployment cost. In practical application scenarios, environ-
ment variables have different actual measured values at dif-

ferent times. Therefore, root mean square error (RMSE)
was adopted in this paper to measure and evaluate recon-
struction and estimated quality [28], as shown below.

ϕ pð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/T〠

T

t=1
vt pð Þ − v̂t pð Þð Þ2

vuut : ð1Þ

For a target point P1, if ϕðpÞ is less than RMSE, then the
target point P1 can be collaboratively covered by nodes. The
greater the RMSE value, the greater the network coverage
rate. The covering function is expressed as follows:

Covxy p,mið Þ =
1, ifrmse mi, pð Þ ≤ RMSE
0, ifrmse mi, pð ÞRMSE

(
: ð2Þ

3.3. Energy Consumption Model. The energy loss caused by
data transmission is positively correlated with the transmis-
sion distance, which is the main energy loss of sensor nodes
[30, 31]. The calculation equation is shown below.

Et kb, dð Þ =
kb × Elc + kb × εfs × d2, d ≤ d0

kb × Elc + kb × εamp × d4, d ≥ d0

(
,

Er kb, dð Þ = kb × Elc,

ð3Þ

where Et represents the loss during data transmission, and
Er represents the energy consumed when receiving data. kb
represents the number of bits.

4. Proposed Algorithm

In this section, we will introduce the collaborative energy
optimization algorithm for multiple chargers based on k-
mean++ and node collaborative scheduling(CEOA). Firstly,
the data collection mechanism based on node scheduling is
introduced, and then the mobile charging path planning
based on the artificial potential field method is introduced.

4.1. Data Collection Mechanism Based on Confident
Information Coverage. In this section, we will introduce a net-
work energy-saving scheme based on node sleep scheduling.
Firstly, k-mean++ clustering algorithm is used to make the
nodes of each cluster evenly distributed. In order to meet the
requirements of regional coverage and maximize the period
of charging interval, we need to effectively schedule the energy
of sensor nodes so that the nodes with current coverage redun-
dancy are in a sleep state, thus extending the network lifetime.
Then, we need to select the appropriate cluster head for each
cluster and select the energy-saving data transmission scheme.
The network structure is shown in Figure 2. The specific algo-
rithm flow is shown in Algorithm 1.

4.1.1. K-Mean++ Clustering and Node Collaborative
Scheduling Scheme. The traditional k-mean clustering algo-
rithm randomly selects the cluster center, which will pro-
duce the unsatisfactory result of multiple iterations of
clustering. To solve this problem, the k-mean++ algorithm
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Figure 1: Confident information coverage model.

Table 1: Notation lists.

Notation Definition

N The set of sensor nodes

Leng The boundary size of WRSN

S ið Þ The ith sensor node

c ið Þ The ith cluster

(xi,yi) The coordinate of the node s ið Þ
EB Battery capacity

Eres The remaining energy of the node

Elc Energy consumption per bit of data sent

Rch Threshold for the MC to request a charging task

EAMC The total energy of AMC
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is adopted in this paper. In order to effectively reduce the
internal energy consumption of the network and prolong
the charging interval period, this paper proposes a node
collaborative scheduling algorithm based on a greedy algo-
rithm. After node clustering is completed, it is necessary to
determine the coverage set that can cover the recon-
structed points RP . In each cluster, nodes in each grid
are arranged in descending order according to the residual
energy of nodes to form a node set chain. Then, the
adaptability function of the CIC model is used to judge
which nodes in the grid can carry out node collaborative
sensing to form different coverage sets. When the node
energy consumption reaches a certain value, the node will
enter the hibernation state, and the current node will be
removed from the working node set. If there is no sensor
node in the grid or the sensor node cannot meet the con-
dition of node collaborative sensing, it means that the cur-
rent grid reconstruction point cannot be covered and is a
covering hole. After the network coverage set is generated,
the network coverage chain will be continuously updated
according to the remaining energy of nodes. When the
working node reaches the sleep threshold, the network
coverage set will be updated automatically to ensure the
maximum network coverage.

4.1.2. Cluster Head Selection in the Cluster. The cluster head
is responsible for collecting data information in the cluster,
so it consumes a lot of energy. The choice of cluster head
should take into account both the remaining energy of nodes
and the number of adjacent nodes. Therefore, this paper cal-
culates the influence factor of each node based on the above
two factors, and the calculation formula is as follows:

Ai = ρ × ni
ntl

+ 1 − ρð Þ × Eres
EB

, ð4Þ

where Ai is the cluster head competition value of the sensor
node, ρ is the influence factor of cluster head competition, ni
is the number of sensor nodes within the communication
radius of nodes, ntl is the total number of nodes in the cluster,
Eres represents the remaining energy, and EB is the total capac-
ity of the battery.

For each node in the cluster, the larger the cluster head
competition value A is, the greater the probability of becom-
ing a cluster head is.

4.1.3. Data Transmission Scheme. Long-distance transmis-
sion causes energy loss and difficult to guarantee the security
of data. Data can be divided into the nonrequest data and
the request data. Request data such as charging requests
and equipment failures are transmitted directly to the BS.
Other nonrequest data is transmitted back to the BS via
the MC.

4.2. Mobile Charging Path Planning Based on Artificial
Potential Field Method. The algorithm of mobile charging
path planning consists of three parts, which are docking
point selection, cluster charging sequence, and AMC path
planning. The specific algorithm flow is displayed in
Algorithm 2.

4.2.1. Docking Point Selection. In the working process of the
network, the energy consumed by each node is different,
so the position of each charging request node is also dif-
ferent. In order to minimize the travel distance of MC, a
docking point needs to be selected in each cluster. In this
paper, all nodes to be charged are first simulated as posi-
tively charged particles. It is assumed that there is a cen-
tral particle in the network, and the position of the
central point is a negatively charged particle. Gravity will
be generated between the node and the central point.
When the resultant force of all gravitation is zero, the

Request data transmission
Non-request data transmission
BS

Active node
Sleep node
Charging node
Cluster head

(a) (b) (c)

Figure 2: Network structure: (a) node cluster, (b) node coordination and scheduling, and (c) data transmission.
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actual position of the center is determined. At this point,
the nearest charging node in each cluster is the center
point, which is the docking point of the cluster. The for-
mula for calculating the gravitational force is as follows:

〠Uatt qið Þ = 1
2 ζdis

2 mqi, qgoal
� �

, ð5Þ

where ζ is the gravitational gain (approximately 1), mqi is
the node waiting to be charged in WRSN.

4.2.2. Cluster Charging Sequence. The number of nodes in
each cluster may not be the same, so the charging sequence
of the cluster should be adjusted accordingly. We set charg-
ing demand Rp for each cluster according to the remaining
energy of the cluster and the geographical location between

clusters to determine the charging sequence of the cluster.
The higher the charging demand Rp value is, the higher the
charging sequence is. The calculation process is as follows:

Rpe gð Þ = ∑
ng
i=1Eres

ng × EB
, ð6Þ

Rpd gð Þ = dis g − 1, gð Þ
∑N

p=gdis g − 1, pð Þ
, ð7Þ

Rp gð Þ = μ × Rpe gð Þ + 1 − μð Þ × Rpd gð Þ, ð8Þ
where the election factor of energy priority and distance pri-
ority is represented by μ, Eres is the total energy remaining in
each cluster, N is the total number of clusters in WRSN, ng
represents the number of sensor nodes in the gth cluster,
disðg − 1, gÞ indicates the distance between the previous
cluster and this cluster, Rp is a cluster consisting of the
charging coefficient values of all clusters, Rpe represents the
energy coefficient of the gth cluster, and Rpd represents the
distance coefficient of the gth cluster.

4.2.3. AMC Path Planning. When the number of charging
requests is n, the MMC carries three AMCs, and the charg-
ing problem becomes an integer programming problem. The
starting point and end point of each cluster are the docking
points obtained in the previous section, and the moving

1: Input: k, N , Rc, Rp, RMSE, S;
2: Deployment.
3: k-mean++ clust.
4: for each Rpi=1 to M do
5: for each sensor j ∈ Rpi do
6: dj =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSj:x − rpi:xÞ2 + ðSj:y − rpi:yÞ2

q

7: Sort Sj according dj

8: end for
9: end for
10: U ⟵ S
11: C⟵ random initial coverage set
12: for each Rpi=1 to M do
13: while U ≠ ∅ do
14: for Rpi = 1 to M do
15: while Rpi ≠∅ do
16: ϕ(i)= Rpi

T
C

17: for j=1:length(ϕ(i)) do
18: if rmse(j)< RMSE then
19: SP⟵ sensor j
20: Rp⟵ Rp − Rpi
21: else
22: j+1
23: if rmse(j+1)< RMSE then
24: SP⟵ sensor j,j+1
25: Rp⟵ Rp-Rpi
26: else
27: hole+1
28: end if
29: end if
30: end for
31: end while
32: end for
33: if S(i)∈ SP then
34: S(i).state=work
35: end if
36: end while
37: end for
38: select the cluster head according to Eq. (4);
39: node sensing work
40: Output: S,SP.

Algorithm 1: Data collection mechanism.

1: Input: k, Rch,S;
2: for i= 1:N do
3: if S(i).E < Eth then
4: Rch+1
5: S(i).state=R
6: c=S(i).clust
7: ch(c)⟵ i
8: end if
9: end for
10: while Rch > Threshold do
11: for i= 1:length(ch) do

12: ∑Uatt =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððqi:x − qgoal:xÞ2 + ðqi:y − qgoal:yÞ2Þ

q

13: ∑Uatt = 0⟶ qgoal
14: end for
15: for i= 1:k do
16: for j= 1:length(clust(i)) do
17: if S(j).state=R then

18: dmðjÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððSj:x − qgoal:xÞ2 + ðSj:y − qgoal:yÞ2Þ

q

19: end if
20: end for
21: docking(i)= min[n, dm(n)]
22: end for
23: caculate Rp for each cluster according to Eq. (8);
24: obtain the shortest path of AMC according to Eq. (9);
25: perform charging tasks;
26: end while
27: Output: dis,t,death_nodes.

Algorithm 2: Mobile charging path planning.
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distance of each cluster can be modeled as follows:

min〠lijxij, ð9Þ

s:t: 〠
n

j=1
xij = 〠

n

j=1
xji, ð10Þ

〠
n

j=1
xij ≤ 1, 〠

n

j=1
xji ≤ 1, ð11Þ

〠
n

j=1
xaj = 1, 〠

n

j=1
xja = 0, ð12Þ
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Figure 5: Comparison of initial coverage under different algorithms.
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Figure 3: Mobile charging path planning based on artificial
potential field method.

Table 2: Simulation parameters.

Parameters Value

Network size 100m × 100m
RMSE 0.5

Total sensor nodes 100

Node initial energy 2 J

Energy sensing efficiency 45 × 10−9J/b
Charging speed 0.005 J/s

MMC travel speed 2m/s

AMC travel speed 5m/s

MMC traveling energy consumption 5 J/m

AMC traveling energy consumption 1 J/m
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Figure 6: Travel distance of MMC.
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〠
n

j=1
xdj = 0, 〠

n

j=1
xjd = 1, ð13Þ

xij ∈ 0, 1f g, ð14Þ
where lij is the distance from node i to node j, xij indicates
whether the node needs to be charged. xaj and xdj represent
departure and return from the docking point.

To ensure that AMC can carry out the next round of
charging tasks, the objective function has constraints.

〠
p

i=1
Ei ne + 〠

p−1

i=1
ji,i+1 × est > Esc − disp,BC × eac, ð15Þ

where Ei ne is the total energy required by the first p nodes,
eac is the energy consumption rate of AMC as it moves.

This formula means that the total energy to be charged
plus the energy consumed by each cluster during the charg-
ing process must be greater than the total energy possessed
by AMC minus the energy consumed during the moving
process, so as to ensure the normal charging of the cluster.

In the charging process, if the constraints listed above
can be met, the charging task can be successfully completed.
If not, the AMC will temporarily stop charging. When the
AMC is fully charged, it will resume its previous charging
task. The path planning for MMC and AMC is shown in
Figure 3.

4.3. Complexity Analysis. In the time complexity analysis, the
time complexity of the CEOA_Disc algorithm and CEOA_
NCS algorithm is analyzed and compared theoretically.
According to the CEOA_Disc algorithm, assuming that the
time used to complete the working state determination algo-
rithm of a node is Tx, the number of nodes to be charged is
N1, the time required for a path movement planning is Tm,

and the charging time is T ; then, the running time of this
algorithm is N1TmT . The running time of the CEOA_Disc
algorithm is Tx +N1TmT ; for the CEOA_NCS algorithm,
it is assumed that the running time required for node collab-
orative scheduling based on the greedy algorithm is Tc, the
number of nodes to be charged is N2, the time required for
a path movement planning is N2, and the charging time is
T . Given that Tm > Te, N1 >N2 according to the algorithm,
the time of this algorithm is N2TeT . The running time of the
CEOA_NCS algorithm is Tc +N2TeT .

In conclusion, the CEOA_Disc algorithm can effectively
reduce the moving distance of MWCV, and the CEOA_NCS
algorithm can calculate the shortest moving path of MWCV,
both of which save the charging time and cost. At the same
time, these two algorithms are better than other algorithms
in related performance indexes.

5. Performance Evaluation

5.1. Simulation Environment. In this paper, we use
MATLAB 2021a to test the performance of the proposed
algorithm. Table 2 lists the parameters used in this simula-
tion experiment. 100 sensor nodes are randomly deployed
in a 100m × 100m network. The communication distance
between nodes is 15m. RMSE value of CIC model is 0.5.
The running speed of the MMC is 2m/s, and the running
consumption is 5 J/m. The speed of the AMC is 5m/s, and
the running consumption is 1 J/m. They all charge at
0.05 J/s. The initial power of the auxiliary mobile charging
device is 1000 J. The comparison algorithm of simulation
results is the CCA-NDC [13] and the REGP [20] algorithm.

5.2. Performance Analysis. k-mean++ clustering is an exclu-
sive clustering method based on distance, and the number of
clusters needs to be set initially. In previous studies, we have
confirmed that when there are 16 clusters, the number of
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Figure 7: Comparison between different algorithms: (a) dead nodes; (b) sleep nodes.
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dead nodes is the least. In this section, we still select clusters
11 to 20 for result analysis. When the number of clusters is
too small, the mobile range is too large, and the AMC cannot
be charged at one time. When there are too many clusters, the
nodes in the cluster with a lower charging priority die due to
the long waiting time. Figure 4 shows the node death result
of node redundancy scheduling using the disk model during
the first round of charging. REGP adopts k-mean clustering
and randomly selects the initial clustering center, while
CCA-NDC adopts mean shift clustering. The nodes in the
network of these two algorithms are not evenly distributed,
the waiting time of the main mobile charging device is too
long, and the number of dead nodes increases. CEOA_Disc
indicates that when the disk model is applied, the nodes in
the network are scheduled for sleep. It can be seen from the
figure that in the network with node scheduling, the charg-
ing pressure will be relatively reduced, and the dead nodes
will be reduced due to the sleeping of some nodes. Because
CEOA_NCS adopts the CIC model as the basic coverage
model, the node mortality rate in the first round of charg-
ing is 0, no matter how many clusters there are.

Figure 5 shows the initial coverage of different algo-
rithms under the disk model and CIC model. When using
the disk model, based on redundancy cover within a cluster
to judgment, CEOA_Disc provides more uniform distribu-
tion of each cluster node in the network. The number of
sleep nodes within the cluster nodes was similar, different
clusters were similar, and the number of coverage was nearly
without a sleep schedule. As a result, the coverage is rela-
tively reduced, and the cluster with fewer nodes has fewer
dormant nodes, but the coverage rate is smaller. Therefore,
the overall coverage varies greatly when the number of clus-
ters is different, and the coverage rate is smaller than that of
CEOA_Disc. Under the CIC model, the overall coverage has
been greatly improved. At the initial deployment of CEOA_
NCS, the coverage has reached 1 in all cases.

The previous research results show that CEOA has great
advantages over the other two algorithms. The docking
point of each cluster is not only considered from a single
cluster but also calculated according to all nodes to be
charged in the network. The location of the docking point
is the same as the location of the charging node. In this case,
it cannot only reduce MMC mobile distance, but it can also
reduce AMC mobile distance, as can be seen in Figure 6.
With the increase of number of clusters, MMC’s moving dis-
tance also increases, but CEOA’s moving distance is the
shortest.

The number of dead nodes is directly related to the sta-
bility of the network. After 100 rounds of charging, some
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nodes in the network die because they wait too long for one
round of charging. Figure 7 shows the number of dead nodes
and sleep nodes after 100 rounds of charging. It can be seen
in Figure 7(a) that the number of dead nodes in the network
is low when the CIC model is adopted. After 100 rounds, the
number of dead nodes in CEOA_NCS is still 0 in 16 clusters.
This is because the working nodes in the network are greatly
reduced by adopting the CIC model. As can be seen in
Figure 7(b), the number of sleep nodes using the CIC model
is about 4 times that of the disk model. As the number of
working nodes decreases, the sense energy and communica-
tion energy of nodes decrease, so the total energy consump-
tion of the network decreases, and the number of dead nodes
decreases.

Figure 8 shows the number of dead nodes at different
charging thresholds after several rounds of charging. As can
be seen in Figure 8, the number of dead nodes is significantly
lower than that of the other two algorithms, because CEOA_
Disc adopts k-mean++ for node clustering. Nodes in the net-
work are more evenly distributed, and the number of nodes
to be charged in each cluster does not differ much when the
charging request is reached. This can effectively reduce the
number of dead nodes. The number of dead nodes in
CEOA_Disc is about half of that in REGP. However, we can
also see from the figure that the performance of CEOA_NCS
is better than other algorithms. It has the lowest number of
dead nodes under any charge threshold request, far lower than
other algorithms. The number of working cycles is more than
10 times that of other algorithms. This is because there are
fewer working nodes in the confident information coverage
model, and node sleep rotation is more likely.

As for network charging time, Figure 9 shows that the time
spent per charge fluctuates up and down, especially for the
disk model. This is due to the different nodes in each round
of charging. After the charging request reaches the threshold
in the network, the remaining energy of some nodes may be
near the critical value. So in the next round of charging, the

number of charging requests will increase. It can also be seen
from the figure that the charging time of the CIC model is
about 1.5 times longer than that of the disk model. This is
because the network has a higher energy utilization rate, lon-
ger network work cycles, and longer charging time after nodes
are coordinated with scheduling. However, CEOA_NCS’s
charging time is still lower than REGP’s.

In the initial deployment, CEOA_NCS achieves a coverage
rate of 1. After the network works for a period of time, the net-
work coverage rate decreases due to the death of the node.
Since there are fewer working nodes in the network and longer
working rounds in the CICmodel, the overall network lifetime
will increase. It can be seen in Figure 10 that CEOA_Disc has
lower node mortality and a longer network lifetime than the
other two algorithms. Under the same coverage stopping con-
dition, the CIC model has more charging cycles, which are
more than 10 times that of the disk model.

After the mobile charging device is charged for the first
time, it returns to the BS to replenish energy and bring the col-
lected data back to the BS. At this time, the network will still
run normally. Figure 11 shows that under the disk model,
the working time of all nodes and the node scheduling state
is much lower than that of the CIC model, which is about
10% of that. In the first round after charging, most nodes in
the disk model network consume too much energy. At the
end of charging, there will be a flood of charging requests
again. There are few working nodes in the CIC model; in the
first round, if all nodes have remaining energy even after
charging, the charging interval period can be shortened.

6. Conclusion

This paper proposes a collaborative energy optimization
algorithm for multiple mobile charging devices based on k-
mean++ and node collaborative sensing. The nodes in the
network are initially clustered to balance the number of
nodes in each cluster and reduce the energy consumption
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on cluster heads. The global virtual force positioning algo-
rithm is used to determine the docking points of mobile
charging devices in each cluster, which reduces the moving
distance of mobile charging devices and saved charging
costs. A sleep scheduling algorithm based on the CIC model
is proposed to prolong the lifetime of the network. It can
extend network charging interval time and reduce the dis-
tance of mobile charging devices. The simulation results ver-
ify the advantages of CEOA in prolonging network lifetime,
improving network stability, and saving charging cost. In
future studies, we consider adopting more types of mobile
charging devices to adapt to more complex environments.
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