Nourishing Yin and Promoting Blood Circulation of TCM to Treat Hemorheologic Disorder Induced by Diabetes Mellitus in Rats

Rong Xia¹, Ping Huang² and Guo-ming Shao³

Diabetes mellitus, DM, is commonly accompanied with various stages of hemorheologic disturbances that are the main causes of the development of chronic DM. In this study, simple Chinese material medica [yang-yin jiang-tang preparation (YYJT)] was given to alloxan-induced DM rats and analyzed to compare the changes of fasting blood glucose (FBG), fasting insulin (FINS), hemorheologic parameters and insulin-like growth factor II (IGF-II) before and after administration. The results suggested that YYJT can significantly downregulate FBG (P < 0.005), improve insulin resistance and beta-cell secretion (P < 0.05), decrease whole blood viscosity at low and high shear rates, gathering of blood index test (GIT) and fibrinogen (FIB) (P < 0.05), and enlarge the function of IGF-II (P < 0.05). We concluded that YYJT could prevent and treat hemorheologic disorder in DM rats by means of reducing glucose, improving insulin resistance and elevating IGF-II.

Keywords: Chinese material medica – diabetes mellitus rat – hemorheology – insulin resistance – insulin secretion – insulin-like growth factor II

Introduction

Patients with diabetes mellitus (DM) usually develop a range of hemorheologic disturbances due to glucolipotoxicity. Angiopathy is a risk factor of chronic DM complications (1,2). Widespread research is currently taking place in China and other countries to explore new traditional Chinese medicine and Western medicine that will improve hyperviscosity syndrome and prevent and treat chronic complications of DM (3,4). In traditional medical theory, DM is in the concept of ‘xiao-ke’ with deficiency of Yin and dryness-heat, where the in vivo blocks of blood gore leads to hemorheologic disorder. Therefore, reinforcing Qi, nourishing Yin, removing blood stasis and promoting blood circulation is the principle of DM treatment in traditional medicine (5–7). The administration of simple Chinese material medica not only has hypoglycemic effect but also improves hyperviscosity syndrome in DM, which are the advantages in the treatment of DM with TCM. Against the above background, in this study, simple Chinese material medica [yang-yin jiang-tang preparation (YYJT)], which can nourish Yin and promote blood circulation, was used in DM rats to investigate its mechanism and clinical value for improving hemorheologic disorder.

Methods

Rats

Male Sprague-Dawley rats, about 3 months old, were obtained from the Animal Center, Zhejiang Academy of Medical Science, SCXX (Shanghai, manufacture permission number 2003-0003). All rats were randomly divided into a control group, an experimental group and a YYJT-treated group, consisting 12 rats each.

Reagent

Alloxan (A-7413, Lot-36H0102) was supplied by Sigma company, Insulin radioimmunoassay reagent box (lot: 2008-10236).
by the technique center, Academy of Medical Science in China, POD-PAD reagent box (lot: 03174) by the experimental center of clinical diagnostic reagent, China National Biotech Corporation, rat IGF reagent box (lot: 0305) by General Hospital of PLA and Yangyinjiangtangpian (YYJT, lot: ZZ-2970-037801) by Chiatai Qingchun Bao Pharmaceutical Co., Ltd, China.

Apparatus
We used Intelligent Radioimmuno instrument model SN-695 made by the Shanghai Research Institute of atomic nucleus, Revolving Blood Viscosity calculator LBY-N6A and NM1 models, by Beijing Plant of Medical Devices, and ACL-200 instrument, by Beckman Coulter, USA.

Animal Model
The control group was allowed free access to food and water, the other two groups were fasted for 24 h before establishing the model. Sublingual intravenous injections of Alloxan (50 mg kg\(^{-1}\)) were given under anesthesia induced by sodium pentobarbital (40 mg kg\(^{-1}\)) and the DM models were established 72 h later (8–10). The rats that had levels of glucose above 300 mg dl\(^{-1}\) for 3 days were randomly divided into the experimental (12 rats) and YYJT-treated (12 rats) groups.

Administration
The control group had free access to food and water. The experimental groups were drenched once a day via the stomach with equal amounts of normal saline solution. The YYJT-treated group was perfused via the stomach with a suspension from crude drug (4.66 g kg\(^{-1}\)) once a day. The animals were kept in stable clean conditions (the second grade) and fed with water and rodent chow ad libitum.

Detection of Laboratory Parameters
The serum samples were collected 1 day before administration and at 10 days after administration from the tail in all three groups. Fasting blood glucose (FBG) was determined by method of glucose oxidase: FBG (mmol l\(^{-1}\)) = assay tube absorbance/standard tube absorbance 5.55. Fasting insulin (FINs, \(\mu U\) ml\(^{-1}\)) was measured under the instructions of the reagent box. Whole blood viscosity at low and high shear rates (LS, HS), plasma viscosity, hematocrit (HCT) in the blood, gathering of blood index test (GIT) and fibrinogen (FIB) in plasma were tested for hemorheology. Insulin-like growth factor II (IFG-II, ng ml\(^{-1}\)) was measured using the instructions on the reagent box. Insulin resistance index (Homa-IR) and insulin secretion index (Homa-IS) were detected by HOMA to evaluate insulin resistance and beta-cell secretion. Homa-IR = FINs × FBG/22.5; Homa-IS = FINs × 20 (FBG – 3.5) (11–14).

Statistical Analysis
Statistical analysis was done with 4Steps Excel (Statcel2) software. The data are presented as the mean ± standard deviation. Statistical significance was determined using analysis of variance, ANOVA and Fisher’s PSLD.

Results
FBG Decreased Significantly in the YYJT Group
The levels of FBG in the YYJT and experimental groups were significantly elevated (\(P < 0.001\)) compared to the control group after the model was established, but no significant difference was noted between the experimental and YYJT groups. At 10 days after administration, the level of FBG in the YYJT group significantly decreased (\(P < 0.005\)) but was still higher than that in the control group (\(P < 0.01\)). There was no change of FBG in the control and experimental groups (Fig. 1A).

After establishing the model, the levels of FINs in the YYJT and experimental groups were significantly lower than in the control group (\(P < 0.05\)), but no significant difference was noted in the former two groups. No difference was marked before administration or 10 days after in all three groups (Fig. 1B).

Homa-IR Decreased, Homa-IS Increased Significantly in the YYJT Group
The levels of Homa-IR in the YYJT and experimental groups were significantly increased (\(P < 0.001\)) compared to the control group after the model was established, but no significant difference was noted between the experimental and YYJT groups. This suggests that insulin resistance occurred in the DM rats. Ten days after administration, the level of Homa-IR in the YYJT group significantly decreased (\(P < 0.005\)), but it was still higher than that in the control group (\(P < 0.01\)). There was no change of Homa-IR in the control and experimental groups (Fig. 2A).

The levels of Homa-IS in the YYJT and experimental groups were significantly lower than those in the control group after the model was established (\(P < 0.05\)), but no significant difference was noted in the former two groups. This might indicate that beta-cell destruction developed in the DM rats. The level of Homa-IS significantly increased (\(P < 0.05\)) in the YYJT group administration, but it was still lower than that in the control group (\(P < 0.005\)). No changes of Homa-IS occurred before administration or 10 days after in the control or experimental groups (Fig. 2B).

Most of Hemorheologic Parameters Decreased Significantly in the YYJT Group
The post-administration parameters in the experimental group largely increased in comparison with those in the control group (\(P < 0.05\)), showing that distinct hemorheologic obstruction
occurred in the DM rats. Compared to the experimental group, LS, HS, GIT and FIB decreased significantly in the YYJT group ($P < 0.05$) at 10 days administered, while plasma viscosity and HCT were stable ($P > 0.05$, Table 1).

Table 2 illustrates the relationship between Homa-IR and hemorrheologic parameters before administration and 10 days after. The statistically analyzed results explained that Homa-IR had a correlation with LS and GIT ($r = 0.56, 0.88, P < 0.05$) after administration. There was no marked relationship in the other groups.

IFG-II Increased Significantly in the YYJT Group

Compared with the control group, IFG-II declined significantly in the DM rats ($P < 0.05$) and had a negative relationship to HCT ($r = -0.69$). No difference was noted in the experimental and YYJT groups. After administration, IFG-II increased significantly ($P < 0.05$) in YYJT group while no changes happened in the other two groups (Fig. 3).

Discussion

In this study, we observed the effects of simple traditional YYJT preparation on FBG, FINS, hemorheology and IGF-II. YYJT preparation (troche) consists of milk vetch, dangshen, Chinese wolfberry fruit, chuanxiong, root of kudzuvine, root of zhejiang figwort and rehmannia. All these components can reinforce Qi, nourish Yin, remove blood gore and promote blood circulation. YYJT is available on the market. The results of this study proved YYJT to be functional in reducing glucose, ameliorating insulin resistance, accelerating beta-cell secretion, downregulating whole blood viscosity at low and high shear rates, GIT and FIB, and upregulating IFG-II.

Over 90% of all DM cases are diagnosed as type 2, caused mostly by insulin resistance and beta-cell destruction. WHO illustrated the onset mechanism of type 2 insulin resistance with insulin hyposecretion and insulin hyposecretion with or without insulin resistance (15,16). Gerich (17), however, considered that beta-cell destruction occurred before insulin resistance in nosogenesis of type 2 DM. In this study, DM was induced in all the rats with Alloxan, which damaged
of DM, displaying aggregation of erythrocyte and decrease of
glycemic parameters vary in different types and clinical phases (18–21). The hemorheologic disorder in DM patients is which accelerates the combined vasculopathy after DM to worse beta-cell function. Thus, a vicious circle began. All insulin function and then insulin resistance formed, leading to diabetes complications of DM in DM rat models, but the long-term efficiency and mechanism is uncertain.

Conclusions
In this study, we showed that traditional medicine with Yin nourishing and promoting blood circulation function can decrease glucose, develop beta-cell function and correct hemorheologic disorder to positively prevent and treat chronic complications of DM in DM rat models, but the long-term efficiency and mechanism is uncertain.
References

Submit your manuscripts at http://www.hindawi.com