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In this study, we investigated whether melittin could suppress hypoxia-induced vasculogenic mimicry (VM) formation in liver
cancer and explored the underlying mechanisms. Melittin significantly inhibited the proliferation of liver cancer cells with or
without CoCl2 presence.Melittin also significantly inhibited CoCl2-inducedmigration, invasion, and VM formation of liver cancer
cells. CoCl2 treatment suppressed the expression of E-cadherin and elevated the expression of N-cadherin and Vimentin. Melittin
reversed the changes in the protein and mRNA levels of these epithelial-mesenchymal transition (EMT) markers. CoCl2-induced
accumulation of HIF-1𝛼 increased the level of phosphorylated Akt and upregulated the expression of VEGF andMMP-2/9.Melittin
decreased the HIF-1𝛼 level and thereby suppressed the levels of p-Akt, VEGF, andMMP-2/9. In addition, the inhibitor of PI3K/Akt
also suppressed CoCl2-induced EMT and liver cancer cells migration, and the activator of Akt, SC-79, partly blocked the effect of
melittin on CoCl2-induced EMT and liver cancer cells migration. In the xenograft tumor model in nude mice, melittin treatment
significantly suppressed the tumor growth, VM formation, and HIF-1𝛼 expression in the tumor. In conclusion, this study indicates
melittin may inhibit hypoxia-induced VM formation and EMT in liver cancer through inhibiting HIF-1𝛼/Akt pathway.

1. Introduction

Liver cancer is one of the most common malignant tumors
worldwide, especially in China. Metastasis is still the main
cause for the treat failure and poor prognosis of liver cancer
patients, even those with resectable small tumors [1]. As a
typical tumor with rich blood perfusion, angiogenesis plays
a crucial role in the growth, migration, and invasion of liver
cancer cells. However, the agents targeting the angiogenesis
in liver cancer have not reached original expectancy.

Vasculogenic mimicry (VM), which is known as the
formation of tumor cell-lined microvascular channels inde-
pendent of endothelial cells, is considered to lead to the

failure of vascular-targeted therapy and tumor metastasis [2].
In liver cancer, patients with VM show higher metastasis
rate, shorter overall survival time, and worse prognosis than
those without VM, andVM correlates with higher recurrence
rate after liver transplantation [3, 4]. Moreover, in vitro study
showed that liver cancer cells with high metastatic potential
are more likely to form VM than those with low metastatic
potential [5].

Formation of VM interprets the reason for the poor effect
of antiangiogenesis therapy in liver cancer. On the other
hand, overgrowth of tumor or angiogenesis inhibitors pro-
duces a hypoxia microenvironment, which is an important
feature of rapidly proliferating malignant tumors, induces
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the upregulation of hypoxia-inducible factor 1 (HIF-1) and
its target genes, including vascular endothelial growth factor
(VEGF), matrix metalloproteinase (MMP)-2 and MMP-9,
and thereby promotes VM formation and increased tumor
invasion and metastasis ability [6–11]. Furthermore, HIF-1
also regulates the expression of a variety of proteins, which
play vital roles in many aspects of cancer biology.

Melittin, the main component of bee venom, has exten-
sive biological activities and pharmacological effects [12]. Our
previous studies have confirmed that melittin could inhibit
proliferation, migration, and invasion and induce apoptosis
of liver cancer cells through Rac1-dependent pathway [13].
Further studies showed that melittin is also able to inhibit
the proliferation and migration of vascular endothelial cells
and downregulate the expression of the proangiogenic factor
-- VEGF and basic fibroblast growth factor (bFGF) [14].
These results suggest that melittin plays an important role
in the inhibition of angiogenesis and liver cancer metastasis.
However, whether melittin may also suppress the VM for-
mation in liver cancer has not been elucidated. Therefore,
we used Cobalt chloride (CoCl2), which induces hypoxia-
like condition as reported [15], to mimic hypoxia status and
investigated the role of melittin in VM of liver cancer and the
underlying mechanisms.

2. Materials and Methods

2.1.Materials. Melittin (C131H229N39O31;>97%purity) was a
product of Santa Cruz Biotechnology (Santa Cruz, CA, USA).
It was dissolved in distilled water tomake a stock solution and
then stored at −20∘C until use avoiding repeated freezing and
thawing.

2.2. Cell Culture. The human liver cancer cell lines, SMMC-
7721, Huh7, and Hep G2, were cultured in complete DMEM
which was supplemented with 10% fetal bovine serum (FBS)
and 100 units/ml penicillin, 0.1 mg/ml streptomycin (all
Hyclone, Life Sciences, Logan, UT, USA) at 37∘C in a
humidified atmosphere of 5% CO2. Cells were subcultured
when the cell density reached 70-80% confluence.

2.3. MTT Assay for Cell Proliferation. The SMMC-7721,
Huh7, and HepG2 cells were seeded in 96-well culture
plates with a density of 1×104 cells/well. After 24 h, various
concentrations of melittin in normoxia condition (0, 1, 2, 4,
6, 8 12 𝜇g/ml) or in the presence of CoCl2 (0, 4, 8 𝜇g/ml)
were added and cultured for another 24, 48, and 72 h,
respectively. Then 20 𝜇L of MTT solution (5 mg/mL) was
added to each well and incubated for additional 4 h at 37∘C.
The medium was carefully removed and 100 𝜇l DMSO was
added. After being incubated overnight, the absorbance at
a wavelength of 490 nm was measured using a multiskan
spectrum microplate reader. The mean cell proliferation was
calculated from the absorbance units.

2.4. Cell Migration and Invasion Assays. Transwell cell-
culture chamber (BD Biosciences, Franklin Lakes, NJ, USA)
assays were used to assess the invasion and migration activity
of cells as described previously [13]. Briefly, SMMC-7721,

Huh7, and HepG2 cells suspended in 100 𝜇l serum-free
medium were seeded into the upper chambers at a density
of 1 × 104/well for migration and 2 × 104/well for invasion.
Then 500 𝜇l complete media were added to the lower
compartment. For the invasion assays, the Matrigel (BD Bio-
sciences, Franklin Lakes, NJ, USA) was diluted with serum-
free medium according to the manufacturer instructions at a
ratio of 1:5 and added 100 𝜇l/well to the upper chamber sand
incubated at 37∘C for 1 h before seeding cells. CoCl2 with or
without indicated concentrations (0, 2, 4 𝜇g/ml) of melittin
was added to the upper compartment. After incubation at
37∘C for 24 h, cells were stained with 0.1% crystal violet and
images of the cells that had migrated or invaded to the lower
chamber of the polycarbonate membrane were captured.

2.5. VMTube FormationAssay InVitro. TheVMnetworkwas
measured by the method described previously [16]. In brief,
the Matrigel basement membrane matrix (BD Biosciences)
stored at −20∘C was thawed at 4∘C overnight before use.
50 𝜇l matrix was added to each of the 96-well plates and
incubated at 37∘C for 2 h to solidify.The cells were trypsinized
to single cell suspension and adjusted to 5×105/ml. 100 𝜇l cells
were seeded on the Matrigel-coated plates and CoCl2 with or
without indicated concentrations (0, 2, 4 𝜇g/ml) of melittin
was added to each well. Then cells were incubated for 24 h.
Images of each well were obtained using an inverted phase
contrast microscope.

2.6. Real Time RT-PCR. Total RNA was extracted from
SMMC-7721 cells after treatment with CoCl2 and indicated
concentrations (0, 2, 4 𝜇g/ml) of melittin with TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) as described previously [17].
cDNA was synthesized using a first strand cDNA synthesis
kit (Takara Inc., Dalian, P. R. China). Real time PCR was
performed using a SYBR Green PCRMaster Mix (TOYOBO,
Osaka, Japan) under the following conditions: denaturation
under 95∘C for 3 min and subjected to conditions of 95∘C for
10 s, 60∘C for 20 s, and 72∘C for 25 s for a total of 40 cycles.The
primers used in this study were as follows: 𝛽-Actin, Forward,
5�耠-AGC GGG AAA TCG TGC GTG -3�耠; Reverse, 5�耠-CAG
GGT ACA TGG TGG TGC C-3�耠; E-cadherin, Forward, 5�耠-
CCCAATACATCTCCCTTC ACAG-3�耠; Reverse, 5�耠- CCA
CCTCTAAGGCCATCTTTG-3�耠 ; N-cadherin, Forward, 5�耠-
CAA GAG GCA GAG ACT TGC GA-3�耠; Reverse, 5�耠-CAC
ACT GGC AAA CCT TCA CG-3�耠; vimentin, Forward, 5�耠-
CCT CAC CTG TGA AGT GGA TGC-3�耠; Reverse, 5�耠- CAA
CGG CAA AGT TCT CTT CCA-3�耠. The relative expression
level of mRNA of each sample was calculated by the 2−��Ct
method and 𝛽-actin was used for normalization.

2.7. Western Blot Analysis. Liver cancer cells were seeded on
the 6-well plates andCoCl2 with orwithout indicated concen-
trations (0, 2, 4 𝜇g/ml) of melittin was added to each well for
the indicated time. LY294002 (obtained from Selleck, China),
a PI3K inhibitor, was add into the cells 2 h before treatment of
CoCl2 or melittin with concentration of 10 𝜇M. After 24 h of
treatment of CoCl2 or melittin, total protein from tumor cells
was isolated as described previously [18]. BCA method was
used to determine the protein concentration and cell lysis was
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used tomake all the samples in the same concentration. 30 𝜇g
proteins of each sample were separated by sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and
then transferred to nitrocellulose (NC) membranes. After
being blocked with 5% BSA in 1 × TBST buffer (20 mM
Tris-HCl, pH 7.4, 150 mM NaCl and 0.1% Tween 20) for 1 h
under room temperature, the NC membrane was incubated
with specific primary antibodies overnight at 4∘C and then a
secondary antibody for 1 h under room temperature. Rabbit
p-Akt and t-Akt polyclonal antibody, rabbit E-cadherin, N-
cadherin and Vimentin monoclonal antibody, rabbit matrix
metalloproteinase (MMP)-2 andMMP-9 polyclonal antibody
(all 1:1000), mouse 𝛽-actin (1:5000) monoclonal antibody
were all purchased from Cell Signaling Technology (Boston,
MA, USA). Mouse HIF-1𝛼, VEGF and VMmonoclonal anti-
body (both 1:200) were obtained from Santa Cruz Biotech-
nology, Inc. (Santa Cruz, CA, USA). Rabbit (1:2000) and
mouse (1:5000) secondary antibodies were purchased from
Cell Signaling Technology. The immunoreactive bands were
detected using an enhanced chemiluminescence kit (ECL)
(Thermo, CA, USA) and imaged with G:BOX Chemi XR5
(Syngene, Frederick, MD, USA).

2.8. Tumor Establishment and In Vivo Treatments. SMMC-
7721 cells were trypsinized and resuspended with PBS. 1×107
cells were injected subcutaneously into each male BALB/c
nude mice (6-8 weeks old, 20 ± 2 g, Shanghai SLAC
Laboratory Animal Co. Ltd., Shanghai, China) to produce
implanted tumors. Then the mice were randomly divided
into three groups: Control, 50 𝜇g/kg⋅d melittin, and 100
𝜇g/kg⋅d melittin groups. Melittin (50 or 100 𝜇g/kg⋅d) was
intravenously injected via tail vein daily. The same volume
of saline was used for the control mice. Then, the volumes of
tumorsweremeasured with a slide caliper andwere evaluated
by the following equation: a (the larger diameter) × b (the
smaller diameter)2/2. After 11 days of treatment, mice were
anaesthetized with overdose of Pentobarbital sodium (1%)
through intraperitoneal injection and were sacrificed. All
procedures were performed in accordance with the Helsinki
Declaration. The experiment was approved by the Ethics
Committee of Second Military Medical University.

2.9. Immunohistochemical Staining. Immunohistochemical
staining was performed according to previous description
[19]. Monoclonal mouse anti-human CD34 antibody (1:100
dilution, sc-65261; Santa Cruz) and monoclonal mouse anti-
human HIF-1𝛼 (1:100 dilution; sc-13515, Santa Cruz) were
incubated with the tumor sections overnight. After being
washed with PBS for 3 times, the tumor sections were incu-
bated with rabbit anti-mouse biotinylated secondary anti-
body at room temperature for 15 min, followed by incubating
with horseradish peroxidase (HRP)-conjuncted streptavidin
for another 30min at room temperature. Diamino-benzidine
(DAB) assay was used to detect the immunoactivity.

2.10. CD34/PAS Double Staining. After immunohistochemi-
cal staining for CD34, the sections were washed with distilled
water and incubated with periodic acid solution for 7 min.
Then, Schiff solution was added to the sections for 20minutes

after the sections were washed with distilled water for 3
minutes. Schiff solution was washed away with distilled
water and hematoxylin staining and gradient dehydration
was applied prior to mounting with neutral gum.

2.11. Statistical Analyses. Statistical analysis was performed
with SPSS software (Version 21.0, SPSS, Inc., Chicago, IL,
USA). Data are expressed as means ± S.D. and one-way
analysis of variance were used for multiple comparisons of
the difference between groups followed by Student-Newman-
Keuls tests. A 𝑃 value < 0.05 indicated statistical significance.

3. Results

3.1. Melittin Inhibited the Viability, Migration, and Invasion
of Liver Cancer Cells under Hypoxic Condition. We first
studied the effect of melittin on the viability of liver cancer
cells. Under the normoxia condition, melittin significantly
inhibited the viability of SMMC-7721, Huh7, and HepG2
cells at 24, 48, and 72 h (Figure 1(a)). The inhibitory rates
of melittin on SMMC-7721, Huh7, and HepG2 hepatoma
cells increased in a dose-dependent manner. In the presence
of CoCl2 , the inhibitory rates of melittin on the SMMC-
7721 and Huh7 cells were further increased compared with
those without CoCl2 (Figure 1(b)), whereas there were no
significant differences in HepG2 cells with or without CoCl2 .

It has been shown that hypoxia may facilitate the metas-
tasis of liver cancer cells [20]. CoCl2 treatment significantly
elevated the numbers of migrated and invaded SMMC-7721,
Huh7, and HepG2 cells (Figures 1(c)–1(f)). Cotreatment with
melittin significantly decreased the migrated and invaded
numbers of SMMC-7721, Huh7, and HepG2 cells.

3.2. Melittin Inhibited the VM Formation In Vitro Induced
by CoCl2. Next, we observed the effect of melittin on the
VM formation of liver cancer cells. As shown in Figure 2(a),
CoCl2 treatment for 24 h obviously increased the formation
of VM. Treatment with melittin (2 and 4 𝜇g/ml) suppressed
CoCl2-induced VM formation.

To elucidate the mechanisms involved in the reverse
effect of melittin on hypoxia-induced VM formation, we first
examined the levels of HIF-1𝛼 after melittin treatment. As
shown in Figure 2(b), CoCl2 treatment increased the level of
HIF-1𝛼 and its downstream target genes VEGF and MMP-9
that are involved in VM formation and tumor invasion [21].
Melittin suppressed CoCl2-induced upregulation of HIF-1𝛼,
VEGF, and MMP-2/9 (Figure 2(b)).

3.3. Melittin Inhibited EMT Induced by CoCl2. EMT is widely
recognized to be involved in cancer invasion. Furthermore,
EMT also plays a vital role in VM formation [22]. In addition,
overexpression of HIF-1𝛼 has been shown to induce EMT
of liver cancer [23]. Therefore, we further investigated the
effect of melittin on hypoxia-induced EMT. CoCl2 treat-
ment suppressed the expression of E-cadherin (Figure 3(a)).
Consistently, the expression of N-cadherin and Vimentin
were increased by CoCl2 (Figure 3(a)). Melittin reversed the
changes in the protein levels of these EMT markers.
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Figure 1: Effect of melittin on the proliferation, migration, and invasion of hepatoma cells. The inhibitory rates of melittin on the SMMC-
7721, Huh7, and HepG2 hepatoma cells were determined under normal condition (a) and in the presence of CoCl2 (b). Then the effect of
melittin on CoCl2-induced migration (c, d) and invasion (e, f) of SMMC-7721, Huh7, and HepG2 hepatoma cells was examined by transwell
assay. SMMC-7721, Huh7, and HepG2 hepatoma cells were seeded into the upper compartment of a Transwell Boyden chamber with CoCl2
(150 𝜇M) or CoCl2 + melittin. The control group was cultured without CoCl2 and melittin. At least 6 random fields (×100) per condition
were counted. Data are expressed as means ± S.D. (N=6) ∗P<0.05, ∗∗P<0.01 compared with control group; #P<0.05, ##P<0.01 compared with
CoCl2 group.
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Figure 3: Melittin inhibits CoCl2-induced EMT in SMMC-7721 cells. (a) Western blot analysis of EMT markers; (b)–(d) the mRNA levels
of EMT markers after CoCl2 treatment with or without melittin were determined by real time RT-PCR. Data are expressed as means ± S.D.
(N=3) ∗P<0.05, ∗∗P<0.01 compared with control group; #P<0.05, ##P<0.01 compared with CoCl2 group.
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Figure 4: The inhibitory effect of melittin on CoCl2-induced EMT is mediated by Akt pathway. (a) Melittin inhibited CoCl2-induced
phosphorylation of Akt; (b) LY294002 inhibited CoCl2-induced EMT; (c) SC-79 blocked the effect of melittin on CoCl2-induced EMT; (d)
activation of Akt reversed the effect of melittin on CoCl2-induced migration of SMMC-7721. Data are expressed as means ± S. (d) (N=6)
∗∗P<0.01 compared with control group; ##P<0.01 compared with CoCl2 group; ††P<0.01 compared with CoCl2+melittin group.

Subsequently, we used real time RT-PCR to quantify
mRNA levels of EMT markers. In consistence with western
blot results, the expression of N-cadherin and Vimentin
mRNA were upregulated and the level of E-cadherin mRNA
was downregulated by CoCl2 (Figures 3(b)–3(d)). Melittin
also reversed CoCl2-induced mRNAs changes of EMTmark-
ers.

3.4. Melittin Inhibited CoCl2-Induced Activation of Akt Path-
way in Liver Cancer Cells. Akt activation plays an important
role in the VM formation and EMT of malignant tumors
[24–26]. Thus, we next estimated the level of p-Akt in
SMMC-7721 cells after CoCl2 treatment. CoCl2-induced

accumulation of HIF-1𝛼 increased the level of phosphory-
lated Akt, which was suppressed by melittin (Figure 4(a)).
To further study the role of Akt in the inhibitory effect of
melittin on hypoxia-induced EMT, we then used an inhibitor
of PI3K/Akt in CoCl2-induced EMT. LY294002 did not
obviously affect the level of HIF-1𝛼 after CoCl2 treatment,
whereas it reversed the effect of CoCl2 on the expression
of EMT markers (Figure 4(b)). SC-79, an activator of Akt,
abolished the inhibitory effect ofmelittin on hypoxia-induced
EMT (Figure 4(c)), indicating melittin reverses hypoxia-
induced EMT through inhibiting HIF-1𝛼 induced activation
of Akt. Transwell assay also showed that both melittin and
LY294002 significantly inhibited CoCl2-induced migration
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Figure 5: Melittin inhibits VM formation and HIF1-𝛼 expression in the xenografts in nude mice. (a) and (b) Melittin inhibited the tumor
growth in vivo. Data are expressed as means ± S.D. (N=3). (c) The VM formation in the xenografts in nude mice determined by CD34 and
PAS double staining. (d) Immunohistochemical staining of the HIF1-𝛼 expression in the xenografts in nude mice.

of SMMC-7721 cells (Figure 4(d)). Cotreatment with SC-
79 significantly increased the number of transmigrated cells
compared with melittin group, implying Akt activation may
reverse the effect of melittin on CoCl2-induced migration of
hepatoma cells.

3.5. Melittin Inhibited VM and HIF1-𝛼 In Vivo. To verify the
in vitro results of melittin on VM formation, we conducted
a nude mice model of human liver cancer and treated with
melittin by tail vein injection. As shown in Figures 5(a) and
5(b), melittin treatment significantly suppressed the tumor
growth as reported previously. CD34 andPASdouble staining
showed that the VM formation in the tumor was less in
the melittin treatment groups than that in control group
(Figure 5(c)). Immunohistochemical staining showed that
HIF-1𝛼 expression in the tumor was significantly suppressed
by melittin (Figure 5(d)).

4. Discussion

VM, which is associated with high tumor grade, invasion
and metastasis, and short survival, has been considered as
a marker of poor clinical prognosis in liver cancer [4, 27].
Formed by aggressive tumor cells to mimic vasculogenic
networks, VM plays an important role in the liver cancer
malignancy as liver cancer is a typical hypervascular solid
tumor [28, 29]. Although experiments indicated that melittin
may exert antiangiogenic activity through VEGF pathway,
whether it may inhibit liver cancer metastasis through VM
has not yet been studied [30]. In the present study, we
investigated the role of melittin in VM formation under
hypoxic condition. Our results showed that melittin inhibited
liver cancer cells proliferation, migration, and invasion under
the hypoxic condition. Furthermore, melittin also inhib-
ited the hypoxia-induced VM formation both in vitro and
in vivo.
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Liver cancer is a typical malignant tumor with rich blood
supply. However, many treatment methods for liver cancer
usually induce a hypoxiamicroenvironment, includingTACE
and radiofrequency ablation [20, 31], and thereafter promote
tumor angiogenesis and metastasis, in part related to the
accumulation of HIF-1𝛼 [32]. Overexpression of HIF-1𝛼
promotes the growth, migration, and invasion of liver cancer
cells and induces the upregulation of VEGF, which is one
of the most potent angiogenic factors presented in various
human cancers [33]. In the current study, melittin inhibited
CoCl2–induced liver cancer cells proliferation, migration,
and invasion, suggesting it may inhibit the growth and
metastasis induced by hypoxia.

The correlation of hypoxia and VM formation has been
widely claimed inmany types of malignant tumors, including
liver cancer. VM formation positively correlates with the
invasion and metastasis of liver cancer [4, 5, 34]. VM
formation allows the tumor cells easily entering into the
nearby microcirculation environment, thereby promotes the
metastasis of tumor cells to other organs, and thus plays a
crucial role in the tumor metastasis [35]. Our data showed
that melittin suppressed the VM formation of liver cancer
cells after CoCl2 treatment. Hypoxia is also able to induce
EMT, which allows cancer cells transdifferentiating into
mesenchymal cells, resulting in the acquisition of invasive
and metastatic properties [36]. It has been demonstrated that
EMT plays a crucial role in VM formation [37]. Our results
also showed that melittin inhibited CoCl2-induced EMT of
liver cancer cells. Interestingly, it seems that low dosage
of melittin does not affect translational level of vimentin,
indicated by the result such that 2 𝜇g/ml of melittin obviously
inhibited the level of vimentin protein, but only 4 𝜇g/ml of
melittin significantly suppressed the level of vimentinmRNA,
whichwas shown in Figure 3 and need to be further explored.
In summary, the above results suggest the inhibition of
melittin on the VM formation of liver cancer cells may be
related to the suppression of EMT.

The proliferation and motility, including migration, inva-
sion, and adhesion are two key elements for the formation
of VM channels by tumor cells. In addition, the activation of
Akt is required for cells proliferation, migration, and tube-
like structure formation [38, 39]. VEGF, which plays an
important role in the formation of VM, is upregulated by
HIF-1𝛼 and thereby activates the PI3K/Akt pathway through
its receptors. Interestingly, inhibiting the PI3K/Akt pathway
also suppresses the expression of HIF-1𝛼 and VEGF [40],
suggesting Akt pathway plays a central role in the induction
of VEGF and formation of VM. In current study, our results
showed that melittin decreased CoCl2-induced HIF-1𝛼 accu-
mulation, VEGF overexpression, and Akt phosphorylation in
SMMC-7721 cells. Furthermore, MMPs serve as important
downstream effectors of VEGF and Akt and participate in
cell motility and VM formation [41, 42]. In the current study,
melittin also suppressed theMMP2/9 expression. In addition,
the effect of melittin on CoCl2-induced EMT and migration
of liver cancer cells was reversed, at least partly, by the
activator of Akt, suggesting that melittin inhibits hypoxia-
induced EMT and VM formation through HIF-1𝛼/Akt path-
way. Consistent with the findings in vitro, treatment with

melittin greatly reduced the protein expression of HIF-1𝛼 and
decreased the formation of VM in the xenografts in nude
mice. Interestingly, we also noted that the effect of melittin
at 50 ug was a little better than 100 𝜇g. However, there are no
significant differences between the two groups at each time
point. This may be due to the fact that the effect on melittin
has hit the plateau at 100𝜇g in suppressing the growth of
tumor in vivo. However, in the present, wemainly focused on
the effect of melittin on the hypoxia-induced VM formation
in liver cancer. We may deduce the conclusion from our
results that melittin is able to inhibit the VM formation and
HIF-1A in vivo.

There are also some limits in the present study; in the
future studies, we will further investigate the role of HIF-1𝛼
and Akt in the effects of melittin on liver cancer cells using
RNA interference. On the other hand, recent study showed
that analog of melittin such as MEL-pep may show better
effect since it may perform a promising role on chemotherapy
resistant liver cancer [43]. However, challenges of applicabil-
ity of melittin to humans are relate to several issues including
its degradation and hemolytic activity. Therefore, further
studies about better analogs of melittin or utilization of
nanoparticle based delivery of melittin is extremely essential
to exert its applicable anticancer effect. [44]

5. Conclusions

In summary, this study elucidates a new mechanism of the
antiliver cancer effect of melittin through inhibiting hypoxia-
induced VM formation. Suppression of EMT and inhibition
of HIF-1𝛼/Akt pathway are implicated to be involved in
the inhibitory effect of melittin on hypoxia-induced VM
formation. However, how melittin affects the synthesis and
stability of HIF-1𝛼 should be further investigated in the
future.
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