Selective Interactions of Valeriana officinalis Extracts and Valerenic Acid with $^{[3]H}$Glutamate Binding to Rat Synaptic Membranes

Lisa M. Del Valle-Mojica,1 Yoshira M. Ayala-Marín,2 Carmen M. Ortiz-Sanchez,3 Bianca A. Torres-Hernández,1 Safa Abdalla-Mukhaimer,1 and José G. Ortiz1

1 Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico-Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico
2 Department of Biology, Natural Sciences Faculty, University of Puerto Rico Humacao Campus, Humacao 00791-4300, Puerto Rico
3 Department of Chemistry, Natural Sciences Faculty, University of Puerto Rico Cayey Campus, Cayey 00736-9997, Puerto Rico

Correspondence should be addressed to Lisa M. Del Valle-Mojica, lisadelvalle@yahoo.com

Received 29 October 2010; Accepted 12 February 2011

1. Introduction

Valeriana officinalis L., s.l. (Valerianaceae family) is a medicinal plant used in complementary and alternative medicine for its sedative and anxiolytic properties [1, 2]. Valerian’s effects on the central nervous system have been well documented and attributed to many of its active compounds: valepotriates, baldrinals, valerenic acid, valerenal and valeranone, and other constituents in the essential oils [1, 3–8]. Although the anxiolytic properties of valerian have been demonstrated in animals [9, 10], there are no sufficient studies in humans [6]. Consequently, the therapeutic properties of Valeriana officinalis have yet to be conclusively demonstrated [6, 9, 11].

“Anxiety and stress-related diseases are a group of disorders that have in common excessive or inappropriate brain excitability within crucial brain circuits” [12]. The actions of glutamate, the major excitatory neurotransmitter, are mediated by two types of receptors: (1) ionotropic receptors (iGluR): NMDA, AMPA, and kainate receptors and (2) metabotropic receptors (mGluR) which are comprised of three groups (I, II, and III). Decreasing excitatory neurotransmission in the CNS by modulating glutamate receptor signalling can produce anxiolysis and sedation.

The present study investigated the interaction of Valeriana officinalis aqueous extract with the glutamatergic receptors. We also examined the interaction of valerenic acid...
and isoborneol, two constituents present in the extracts. To accomplish this objective, receptor-binding assays were performed using rat cortical synaptic membranes in the presence of fresh valerian extracts and both types of glutamate receptor ligands.

2. Materials and Methods

2.1. Chemicals. Valerenic acid (99.7% purity-Lot no. 22150-1800) and isoborneol (96.6% purity-Lot no. 09195-102) were purchased from Chromadex, Irvine, CA. L-[3,4-3H]-Glutamic acid (49.9 Ci/mmol) was obtained from PerkinElmer Life and Analytical Sciences, Inc. (Shelton, CT). AMPA (RS)-a-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), NMDA (N-methyl-D-aspartic acid), kainic acid, quisqualic acid (2S)-2-amino-3-(3,5-dioxo-1,2,4-oxadiazol-2-yl) propanoic acid), LCCG-I (2S,1′S,2′S)-2-(Carboxycyclopropyl)glycine, EGLU ((2S)-a-Ethylglutamic acid), spaglumic acid (N-Acetyl-L-aspartyl-L-glutamic acid) and L-AP4 (L-(+)-2-Amino-4-phosphonobutyric acid) were obtained from Tocris Bioscience (Ellisville, MO). Other reagents were obtained from Analytical Biological Services, Inc. (Wilmington, DE). They report that UniverSol ES was obtained from MP Biomedicals (SOLON, OH). All other reagents were obtained from Sigma-Aldrich Co. (St. Louis, MO).

2.2. Valerian Extracts. Valeriana officinalis L., s.l. dry powdered roots (Lot. 1111H-OUP), harvested in 2004 and organically grown/certified, were obtained from Pacific Botanicals (LLC Grants Pass, Oregon). Valerian was extracted in ultra pure water, typically (1 : 10 w/v) at ~23°C and stirred for 1 hour. Aliquots were centrifuged at 6,700 g to remove particulates.

2.3. Valerenic Acid. A 10 mM stock solution was prepared using EtOH 95%. The dilutions used for the assays were freshly prepared with 50 mmTris-HCl/100 mM KCl buffer before each experiment.

2.4. Isoborneol. A 65 mM stock solution was prepared using EtOH 95%. The dilutions used for the assays were freshly prepared with EtOH 70% before each experiment.

2.5. Cerebral Cortex Synaptic Membranes. Cerebral cortex synaptic membranes were purchased from Analytical Biological Services, Inc. (Wilmington, DE). They report that these were prepared as follows: female rats of approximately two months of age were decapitated and the brain promptly removed. The cortex was dissected and homogenized (1 : 10 w/v) in ice-cold 10 mM TRIS-HCl buffer pH 7.4. The homogenate was centrifuged twice at 2,500 g for 10 min. The resulting supernatant was centrifuged at 12,500 g for 20 min. The pellet was washed twice with ice-cold 10 mM TRIS-HCl buffer pH 7.4 (1 : 10 w/v) and centrifuged at 12,500 g for 20 min. The pellet (synaptosomal membrane, P2) was resuspended in 10 mM TRIS-HCl buffer pH 7.4 and freeze thawed at least three times before being stored at −80°C until used. Protein concentration was determined using the Bradford assay [13] using bovine serum albumin (BSA) as reference standard.

2.6. [3H]Glutamate Binding. Receptor-binding competition assays were done using cerebral cortex synaptic membranes from Analytical Biological Services, Inc. (Wilmington, DE). The reaction was initiated by the addition of tissue (100 μg protein) to tubes containing 1 mM of different iGluR and mGluR ligands and 20 nM [3H]Glutamic acid in a final volume of 500 μL of 50 mM Tris HCl/100 mM KCl buffer, pH 7.4. The nonspecific binding was determined in the presence of 1 mM nonradioactive glutamate. All samples were incubated on ice (0–4°C) for 40 minutes. The assay was stopped by centrifugation for 30 min at 6,700 g; the supernatant was extracted, and the pellet was washed two times with 1 mL of ice-cold buffer. The pellet was resuspended in 500 μL of buffer. Radioactivity of the samples was quantified in a Beckman LS 6500 Multipurpose Scintillation Counter with 1 mL of UniverSol ES scintillation cocktail. Results are shown as percentage of total binding (SEM).

2.7. [3H]Glutamate Displacement Curves. Different concentrations of freshly prepared aqueous valerian extracts (4 pg/mL–12 mg/mL), valerenic acid (30 ng/mL–2 mg/mL), and isoborneol (5 ng/mL–2 mg/mL) were incubated with rat cortical membranes in presence of 20 nM [3H]Glutamate.

2.8. Statistical Analysis. Data were expressed as mean values ± the standard error of the mean (SEM) of at least three experiments. The differences between the experimental
groups were tested for significance using one way analysis of variance followed by Tukey-Kramer multiple comparisons test, with $P < .05$. Statistics for the experimental group versus total binding were not shown for clarity.

3. Results

3.1. $[^3]$HGlutamate Displacement Curves for Valerian and Its Constituents. The effect of different valerian extract concentrations, valerenic acid and isoborneol in presence of $[^3]$HGlutamate were dose dependent, as shown in Figure 1. Valerian increased $[^3]$HGlutamate binding from 8×10^{-7} to 1×10^{-3} mg/mL reaching a maximum binding of 160% at 1×10^{-3} mg/mL. At higher valerian concentrations, greater than 1×10^{-3} mg/mL, there is a sudden decrease in $[^3]$HGlutamate binding, reaching 50% at 12 mg/mL. In contrast, valerenic acid and isoborneol increased $[^3]$HGlutamate binding at higher concentrations (1.6×10^{-2} to 2 mg/mL).

3.2. In Vitro Receptor Selectivity Studies. Having shown that Valeriana officinalis and its constituents interacted with $[^3]$HGlutamate binding, we examined the type of glutamatergic receptor involved. For this purpose, binding assays were done in presence of different types of ionotropic (iGluR) and metabotropic glutamate receptor (mGluR) ligands. Figure 2(a) shows that Valerian extract at 0.05 mg/ml increased $[^3]$HGlutamate binding by 81%. A decrease (21%) in $[^3]$HGlutamate binding is observed with KA (1 mM) but not with NMDA or AMPA. In the presence of NMDA (1 mM), higher valerian extract concentration (10 mg/mL)
Figure 3: Interactions of valerian extracts, valerenic acid, and isoborneol on metabotropic glutamate receptors (mGluR). (a) At lower concentrations of valerian extract (0.05 mg/mL) in presence of LCCG-I, a Group II metabotropic glutamate receptor agonist, there was a marked decrease in the binding. This effect was not seen with QA and L-AP4. Valerian extracts at 10 mg/mL, in presence of both QA and LCCG-I, significantly decreased the glutamate binding. No effects were observed in presence of DCG-IV and EGLU, a Group II metabotropic glutamate receptor agonist and antagonist, respectively. (b) Valerenic acid concentration at 0.008 mg/mL, in the presence of QA, a Group I metabotropic glutamate receptor agonist, produced a significant increase in the binding. No effects were observed in presence of DCG-IV, LCCG-I, EGLU, and L-AP4. (c) Isoborneol, at 0.0008 and 1 mg/mL increased [3H]Glutamate binding by 49% and 64%, respectively. Isoborneol interacted with all mGluR ligands indiscriminately with all of them. At 0.0008 mg/mL, isoborneol interacted with QA and markedly decreased (14%) [3H]Glutamate binding. In addition, isoborneol strongly interacted with L-AP4 at both concentrations (0.0008 mg/mL and 1 mg/mL) and resulted in an increased [3H]Glutamate binding (37% and 46%, resp.). * agonist versus agonist + (valerian, valerenic acid, or isoborneol), P < .05; **P < .01; ***P < .001.
QA or L-AP4. In contrast, at 10 mg/mL, the valerian extract, in presence of QA, increased the glutamate binding (28%), while in presence of LCCG-I, it decreased [3H]Glutamate binding by 16%. A detailed evaluation of Group II mGluR-Valerian interaction (Figure 3(a)-Insert) confirmed a marked decrease in the [3H]Glutamate binding when valerian extracts (0.001 mg/mL) were in presence of DCG-IV (28%) and E glutamate binding (10−7 to 10−1 mg/mL) valerian extracts (8−8 × 10−7 to 10−1 mg/mL) valerian potentiate 3[H]Glutamate binding. In contrast, different findings were obtained for valerenic acid and isoborneol. The [3H]Glutamate displacement curves and the receptor selectivity obtained for valerian and its constituents, for instance, are very different from each other, suggesting that these constituents are not the compounds responsible for the increase in [3H]Glutamate binding observed with valerian.

The glutamatergic system plays an important role in anxiety pathogenesis [28]. It is suggested that the physiological and behavioral responses associated with anxiety are regulated by a balance between the inhibition produced by GABA and the excitation caused by glutamate. Treatments used to decrease excitability in neurons from the amygdala are achieved by increasing GABA neurotransmission. Alternatively, treatments to decrease the excitability can be obtained by decreasing the excitatory glutamatergic transmission. Therefore, decreasing excitatory neurotransmission in the CNS, by modulating the response produced by the glutamatergic receptors, is an alternative approach to produce anxiolysis and sedation. The glutamate receptors found in the amygdala produce excitatory and inhibitory actions, and the degree of ionotropic and metabotropic activation is an important factor to determine the amygdala cell excitability. Thus, the modulation of glutamate actions mediated by iGluR and mGluR represents a feasible alternative to treat anxiety states [12, 29].

Compounds that decrease glutamatergic transmission via blockade of NMDA have been reported to produce anxiolytic and antidepressant like actions in animal tests and models [30, 31]. Our group demonstrated that valerian extract had modest inhibitory effects on [3H]MK-801 binding, an indicator of NMDA-valerian interaction [32]. In 2004, Malva and colleagues reported that by decreasing neuronal network excitability through AMPA permeable Ca2+ receptors, valerian preparations could contribute to neuroprotection and may be of therapeutic use in preventing glutamate-mediated degeneration related to aging or neurodegenerative disorders [33]. Now, our study confirms that in the presence of iGluR agonists, valerian extracts interact with KA and NMDA (0.05 mg/mL and 10 mg/mL, resp.). While isoborneol exhibited significant interactions with all iGluR, valerenic acid did not interact with iGluR agonists. Many studies suggest that metabotropic glutamate receptors are involved in anxiety [12, 34–36]. For this reason, we performed receptor-binding assays with valerian extracts in presence of different types of metabotropic glutamate receptors. In this study, we demonstrated that valerian extracts, in presence of mGluR ligands, exhibited significant interaction with QA (Group I mGluR) and LCCG-I (Group II mGluR). Valerenic acid selectively interacts with QA. However, isoborneol interacts with all mGluR receptors. Our
results clearly demonstrated that *Valeriana officinalis* and its constituents (valerene acid and isoborneol) interact with Group I and II mGluR, which supports previous studies showing the role of Group I and II mGluR in anxiety [35, 37].

The pharmacological effects of *Valeriana officinalis* extracts in [3H]Glutamate binding are not conventional and binding selectivity. [3H]Glutamate displacement curve obtained in presence (agonist/antagonist) or synergism occurring in the complex mixture of phytochemical constituents. The biphasic [3H]Glutamate displacement curve obtained in presence of valerian represents an example of the interactions that occur in an extract which could not be evident when single constituents are studied in isolation. This study exclusively used receptor-binding assays to determine ligand-receptor interactions, but functionalities studies are being conducted to characterize them.

Our results confirm the hypothesis of valerian interaction with the glutamatergic receptors, suggesting a possible mechanism by which valerian extracts produce their effects. Val-mGluR interactions may represent a novel alternative for the treatment of anxiety. Further studies with fractions of valerian extract should be done to evaluate the interactions between a group of compounds and their effects on receptor-binding selectivity.

Abbreviations

- **AMPA**: (α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid)
- **CAM**: Complementary alternative medicine
- **CNS**: Central nervous system
- **DCG-IV**: Dicarboxycyclopropylglycine
- **EGLU**: Ethylglutamic acid
- **Group I mGluR**: Metabotropic glutamate receptors (2/3)
- **Group I mGluR**: Metabotropic glutamate receptor (1/5)
- **iGluR**: Ionotropic glutamate receptor
- **KA**: Kainic acid
- **L-AP4**: L-(-)-2-Amino-4-phosphonobutyric acid
- **LCCG-I**: (2S,1’S,2’S)-2-(Carboxycyclopropyl)glycine
- **mGluR**: Metabotropic glutamate receptor
- **NCCAM**: National Center of Complementary Alternative Medicine
- **NMDA**: N-methyl-D-aspartic acid
- **QA**: Quisqualic acid: (2S)-2-amino-3-(3,5-dioxo-1,2,4-oxadiazolidin-2-yl)propanoic acid
- **Spaglumic acid**: (N-Acetyl-L-aspartyl-L-glutamic acid).

Acknowledgments

This work was supported in part by the Research Centers for Minority Institution (RCMI/NIH Grant no. G12 RR03051), Institutional Minority Biomedical Research Support (MBRS-RISE) Program at the University of Puerto Rico, Medical Sciences Campus (Grant no. 2 R25 GM061838-05) and Humacao Campus (Grant no. 1 R25 GM 075348-01A1). The authors would like to thank Veronika Butterweck, Ph.D., and Philip C. Specht, Ph.D., for their help with the revision of this paper.

References

Submit your manuscripts at
http://www.hindawi.com