Research Article

Electroacupuncture Relieves CCI-Induced Neuropathic Pain Involving Excitatory and Inhibitory Neurotransmitters

Chun-Ping Huang,1,2 Yi-Wen Lin,1,2,3 Der-Yen Lee,4 and Ching-Liang Hsieh1,2,3,5

1Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
2Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung 40402, Taiwan
3Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
4Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
5Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan

Correspondence should be addressed to Ching-Liang Hsieh; clhsieh@mail.cmuh.org.tw

Received 26 March 2019; Revised 30 July 2019; Accepted 12 August 2019; Published 20 October 2019

Academic Editor: Shu-Ming Wang

Copyright © 2019 Chun-Ping Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Neuropathic pain caused by peripheral tissue injuries to the higher brain regions still has no satisfactory therapy. Disruption of the balance of excitatory and inhibitory neurotransmitters is one of the underlying mechanisms that results in chronic neuropathic pain. Targeting neurotransmitters and related receptors may constitute a novel approach for treating neuropathic pain. We investigated the effects of electroacupuncture (EA) on chronic constriction injury- (CCI-) induced neuropathic pain. The mechanical allodynia and thermal hyperalgesia pain behaviors were relieved by 15Hz EA but not by 2 and 50Hz. These phenomena were associated with increasing GABA receptors in the hippocampus and periaqueductal gray (PAG) but not N-methyl-D-aspartate receptors. Furthermore, excitatory neurotransmitter glutamate was decreased in the hippocampus and inhibitory neurotransmitter GABA was increased in the PAG under treatment with EA. These data provide novel evidence that EA modulates neurotransmitters and related receptors to reduce neuropathic pain in the higher brain regions. This suggests that EA may be a useful therapy option for treating neuropathic pain.

1. Introduction

Neuropathic pain is usually defined as pain caused by a lesion or dysfunction of the somatosensory nervous system, either peripherally or centrally, and is a notably complicated pain disorder. Peripheral tissue injuries induce a painful sensation that prompts the individual to protect the damaged region so it can heal. Several neuropathic pain symptoms originate from peripheral damage, such as chemotherapy-induced peripheral neuropathy, phantom limb pain, diabetic painful neuropathy, and carpal tunnel syndrome. Peripheral damage affects 7–10% of the general population [1].

Glutamate is one of the major excitatory neurotransmitters in the central nervous system, and one of its receptors—the N-methyl-D-aspartate (NMDA) receptor, which comprises a Ca2+-permeable ion channel—is more permeable to Ca2+ ions than others [2]. Activation of NMDA receptors induces an influx of Ca2+ and further activates Ca2+/calmodulin-dependent protein kinase 2 or protein kinases for signaling in the postsynaptic neuron [2]. NMDA receptor mediation of central sensitization is a major component of neuropathic pain in the spinal cord [3]. Notably, excitatory glutamatergic transmission in the higher brain regions, such as the hippocampus, plays a key role in the onset of chronic pain accompanied by comorbid affective, emotional, and cognitive disorders [4, 5]. γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters and occurs mainly in the interneurons of the mammalian brain. GABA_A is a ligand-gated ionotropic receptor that is located mainly in postsynaptic neurons and initiates fast synaptic inhibition. Activation of the GABA_A
receptor initiates the influx of Cl⁻ into the postsynaptic synapse to induce hyperpolarization and then increase the threshold of depolarization [6]. However, unbalanced neurotransmitters or neuromodulators mismatch painful sensory inputs to generate spontaneous painful sensations. Central sensitization disrupts the balance of glutamate and GABA distribution and further results in chronic neuropathic pain [7].

Acupuncture is widely administered for pain relief [8, 9] and is believed to modulate several neurotransmitters such as dopamine, glutamate, acetylcholine, GABA, and serotonin [10–12]. The Baihui (GV20) and Dazhui (GV14) acupoints both belong to the “Du meridian,” which directly communicates with the brain in accordance with traditional Chinese medicine theory. The GV20 acupoint is located on the highest point of the head where all the yang meridians meet and is used to treat neurological and psychiatric diseases such as stroke, depression, and anxiety. It exerts neurological and neuroprotective functions through phosphorylated cyclic AMP-response element-binding protein and brain-derived neurotrophic factor (BDNF) activation [13] and α7 nicotinic acetylcholine receptor-mediated anti-inflammation [14]. In addition, our previous studies have known that EA at GV20 and GV14 provides neuroprotection by the reduction of S100B-mediated neurotoxicity [15] and EA at Zusanli (ST36) can evoke excitatory signal in either peripheral or central levels [16]. EA that applies to Hua Tuo Jia Ji (paraspinal) can reduce CCI-induced neuropathic pain and also can increase the levels of GABA and brain-derived neurotrophic factor (BDNF) activation and periaqueductal gray (PAG) but not NMDA receptors of rats. Moreover, the levels of glutamate were reduced in the hippocampus and the levels of GABA were raised in the PAG by EA.

2. Experimental Procedures

2.1. Subjects. Experiments were conducted using male Sprague-Dawley rats (n = 56) weighing 200–300 g purchased from BiolASC Co. Ltd., Taipei, Taiwan. The rats were maintained under a 12/12 h light/dark cycle, and water and food were available ad libitum. The Animal Care and Use Committee of China Medical University approved the use of these animals, and all procedures were performed according to the Guide for the Use of Laboratory Animals (National Academy Press). The number of animals used and their distress were minimized.

2.2. CCI-Induced Neuropathic Pain Model. The rats were anesthetized with 3% isoflurane induction, and then the isoflurane that is changed to 2% and maintained during the right sciatic nerve was exposed. CCI was induced by ligating the nerve proximal to the trifurcation with four 4-0 chromic gut sutures. In the sham-treated control group (Con), the right sciatic nerve was exposed without ligation. The surgical site was closed immediately using a silk line, and then the rats were placed back in their cage as previously described [18]. This neuropathic pain model is different from the spinal nerve ligation (SNL) model as using a piece of 6-0 silk thread ligates the one (L5) or two (L5 and L6) segmental spinal nerves [19].

2.3. Acupuncture Manipulation. Acupuncture stimulation was delivered by using stainless steel needles (0.5 inch, 32 G, Yu Kuang, Taiwan) that were inserted into the muscle layer at a depth of 1 mm in the GV20 and Dazhui (GV14) acupoints under 2% isoflurane anesthesia. We applied 2, 15, and 50 Hz EA by delivering electrical stimulation with a Trio 300 electrical stimulator (Grand Medical Instrument Co. Ltd., Ito, Japan). The stimulator delivered 100 μs square pulses of 1 mA for 20 min. In the neuropathic pain group, a needle was inserted into the GV20 and GV14 acupoints without electrostimulation.

2.4. Animal Behavior of Mechanical Allodynia and Thermal Hyperalgesia. Pain behaviors (each indicated group, n = 12) were examined on days 5–8 to ensure the establishment of neuropathic pain. Mechanical sensitivity was measured by testing the force of responses to stimulation with five applications of electronic von Frey filaments (IITC Life Sciences, CA, USA) after 30 minutes of EA or without EA. Withdrawal latency of the hind paw lifting up was measured to assess thermal hyperalgesia (hot) using a radiant heat test apparatus (IITC Life Sciences, CA, USA). The results are presented as the difference between the injured side (right) and control side (left) as previously described [18]. A cold plate test was used to assess thermal hyperalgesia (cold) during which the rats were placed on a cold plate apparatus (Panlab, Spain) at a temperature of 4°C. The total number of injured hind paw lifts was counted for 5 min.

2.5. Western Blot Analysis. The rats (each indicated group, n = 6) were anesthetized with 3% isoflurane and brains were immediately sectioned (−5.2 to −6.3 mm) from bregma for PAG. The left-side hippocampus and whole PAG were excised immediately to extract proteins as previously described [20]. In brief, the total proteins were prepared by homogenizing the tissues in a lysis buffer containing 50 mM Tris-HCl (pH 7.4), 250 mM NaCl, 1% NP-40, 5 mM EDTA, 50 mM NaF, 1 mM Na₂VO₄, 0.02% NaN₃, and 1x protease inhibitor cocktail. The extracted proteins (30 μg per sample according to a bicinchoninic protein assay) were subjected to 8% SDS-Tris glycine gel electrophoresis and transferred to a polyvinylidene difluoride membrane. The membrane was blocked with 5% nonfat milk in a TBS-T buffer (10 mM Tris pH 7.5, 100 mM NaCl, and 0.1% Tween 20), incubated with the first antibody in TBS-T and 1% bovine serum albumin, and incubated for 1 h at room temperature. A peroxidase-
conjugated anti-rabbit antibody (1:5000) was used as the secondary antibody. The bands were visualized using an enhanced chemiluminescent substrate kit (Pierce) with LAS-3000 Fujiﬁlm (Fuji Photo Film Co. Ltd.). If appropriate, the image intensities of speciﬁc bands were quantiﬁed with NIH Image] software (Bethesda, MD, USA). The protein ratios were obtained by dividing the target protein intensities by the intensity of α-tubulin in the same sample. The ratio was calculated and then adjusted by dividing the ratios from the same comparison group relative to the control group as described in our previous paper [16].

2.6. Immunohistochemical Staining. The rats (each indicated group, n = 6) were anesthetized with 3% isoflurane and then perfused transcardially with 4% paraformaldehyde. The paraffin-embedded sections were cut to a thickness of 15 μm and pasted onto microscope glasses coated with APS. NFRα/α paraffin-embedded sections were cut to a thickness of 15 μm and pasted onto microscope glasses coated with APS. NFRα/α

2.9. Statistical Analysis. All the data are expressed as the mean ± standard error. Signiﬁcant differences were analyzed using one-way analysis of variance, followed by Tukey’s post hoc test. A p value less than 0.05 was considered statistically significant.

3. Results

3.1. Electroacupuncture Reduced CCI-Induced Neuropathic Pain Behaviors. As a ﬁrst step to examine the effect of EA on neuropathic pain, we investigated 2, 15, and 50 Hz EA in a CCI neuropathic pain model. A typical mechanical allodynia was induced from days 5–8 after CCI induction and reduced using 2, 15, and 50 Hz EA (Figure 1(a), * p < 0.05, ** p < 0.01, *** p < 0.001 compared with the neuropathic pain group; NP). Next, we tested whether EA would also alter the thermal pain threshold. The radiant heat test indicated a signiﬁcant decrease in paw withdrawal latency using 15 Hz EA (Figure 1(b)). By using the cold plate, we further determined that thermal hyperalgesia could only be reversed by 15 Hz EA rather than 2 or 50 Hz (Figure 1(c)).

3.2. GABA_A Receptor Increases from EA in the Hippocampus. NMDA and GABA are the main excitatory and inhibitory neurotransmitters in the peripheral and central nervous systems that account for neuropathic pain. The three major NDMA receptors NR1, NR2, and NR3, which are distributed in the peripheral and central nervous system [21, 22], and the GABA_A receptor are major targets for sedative effects [23, 24]. Our data indicated that EA had no effects on the NR1, NR2B, or phosphorylated NMDA receptors or the pNR1 and pNR2B receptors (Figure 2(a)) in the rats’ hippocampi, which respond to the ascending pain pathway. In addition, the level of the GABA_A receptor increased in response to 15 Hz EA treatment (Figure 2(b), ** p < 0.01,
compared with the NP group), which corresponded to behavioral observations, as evaluated using Western blot analysis. We further examined expression of the GABA_A receptor using immunohistochemical staining in the hippocampus (Figure 3(a)). The results indicated that the hippocampus demonstrated numerous distributions of GABA_A receptors, especially in the CA1 region (Figure 3(b)).

3.3. GABA_A Receptor Is Increased by EA in the PAG. To further test if EA can regulate the descending pain pathway, we investigated the aforementioned molecules in the PAG area. Our data revealed that 15 Hz EA increased the level of GABA_A receptor (Figure 4(b), *p < 0.05, **p < 0.01, and ***p < 0.001 compared with the NP group) but had no effects on NR1 and NR2B or pNR1 and pNR2B, corresponding to hippocampal observation. The results of immunohistochemical staining in the PAG also demonstrated considerable GABA_A receptor expression (Figure 5(a)), particularly in the dorsolateral PAG (Figure 5(b)) zone as indicated (red).

3.4. Electroacupuncture Reduces Glutamate in the Hippocampus and Increases GABA in the PAG. To estimate the neurotransmitter changes induced by 15 Hz EA, lysates of rat hippocampus and PAG were prepared into dansylated samples and further measured by the LC-ESI-MS system. Our data indicated that 15 Hz EA significantly reduced the ratio of glutamate compared with the Con group (Figure 6(a), ***p < 0.001) or NP group (Figure 6(a), ###p < 0.001) and also downregulated the ratio of GABA compared with the Con group (Figure 6(a), *p < 0.05) or NP group (Figure 6(a), ###p < 0.001) in the hippocampus. Noticeably, 15 Hz EA increased the ratio of GABA compared with the NP group but had no effects on glutamate in the PAG. However,
this phenomenon had no significant difference compared with the NP group (Figure 6(b), $p = 0.07$).

4. Discussion

These data provide the first animal experimental evidence that EA modulates excitatory and inhibitory neurotransmitters to relieve neuropathic pain in the higher brain regions. The hippocampus plays an integral role in the transition from acute to chronic pain in the limbic system [5, 25] and is involved in the processing and modification of nociception [26, 27]. It receives nociceptive inputs from ascending pathways and further prolongates subsequent nociceptive stimuli to activate descending pathways [28]. Blocking NMDA receptors in the hippocampal CA1 region alleviates nociceptive behaviors and processing related to persistent pain [29]. After 3 days of 15 Hz EA at GV20 and GV14, our data indicated that glutamate was reduced in the hippocampus (Figure 6(a)). We also observed that GABA was inhibited by EA. This phenomenon may lower the expression of BDNF and further modulate neuronal plasticity, which suggests that treatment with EA could prevent the development of chronic pain. EA at the Zusanli (ST36) and Sanyinjiao (SP6) acupoints can reduce pain sensation by decreasing NMDA receptor activation and this phenomenon can also be obtained by injecting dizocilpine, an NMDA receptor antagonist [30]. He and colleagues suggested that the threshold of long-term potentiation (LTP) from the C-fiber in the spinal dorsal horn was lower in neuropathic rats. The amplitude of the field potentials was higher in
neuropathic pain rats. Notably, EA at ST36 and SP6 can reliably reduce neuropathic pain by inducing long-term depression (LTD) in the C-fiber [31]. The curative effect can be further reversed by MK-801 (an NMDA receptor antagonist) and naloxone (an opioid receptor antagonist). Similar to LTP in CNS, synaptic potentiation is formed by potentiating the NMDA subtype of the glutamate receptor.

Spontaneous mechanical or thermal hyperalgesia has often been observed with neuropathic pain. Neuropathic pain results from spontaneous or evoked pain, which is a common cause of chronic pain with unsatisfactory therapy. Opiates and anticonvulsive medicines are often used to treat neuropathic pain with nonspecific, insufficient, and life-threatening side effects including nausea, sedation,
constipation, and tolerance [32]. Central sensitization of nociceptive synaptic transmission may be initiated from inflammatory, neuropathic, and postoperative pain syndromes. NMDA receptor activation may further induce Ca2+ influx to initiate second messenger pathways to deliver pain sensations. Intracellular Ca2+ is especially crucial in EA analgesia because it modulates spinal NMDAR [33]. NMDA receptors are long-term defined as nociceptive channels for inducing sensitization at the central spinal level. NMDA can be regulated by several protein kinases and phosphatases. Protein phosphatases 1 and 2A have been suggested to play crucial roles in EA analgesia by regulating the phosphorylation of NMDAR in the spinal cord [34]. Ryu et al. reported that the IB4 and NR1 double-labeled DRG neurons were increased after CFA-mediated inflammatory pain. The phenomenon can be further reversed by EA, suggesting possible mechanisms of NMDA receptors, especially in IB4-positive nociceptive neurons [34]. Furthermore, medial to high-frequency EA (10 and 100 Hz) reliably reduced CFA-initiated inflammatory pain. When EA is used simultaneously with a subjective dose of MK-801, the antinociceptive effect is prolonged, which can provide a therapeutic method for clinical pain management [35]. Similar to these data, it has been documented that ketamine, an NMDA receptor antagonist, can enhance the antinociceptive effect of EA at low and high frequencies (2 and 100 Hz) in rats suffering neuropathic pain [36].

Pharmacologic inhibition of intrinsic GABA tone can cause tactile allodynia and thermal hyperalgesia in normal rats, whereas exogenous administration of GABA agonists can reverse allodynia and hyperalgesia in SNL-induced neuropathic pain rat model [37]. Spinal cord injury can cause neuronal hyperexcitability and glial activation, and these will disrupt the balance of chloride ions, glutamate, and GABA results in the generation of chronic neuropathic pain [38]. Therefore, GABA plays a critical role in neuropathic pain. Targeting selective benzodiazepine-sensitive GABA\textsubscript{A} receptors is reported to be an alternative to opioids for treating chronic neuropathic pain [39]. An article indicated that selective activation of GABA\textsubscript{A} receptors constituted an effective therapy for chronic neuropathic pain [40]. EA at low frequency can reduce pain that results from noradrenergic descending mechanisms involving spinal GABAergic modulation. By contrast, high-frequency EA at 100 Hz mainly acts on GABA\textsubscript{A} mechanisms [41]. Low-frequency 2 Hz EA can reliably decrease pain signaling through GABA\textsubscript{A} in the dorsal anterior pretectal nucleus (APtN). High-frequency EA at 100 Hz can reduce pain by \(\mu\)-opioid and 5-HT1 receptors in the ventral APtN [42]. EA can reduce cold allodynia but not in the nonacupoint sham group. Injection of the GABA receptor antagonists gabazine or saclofen attenuated the therapeutic effect of EA on cold allodynia in rats. The aforementioned results indicate a crucial role for GABA\textsubscript{A} and GABA\textsubscript{B} receptors in tail neuropathic rats at spinal levels [43]. Low-frequency and high-frequency EA-induced analgesia may occur from activation of different receptors. EA at 2 Hz was curative for neuropathic pain with the expression of LTD in the C-fiber in SNL rats. The phenomenon can be blocked by NMDA and opioid receptor antagonists. By contrast, 100 Hz EA-induced LTP in SNL rats was mainly mediated by endogenous GABAergic and serotoninergic inhibitory systems [44]. This suggests that neuronal hyperactivity in the spinal pain transmission was enhanced after nerve injury and further developed into neuropathic pain. Furthermore, EA may initiate the analgesic effect by increasing the expression of GABA and regulate GABAergic transmission on descending pathways in PAG [45]. Targeting these pathways might not only provide new therapies for pain but also prevent chronic pain following acute pain.

What is the biological significance of EA for relieving CCI-induced neuropathic pain? In the current study, our results suggested that 15 Hz EA at the GV20 and GV14 acupoints significantly reduced mechanical allodynia and thermal hyperalgesia. In addition, EA reliably increased the expression of inhibitory GABA\textsubscript{A} receptors in the hippocampus and the level of GABA in the PAG. Furthermore, EA downregulated the excitatory glutamate neurotransmitter in the thalamus. Therefore, we support that these neurotransmitters had not nonspecific effects. Our findings provide crucial evidence of the efficacy of using EA in treating CCI-induced neuropathic pain and can be further translated to clinical practice.

One question needs to explain, why 50 Hz EA at GV20 and GV 14 can produce greater analgesic effect than these at the 2 Hz and 50 Hz EA. The spinal opioidergic, adrenergic, serotonergic, cholinergic, and GABAergic systems are involved in the analgesia mechanisms of EA on neuropathic pain. In addition, spinal \(\mu\) and \(\delta\) opioid receptors and GABAA and GABAB GABAergic receptors mediated via the descending inhibitory system in the CNS are also involved in the analgesic effect of EA on neuropathic pain [46]. The EA at 2 Hz facilitates the release of \(\beta\)-endorphin, endomorphin, and enkephalin activating the \(\mu\) and \(\delta\) opioid receptors. The release of opioidergic substance and the activation of the receptors in EA at 15 Hz are similar to those EA at 2 Hz [47]. In addition, only 15 Hz EA could increase the levels of GABAA receptors in the thalamus. Therefore, 15 Hz EA produces greater analgesic effect on neuropathic pain than that at the 2 Hz and 50 Hz EA in this CCI-induced neuropathic pain model.

The limitation of the present study is that only six rats in each group are tested. If the number of the rats in each group increases, the \(p\) value of GABA receptor and the levels of GABA in the 15 Hz EA group compared with NP group in PAG may reach a significant difference of less than 0.05.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Ethical Approval

The protocol was approved by the Animal Care and Use Committee of China Medical University (Long-term electroacupuncture of different frequencies at Baihui on neuroplasticity in rat with chronic neuropathic pain; Protocol No. 2016-348).
Conflicts of Interest
The authors report no conflicts of interest.

Authors’ Contributions
C.-P. Huang performed partial experimentation and wrote the manuscript, Y.-W. Lin participated in partial experimentation, D.-Y. Lee performed liquid chromatography-electrospray ionization-tandem mass spectrometry analysis, and C.-L. Hsieh designed the protocol and revised the manuscript.

Acknowledgments
This work was financially supported by grant CMU105-S-11 from the China Medical University. This work was also financially supported by the “Chinese Medicine Research Center, China Medical University” from the China Medical University. His work was also financially supported by the “Chinese Medicine Research Center, China Medical University” from the China Medical University. N. M. Chen, C. L. Hsieh, S. Y. Wu, H. C. Hsu, and Y. W. Lin, “TRPV1 is a responding channel for acupuncture manipulation in mice peripheral and central nerve system,” Cellular Physiology and Biochemistry, vol. 49, no. 5, pp. 1813–1824, 2018.

K. Fusumada, T. Yokoyama, T. Miki et al., "c-Fos expression in the periaqueductal gray is induced by electroacupuncture in the rat, with possible reference to GABAergic neurons," *Okajimas Folia Anatomica Japonica*, vol. 84, no. 1, pp. 1–10, 2007.

