Verticine is the major bioactive constituent of *Fritillaria* as a kind of Traditional Chinese Medicine. Pharmacological researches have reported various benefits of verticine, including anticancer, anti-inflammatory, protecting against acute lung injury, tracheobronchial relaxation, antitussive, expectorant, sedative, and analgesic activities, in addition to inhibiting proliferation of cultured orbital fibroblast, angiotensin converting enzyme (ACE), and acetylcholinesterase (AChE) and inhibiting hERG potassium channels. The underlying mechanisms of verticine are still under investigation. This review will comprehensively summarize the metabolism, biological activities, and possible mechanism of verticine.

1. Introduction

Verticine (Figure 1) belongs to a kind of isosterol alkaloid, is the major bioactive constituent of *Fritillaria* as Traditional Chinese Medicine that is widely used as an antitussive and expectorant [1]. Pharmacological researches on verticine have reported its valuable benefits in a variety of diseases, especially its anticancer effect. In this paper, the pharmacological effects, including metabolism, antitumor, anti-inflammatory, protection against acute lung injury diastolic bronchus, inhibition of angiotensin converting enzyme, and acetylcholinesterase, antitussive expectorant, sedative analgesia, were summarized, which provides theoretical references for its clinical application.

2. Metabolism

Pharmacokinetics of verticine is closely related to its biological activity, and the metabolism is influenced by the mode of administration, sex, and animal types. Pharmacokinetic behavior of verticine can provide the theory reference for clinical medicine.

In rabbits model, the pharmacokinetics of verticine was different between the intragastric (ig) administration and intravenous (iv) administration (Table 1). The $t_{1/2}$ of ig administration was three times longer than that of iv administration, suggesting that there might be a reabsorption process after ig administration. However, it showed a very low bioavailability of 10.65%, which might be its low solubility in water, incomplete absorption, or metabolism of gastrointestinal enzymes and efflux pumps [2].

The pharmacokinetics of verticine was influenced significantly by sex. Verticine was eliminated slowly in the plasma of male Sprague-Dawley rat but not in female rats, and gender-related differences were also observed significantly in the pharmacokinetic parameters (Table 1). Drug concentration in blood and tissue in male rats was significantly higher except for several tissues, such as fat, muscle, and skin (data not given). Urinary cumulative excretion of verticine in female rats (0.12±0.04%) was lower than that of male rats (0.90±0.28%), and fecal cumulative excretion between female rats (0.23±0.06%) and male rats (0.27±0.06%) had no difference. Differences of sex-associated metabolism for verticine in rats are mainly due to sex-dependent expression and activity of drug metabolism enzymes and P-glycoprotein (P-gp) [3]. In addition, the main pharmacokinetic parameters of verticine were obviously different from [3] in Sprague-Dawley rats’ plasma after gastric gavage extract of *Fritillaria thunbergii* Miq. The V1/F was 40.832 L/mg, indicating that verticine was mainly distributed in blood, intracellular fluid,
3. Pharmacological Effects

3.1. Antitumor Effect. The treatment of cancer is mainly based on chemotherapy. Multiple drug resistance limited the improvement of chemotherapy efficacy and also became an important reason for the recurrence and metastasis of cancer. Verticine had the effects of anti-cell proliferation and apoptosis in many human tumor cell lines and could reverse the multidrug resistance of some drug-resistant cell lines, such as breast cancer, leukemia, lung cancer, and gastric cancer cells.

3.1.1. Anti-Breast Cancer Effect. Verticine could inhibit the proliferation of breast cancer cell and induce its apoptosis and significant multidrug resistance reversal activity against breast cancer cell. Tong et al. confirmed that verticine had the effects of anti-cell proliferation and apoptosis in many human tumor cell lines and could reverse the multidrug resistance of some drug-resistant cell lines, such as breast cancer, leukemia, lung cancer, and gastric cancer cells.
3.1. Anti-Inflammatory Effect. Verticine could inhibit the proliferation of human leukemia cell and induce apoptosis of multidrug-resistant leukemia; the mechanism was likely to be related to protein expression, redox imbalance, and caspase-3. In the early studies, verticine could inhibit the proliferation of HL-60 and K562 and reverse the multidrug resistance reversal activity against HL-60/ADR and K562/A02, which might be the increase of intracellular drug concentration and inhibition of P-gp protein expression in drug-resistant cells [5, 9]. ROS was an important signal molecule in cells, involved in many events, for example, cell proliferation, apoptosis, and multidrug resistance [39, 40]. It induced ROS explosion and reduced GSH content in tumor cell to inhibit tumor cell proliferation and induce apoptosis, which had an antitumor effect [41, 42]. This finding was consistent with that of Qi et al. (2017) who proved the effect of verticine on cell viability, proliferation, and apoptosis of human leukemia and the function of reactive oxygen species and redox imbalance in this process [10, 11]. Some alkaloids could activate caspase-3 and caspase-dependent cell apoptosis [43–45], and stimulating the ROS production of K562 cell could promote caspase-3 expression and induce apoptosis [46, 47]. Therefore, verticine might also activate caspase-3-related pathway in the process of stimulating ROS-induced apoptosis in K562/A02 cells.

3.3. Protection against Acute Lung Injury. The pathogenesis of acute lung injury was complex, but its essence was the damage of lung endothelial cells and alveolar epithelial cells caused by excessive inflammation [51, 52]. LPS can activate and amplify inflammatory reactions in the body, causing the accumulation of inflammatory cells in the lungs [53]. Verticine had protective effect on LPS-induced ALI in mice; the mechanism was related to the inhibition of the inflammatory factors, the downregulation of the phosphorylation level of MAPKs in the inflammatory response signaling pathway, and the reduction of NF-κB gene transcriptional intensity [19–23].

3.4. Tracheobronchial Relaxation and Antitussive Effects. Tracheal bronchial relaxation of verticine could be attributed to M receptor and calcium ions. Verticine showed strong inhibitory effect on the contraction of isolated tracheal strips of guinea pigs induced by carbachol; the results implied that the effect could be attributed to M receptor of the tracheal wall [24]. This result was consistent with that of Chan et al. who demonstrated the mechanisms of competitive antagonism of muscarinic pathway and also the inhibition of influx of calcium ions [25]. At the same time, verticine could also significantly elevate the concentration of cAMP in the HEK cells transfected with muscarinic M₂ receptor plasmid [54]. However, verticine did not exhibit agonistic β₂ receptor activity. It could be seen that the effect of verticine on diastolic bronchus was not produced by the agonist β₂ receptor [55].

Generally, M receptor is inhibited, which could have a certain antitussive effect, and verticine is an active constituent of verticine could regulate inflammatory microenvironment of 4T1 breast cancer cell by controlling the release of inflammatory factors and decreasing the expression of mRNA [7]. Additionally, verticine could inhibit the gene and protein expression of MUC5AC mucin induced by EGF, PMA, or TNF-α, by directly acting on airway epithelial cells, and the production of MUC5AC mucin protein induced by EGF, PMA, or TNF-α. This finding was consistent with the traditional use of F. thunbergii as remedy for diverse inflammatory pulmonary diseases [16]. At the same time, Yi et al. confirmed that verticine significantly inhibited tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β, increased IL-10 production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, and inhibited the phosphorylation of p38, ERK and c-Jun N-terminal kinase (JNK) as well as decreased p65 and IκB, which indicated that verticine inhibited the production of inflammatory cytokines induced by LPS through blocking MAPKs and NF-κB signaling pathways [50]. Verticine could inhibit the production of proinflammatory cytokines, such as IL-6, IL-8, and TNF-α, reducing MAPKs phosphorylation and the nuclear NF-κB expression in PMACI-induced HMC-1 [17].

In addition, the activity of T cell is inhibited, which can also achieve anti-inflammatory effect; KV1.3 potassium channels play a key role in the activation of T cells. Verticine could inhibit Kv1.3 channels in a concentration-dependent manner (IC₅₀=142.1 μM at 150 ms) [18].

3.2. Anti-Inflammatory Effect. Inflammation is a complex biological response mediated by activated inflammatory cells and immunocytes, involving a balance between proinflammatory and anti-inflammatory factors [15, 49]. Verticine showed anti-inflammatory effect. Zhang et al. proved that verticine could regulate inflammatory microenvironment of 4T1 breast cancer cell by controlling the release of inflammatory factors and decreasing the expression of mRNA [7]. Additionally, verticine could inhibit the gene and protein expression of MUC5AC mucin induced by EGF, PMA, or TNF-α, by directly acting on airway epithelial cells, and the production of MUC5AC mucin protein induced by EGF, PMA, or TNF-α. This finding was consistent with the traditional use of F. thunbergii as remedy for diverse inflammatory pulmonary diseases [16]. At the same time, Yi et al. confirmed that verticine significantly inhibited tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β, increased IL-10 production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, and inhibited the phosphorylation of p38, ERK and c-Jun N-terminal kinase (JNK) as well as decreased p65 and IκB, which indicated that verticine inhibited the production of inflammatory cytokines induced by LPS through blocking MAPKs and NF-κB signaling pathways [50]. Verticine could inhibit the production of proinflammatory cytokines, such as IL-6, IL-8, and TNF-α, reducing MAPKs phosphorylation and the nuclear NF-κB expression in PMACI-induced HMC-1 [17].

In addition, the activity of T cell is inhibited, which can also achieve anti-inflammatory effect; KV1.3 potassium channels play a key role in the activation of T cells. Verticine could inhibit Kv1.3 channels in a concentration-dependent manner (IC₅₀=142.1 μM at 150 ms) [18].
<table>
<thead>
<tr>
<th>Activities</th>
<th>Models</th>
<th>Biological activities</th>
<th>Action mechanism</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-breast cancer</td>
<td>MCF-7</td>
<td>Inhibit proliferation, reversing multidrug resistance</td>
<td>-</td>
<td>[4, 5]</td>
</tr>
<tr>
<td></td>
<td>MCF-7/TAM</td>
<td>Inhibit proliferation (at 48 h (\text{IC}{50}=191.16) g/mL; at 72 h, (\text{IC}{50}=138.30) g/mL), induce apoptosis</td>
<td>Decrease expression of Bcl-2</td>
<td>[6]</td>
</tr>
<tr>
<td></td>
<td>4T1</td>
<td>Inhibit proliferation (at 48h, (\text{IC}_{50}=14.7 \mu\text{mol/L}))</td>
<td>(1) Down-regulate TGF-(\beta), VEGF and MCP-1 secretion, decrease TGF-(\beta) and VEGF mRNA expression, regulating its tumor inflammatory microenvironment. (2) Regulate blood viscosity, improve blood flow state, reduce the expression of u-PA, VEGF, PAI-1 protein and the secretion of IL-8, reduce the infiltration of neutrophils, improve TFPI-2 protein expression</td>
<td>[7, 8]</td>
</tr>
<tr>
<td>Anti-human leukemia</td>
<td>HL60, HL-60/ADR, K562</td>
<td>Inhibit proliferation ((\text{IC}_{50}=288.27\pm34.23), 256.52\pm26.15, 320.80\pm36.52, 300.06\pm33.18, (\mu\text{g/mL})), reverse multidrug resistance</td>
<td>Increase intracellular drug concentration and inhibit P-gp protein expression</td>
<td>[5, 9]</td>
</tr>
<tr>
<td></td>
<td>K562/A02</td>
<td>Inhibit the cell viability and induce apoptosis, different concentrations of verticine (100, 200, 400 (\mu\text{mol/L})); the cell viabilities were 0.392\pm0.040, 0.300\pm0.022, 0.161\pm0.033</td>
<td>Induce the ROS outbreak and increase the GSH content, redox imbalance</td>
<td>[10, 11]</td>
</tr>
<tr>
<td>Anti-lung cancer</td>
<td>A549/DDP</td>
<td>Inhibit proliferation, induce apoptosis, reversing multidrug resistance</td>
<td>Down-regulate expression of LRP and ERCC1 mRNA</td>
<td>[12, 13]</td>
</tr>
<tr>
<td>Anti-gastric cancer</td>
<td>SGC-7901 and SGC-7901/VCR</td>
<td>Inhibit proliferation</td>
<td>-</td>
<td>[14]</td>
</tr>
<tr>
<td>Anti-inflammatory effect</td>
<td>Confluent NCI-H292 cells</td>
<td>Regulate inflammatory microenvironment</td>
<td>Control release of inflammatory factors, such as TGF-(\beta), VEGF, MMP-9, and MCP-1, decreasing the expression of TGF-(\beta) and VEGF mRNA</td>
<td>[6]</td>
</tr>
<tr>
<td></td>
<td>LPS-induced RAW264.7 macrophages</td>
<td>Inhibit production of inflammatory cytokines induced by LPS</td>
<td>Inhibit gene and protein expression of MUC5AC mucin induced by EGF, PMA or TNF-(\alpha) by directly acting on airway epithelial cells</td>
<td>[15]</td>
</tr>
<tr>
<td></td>
<td>HMC-1 Cells</td>
<td>Inhibit production of inflammatory cytokines</td>
<td>Block MAPKs and NF-kB signaling pathways</td>
<td>[16]</td>
</tr>
<tr>
<td></td>
<td>HEK 293</td>
<td>anti-inflammatory</td>
<td>Regulate the Phosphorylation of NF-(\kappa)-B and MAPKs</td>
<td>[17]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inhibit K(\alpha)3 channels</td>
<td>[18]</td>
</tr>
<tr>
<td></td>
<td>Mice</td>
<td>Protective effect on acute lung injury</td>
<td>Protect against acute lung injury</td>
<td>[19–23]</td>
</tr>
</tbody>
</table>
Table 2: Continued.

<table>
<thead>
<tr>
<th>Activities</th>
<th>Models</th>
<th>Biological activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracheobronchial</td>
<td>Isolated tracheal strips of guinea pigs</td>
<td>Inhibit contraction, M receptor, inhibit influx of calcium ions</td>
</tr>
<tr>
<td>Relaxation</td>
<td>Rat isolated tracheal and bronchial</td>
<td>Anti-tussive effect for ammonium hydroxide induced cough (4 mg/kg)</td>
</tr>
<tr>
<td></td>
<td>Cat superior laryngeal nerve</td>
<td>Anti-tussive effect for mechanical stimulation induced cough (4 mg/kg)</td>
</tr>
<tr>
<td></td>
<td>Mice</td>
<td>Anti-tussive effect for electrical stimulation induced cough (4 mg/kg)</td>
</tr>
<tr>
<td>Expectorant effect</td>
<td>Mice's tracheal</td>
<td>Enhance mice's tracheal phenol red output in expectorant evaluation</td>
</tr>
<tr>
<td>Sedative effect</td>
<td>Mice</td>
<td>Reduce spontaneous activity, prolong pentobarbital sleep time and increase sleep rate</td>
</tr>
<tr>
<td>Analgesic effect</td>
<td>Mice</td>
<td>Inhibit writhing reaction induced by acetic acid (IC_{50} = 47.2 ± 3.3 µM)</td>
</tr>
<tr>
<td></td>
<td>Rat plasma</td>
<td>Inhibit ACE 1 activity in a dose-dependent manner.</td>
</tr>
<tr>
<td></td>
<td>Rat plasma</td>
<td>Inhibit angiotensin converting enzyme activity (ACE)</td>
</tr>
<tr>
<td></td>
<td>Xenopus laevis orbital fibroblast inv.</td>
<td>Inhibit acetylcholinesterase (AChE) inhibitory activity (IC_{50} = 5 ± 2.8 µM)</td>
</tr>
<tr>
<td></td>
<td>Cell line</td>
<td>Inhibit hERG peak tail currents with IC_{50} channel inactivation, Mutation Y652 to Alanine reduced sensitivity</td>
</tr>
<tr>
<td></td>
<td>Human embryonic kidney (HEK-293) cell line</td>
<td>Inhibit hERG peak tail currents with IC_{50} channel inactivation, Mutation Y652 to Alanine reduced sensitivity</td>
</tr>
</tbody>
</table>
of *Fritillaria* in relieving cough, which is related to acting on M receptor of tracheal smooth muscle to relax trachea and relieve tracheal spasm. For ammonium hydroxide induced cough in mice, mechanical stimulation of guinea pig trachea induced cough in guinea pigs, and electrical stimulation of cat superior laryngeal nerve induced cough in cats; verticine (4 mg/kg) had obvious antitussive effect. For mechanical stimulation induced cough in guinea pigs, the antitussive effect of verticine reached the peak at 30–60 min, and the antitussive effect could be sustained for about 1 h [26]. In addition, verticine could also significantly inhibit cough frequency and increase latent period of cough in mice induced by ammonia [27].

3.5. Expectorant and Sedative Effects. Verticine had expectorant and sedative effects. The effect was related to its ability to increase tracheobronchial mucus secretion and decrease the viscosity of mucus [27, 28]. Verticine could reduce the spontaneous activity of mice, inhibit the increasing of number of activities caused by caffeine, prolong the pentobarbital sleep time, and increase the sleep rate in mice [29].

3.6. Analgesic Effect. Verticine could inhibit writhing reaction induced by acetic acid in mice; at the concentration of 1 mg/kg, it had significant analgesic effect (*P*<0.05), and at the concentration of 2 mg/kg, it had very significant analgesic effect (*P*<0.01) [26]. Previous studies showed that traditional local anesthetics could play an analgesic role by nonselectively blocking the voltage-gated sodium channel subfamily, and selective Nav1.7 inhibitors were also demonstrated to be analgesic in animal models. Nav1.7 emerged as a potential target for the treatment of pain [56]. Verticine was able to block the Nav1.7 ion channel (IC$_{50}$ = 47.2±3.3 μM), which might be the analgesic mechanism of verticine [17].

3.7. Other Effects. Several studies showed that verticine also had other effects. Li et al. proved that verticine could inhibit the proliferation of cultured fibroblast of the thyroid-associated ophthalmopathy (TAO)-patients; the inhibitory effect was obviously better than that of the normal [30]. Verticine could inhibit the activity of ACE I in a dose-dependent manner (IC$_{50}$ =312.8 μM), which might be responsible, at least in part, for the antihypertensive action [31]. Unfortunately it showed no appreciable AChE inhibitory activity at a concentration of 100 μg/mL, and the inhibition rate was only 25% [32]. In addition, verticine could inhibit the hERG peak tail currents with IC$_{50}$ value of 43.7 mM, and multiple results suggested that the inhibition was related to the channel inactivation. Further investigation showed that the mechanism of the inhibition was related to the mutation of Y652 to Alanine reduced sensitivity to verticine, which suggested that Y652 was an important binding site of hERG for verticine [33]. The main concern for cardiac safety determination is the possible inhibition of hERG ion channels. So, verticine should be used with caution to avoid its toxic effect on the heart.

4. Conclusions

The summary of metabolism and pharmacological researches of verticine shows that the mode of administration, dose, and gender have effects on metabolism, and verticine possesses multiple pharmacological effects that are summarized in Table 2. Verticine can control the expression of related proteins, inhibit inflammatory factors, and destroy redox balance to achieve antitumor effect. The mechanism of anti-inflammatory effect was related to MAPKs and NF-κB signaling pathways, and the protection against acute lung injury has close relation with anti-inflammatory effect. Acting on M receptor and inhibiting influx of calcium ions could inhibit tracheobronchial contraction, so as to play a role in relieving cough. The clinical studies of verticine remain somewhat elusive and show the risks of heart-safety.

In summary, verticine is a new potential plant-origin drug that has antitumor, anti-inflammation, protecting liver injury, and antitussive effect. The clinical effect should be focused on.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31501552), Henan Province Industry-University-Research Cooperation Project (182107000033), and Key Research Projects of Colleges and Universities in Henan province (18A360019 and 19B360007).

References

