Research Article

Jingui Shenqi Pills Regulate Bone-Fat Balance in Murine Ovariectomy-Induced Osteoporosis with Kidney Yang Deficiency

Qi Shang,1,2 Wenhua Zhao,1,2 Gengyang Shen,2,3 Xiang Yu,2,3 Zhida Zhang,1,2 Xuan Huang,1,2 Weicheng Qin,1,2 Guifeng Chen,1,2 Fuyong Yu,1,2 Kai Tang,1,2 Honglin Chen,2,3 Juanmin Li,2,3 De Liang,2,3 Jingjing Tang,1,2,3 Xiaobing Jiang,2,3 and Hui Ren1,2

1Guangzhou University of Chinese Medicine, Guangzhou 510405, China
2Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
3Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China

Correspondence should be addressed to Xiaobing Jiang; spinedrjxb@sina.com and Hui Ren; renhuispine@163.com

Received 24 May 2020; Revised 16 August 2020; Accepted 27 August 2020; Published 7 September 2020

Academic Editor: Arham Shabbir

Copyright © 2020 Qi Shang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Jingui Shenqi Pills (JGSQP) have been a staple of traditional Chinese medicine for thousands of years, used primarily as a treatment for kidney yang deficiency (KYD). In vitro analyses of JGSQP revealed strong induction of osteogenic differentiation and inhibition of adipogenic differentiation in bone-marrow-derived mesenchymal stem/stromal cells. However, the mechanisms by which JGSQP regulate the bone-fat balance in murine ovariectomy-induced osteoporosis with KYD have not been reported.

Materials and Methods

Two-month-old female C57BL/6 mice were divided randomly into three groups: those receiving a sham operation (Sham); those undergoing bilateral ovariectomy and selection of KYD syndrome (Model); and those subjected to both bilateral ovariectomy and KYD syndrome selection for 8 weeks, followed by JGSQP treatment for 4 weeks (JGSQP). In the Sham and Model groups, mice were given the same dose of distilled water orally for 4 weeks. Animals from all three groups were euthanised at the 12th week. Vertebral microarchitecture and histomorphology were examined by micro-CT and H&E staining, respectively. In addition, we examined the mRNA expression of Akt, Wnt10b, Osterix (Osx), Fndc5, PPARy, and Fabp4, as well as the protein of AKT, phosphorylation-AKT (p-AKT), BMP2, COL1A1, and FNDC5. Results. JGSQP treatment improved bone microarchitecture and mitigated histomorphological damage relative to the Model group. The osteoblast number (Ob.N/BS) and area (Ob.S/BS) were increased, whereas adipocyte number (adipocyte/tissue area) and area (adipocyte area/tissue area) were decreased in the JGSQP group. JGSQP treatment reduced the mRNA expression of Akt and adipogenesis-related genes (Fndc5, PPARy, and Fabp4) while promoting osteogenesis-related genes (Wnt10b and Osx) mRNA expression. Additionally, the expression of p-AKT, BMP2, and COL1A1 proteins was increased and FNDC5 protein expression was decreased after JGSQP treatment. Conclusions. JGSQP treatment reversed murine ovariectomy-induced osteoporosis with KYD by controlling bone-fat balance via AKT pathway.

1. Introduction

Postmenopausal osteoporosis (PMOP) is brought on by a dramatic drop in oestrogen among postmenopausal women, leading to decreases in bone mass and density and an increase in the risk of fragility fracture [1]. With the gradual ageing of the population throughout the world, the incidence of PMOP and associated fractures continues to increase annually, posing a serious threat to public health. Worldwide, 30–50% of postmenopausal women have osteoporosis [2], with significant differences based on ethnicity and nationality. White women aged >50 years were shown to have a 50% lifetime risk of fragility fracture [1], and ~40% of postmenopausal women in Europe and the United States are...
were accessible throughout the experiment. After 1 week of adaptive feeding, the mice were divided randomly into three groups: the Sham group, which received a sham operation in which the fat around the bilateral ovaries was removed; the Model group, which underwent bilateral ovariectomy (OVX) followed by artificial selection of mice with KYD syndrome; and the JGSQP group, which was subjected to OVX and artificial selection of mice with KYD syndrome 8 weeks thereafter, followed by JGSQP treatment for 4 weeks. In the Sham and Model groups, mice were given the same dose of distilled water orally for 4 weeks (Figure 1). All experimental protocols were approved by the ethics committee of the First Affiliated Hospital of Guangzhou University of Chinese Medicine (License no. TCMF1-2019030).

2.2. Establishment of the PMOP with KYD Model. The PMOP with KYD model was established as described previously [19, 20]. Briefly, mice were subjected to OVX and allowed to recover for 8 weeks, after which mice exhibiting symptoms of KYD syndrome according to the Reference Standard for Syndrome Differentiation of TCM Deficiency Syndrome were selected. Features of KYD syndrome include thin and erect hair, reluctance to move, reduced resistance to scraping, listlessness, unresponsiveness, decreased water consumption, increased sleeping, dark-purple tongue and tail, and dark red eyes. Mice exhibiting three or more of these symptoms were considered to have KYD syndrome.

2.3. Preparation of Freeze-Dried JGSQP Powder. Freeze-dried JGSQP powder was prepared as described previously [28]. The single ingredient of JGSQP, conforming to the Drug Standards of National Medical Products Administration of People’s Republic of China, was purchased from the First Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangzhou, China). The prescription formula was composed of eight herbs: Processed Radix Rehmannia (Dihuang, 24.0 g), Dried Rehmannia (Dihuang, 24.0 g), Dioscorea opposita (Shanyao, 12.0 g), Cornus officinalis (Shanzhuyu, 12.0 g), Alisma Orientalis (Zexie, 9.0 g), Poria cocos (Fuling, 9.0 g), and Cortex Moutan (Danpi, 9.0 g). The drugs were soaked in eight volumes of pure water, boiled for 30 min, and filtered. They were then concentrated to 1 g/mL at 80°C and 0.09 MPa. The resulting liquid was then further concentrated by rotary evaporator at 60°C until no droplets remained, frozen at −80°C for 48 h, and lyophilised for 72 h. The resulting powder was stored at −20°C until needed for intragastric administration. The in vivo concentration was 0.5 g/mL, representative of the human equivalent dose calculated based on body surface area, consistent with previous studies [28].

2.4. Micro-CT. Micro-CT images were analysed as described previously [29, 30]. Briefly, the L4 vertebral bodies were separated, fixed in 4% paraformaldehyde for 24 h, and placed in a rigid plastic tube to ensure that they did not move. Then, the vertebral bodies were analysed using a micro-CT.
imaging system (SkyScan, Kontich, Belgium) with a 55 kV scanning voltage, 145 mA current, and 4 μm slice thickness. Next, the μCT 80 evaluation programme was used to analyse the volume of interest of the L4 vertebrae. Bone microstructure features were characterised using the following parameters: bone volume/tissue volume (BV/TV), bone surface/tissue volume (BS/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), and structural model index (SMI).

2.5. Bone Histomorphometric Analysis. Histomorphometric analysis of the L4 vertebrae was performed as described previously [30]. Briefly, the L4 vertebrae were fixed in 4% paraformaldehyde for 24–48 h and then placed in ethylenediaminetetraacetic acid (EDTA) decalcification solution for 3–5 weeks. Next, the samples were placed in the distilled water for gradient alcohol dehydration and paraffin-embedded. After trimming of the paraffin blocks, 5-μm-thick slices were cut using a paraffin slicer and visualised by hematoxylin and eosin staining (H&E; Solarbio, Beijing, China). Histomorphometric measurements, including the osteoblast surface ratio (Ob.S/BS, %), number of osteoclasts (Ob.N/BS, 1/mm), adipocyte number/tissue area (mm²), and adipocyte area/tissue area (%), were analysed using the Image J software (Wayne Rasband, National Institutes of Health, USA).

2.6. RNA Isolation and qRT-PCR. For RNA isolation, 50 mg fresh lumbar vertebrae was snap frozen in liquid nitrogen and ground using a tissue-grinding pestle. Total RNA was then extracted using a MiniBEST Universal Extraction Kit (Takara). RNA concentrations and sample purity were assessed using an ultraviolet spectrophotometer (Thermo Fisher). cDNA synthesis was performed using PrimeScript RT Master Mix (Takara). qRT-PCR was performed using SYBR Premix Ex Taq (Takara) in a Bio-Rad CFX96 device for two-step quantitative analysis (40 cycles of 95°C for 30 s, 95°C for 5 s, and 60°C for 1 min). Primer sequences are shown in Table 1. Gene expressions were assessed using the 2^−ΔΔCt method.

2.7. Western Blot Analysis. Total proteins were extracted from the mice lumbar vertebrae using RIPA lysis buffer (Thermo Fisher) and then quantified using a BCA protein assay kit (Beyotime). Proteins were resolved by electrophoresis on a 10% SDS-PAGE gel then transferred to PVDF membranes (Millipore, Shanghai, China). The membranes were blocked in 5% bovine serum albumin for 2 h at room temperature then incubated in the presence of primary antibodies. Primary antibodies against phosphorylation-AKT (p-AKT; 1:1000; rabbit; ab192623), AKT (1:10000; rabbit; ab179463), BMP2 (1:500; rabbit; ab14933), COL1A1 (1:1000; rabbit; ab34710), FNDC5 (1:1000; rabbit; ab174833), and GAPDH (1:10000; rabbit; ab181602) were incubated for 24 h at 4°C. The membranes were then washed three times for 5 min each with TBST followed by treatment with a secondary antibody (goat anti-rabbit IgG, 1:3000, ab6939) for another 2 hours at room temperature. Protein levels were evaluated by enhanced chemiluminescence (Bio-Rad, Hercules, CA, USA) following the manufacturer’s instructions. The Image J software was used to determine the gray values of the protein electrophoresis bands, which indicates the relative protein expression levels.

2.8. Statistical Analysis. SPSS 19.0 (IBM, Chicago, IL, USA) was used for data analysis. All data analysed were quantitative, and comparison among groups was performed by one-way ANOVA followed by Tukey’s test for multiple comparisons. P values <0.05 were considered to be significant.

3. Results

3.1. JGSQP Treatment Improved Bone Microarchitecture of Murine OVX-Induced Osteoporosis with KYD. Reconstructed micro-CT images of the L4 vertebrae from the model group revealed reduced, thinning trabeculae and increased Tb.Sp relative to the Sham group. Treatment with JGSQP significantly attenuated damage to the bone microarchitecture. Accordingly, JGSQP treatment created a strong bone-protecting phenotype in mice with OVX-induced osteoporosis and KYD, as evidenced by decreased Tb.Sp and increased Tb.Th, Tb.N, and BV/TV (P <0.05 for all; Figure 2).

3.2. JGSQP Attenuated Histomorphological Damage in Murine OVX-Induced Osteoporosis with KYD. H&E staining of the L4 vertebrae revealed thinner, smaller trabeculae with more lipid droplets and microfractures in the Model group relative to Sham controls. The Ob.N/BS and Ob.S/BS were consistently decreased in the Model group, whereas the adipocyte number and area were increased relative to Sham controls. As before, JGSQP treatment significantly attenuated histomorphological damage in the murine model of OVX-induced osteoporosis with KYD (Figure 3).
3.3. JGSQP Reduced Akt and Adipogenesis-Related Gene (Fndc5, PPARc, and Fabp4) Expression and Promoted the Expression of Osteogenesis-Related Genes (Wnt10b and Osx).

Gene expression analyses were conducted using tissues from the L1-L3 vertebrae of all mice (Figure 4). The Model group showed significant downregulation of Wnt10b and Osx and

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward (5'-3')</th>
<th>Reverse (5'-3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akt</td>
<td>ATGAACGACGTAGCATTGTG</td>
<td>TTGTAGCCAAATAAGGTGCCAT</td>
</tr>
<tr>
<td>Wnt10b</td>
<td>GCGGATCTCTGTGTGTGGG</td>
<td>CCGGAATTTAGGAGCCAG</td>
</tr>
<tr>
<td>Oxs</td>
<td>AAAAGGAGGACAAAGAAGGAG</td>
<td>CAGGAAATGAGTGAGGGAGG</td>
</tr>
<tr>
<td>Fndc5</td>
<td>TTTGCCATCTCTACGAGAAAGA</td>
<td>GCGCTGACATGGACGATA</td>
</tr>
<tr>
<td>PPARc</td>
<td>TCGCCTGATCCTGCCTATGG</td>
<td>GAGAGGCTACAGACGATT</td>
</tr>
<tr>
<td>GAPDH</td>
<td>ATGTTCCAGTAGACTCCACTCA</td>
<td>GAAGACACCAGTACCTCAGAC</td>
</tr>
</tbody>
</table>

Table 1: Quantitative PCR primer sequences.

Figure 2: JGSQP improved bone microarchitecture of murine ovariectomy-induced osteoporosis with KYD. (a) Representative 2D and 3D micro-CT images (scale bars = 250 μm); (b) BV/TV, BS/TV, Tb.Th, Tb.N, Tb.Sp, and SMI were calculated based on micro-CT results. Data are expressed as means ± SDs. *P < 0.05, **P < 0.01 (one-way ANOVA with Tukey’s multiple comparison test); ns: not significant.

Figure 3: JGSQP attenuated histomorphological damage of murine ovariectomy-induced osteoporosis with KYD. (a) Representative images of H&E staining. (b) The quantifications of Ob.N/BS, Ob.S/BS, adipocyte/tissue area, and adipocyte area/tissue area were calculated based on H&E staining and analysed using the ImageJ software. Data are expressed as means ± SDs. *P < 0.05, **P < 0.01 (one-way ANOVA with Tukey’s multiple comparison test); ns: not significant.
upregulation of Akt, PPARγ, and Fabp4 expressions compared with the Sham group. Although Fndc5 expression did not differ significantly between groups, a strong tendency toward increased expression was observed in the Model group. After JGSQP treatment, the expression of Akt and adipogenesis-related genes (Fndc5, PPARγ, and Fabp4) was downregulated, whereas osteogenesis-related genes (Wnt10b and Osx) were upregulated.

3.4. JGSQP Increased p-AKT, BMP2 Protein Expressions and Reduced FNDCC5 Protein Expression. Protein levels were analysed by western blot. The Model group exhibited significantly reduced p-AKT, BMP2, and COL1A1 expression and significantly increased FNDCC5 expression relative to Sham controls. Compared with the Model group, the JGSQP group exhibited significantly greater p-AKT, BMP2 expressions and significantly reduced FNDCC5 expression. COL1A1 protein expression did not differ significantly after JGSQP treatment (Figure 5).

4. Discussion

An increasing number of studies have focused on the role of bone-fat imbalance in the context of PMOP. Previously, clinical cross-sectional studies showed that bone marrow fat content was positively correlated with the risks of osteoporosis and fracture [31, 32], and other studies have shown that increased bone marrow fat tissue limits the regeneration of damaged bone [16, 33]. Bone and fat interact with each other through endocrine and paracrine forms. Bone marrow fat cells express endocrine factors (ADIPOQ, IGF1, IGFBP2, etc.) and paracrine factors (Wnt10b, BMP4, ANGPT2, etc.) to regulate bone regeneration. Bone secretion factors (OCN, SOST, BMP, PTHrp, etc.) can also regulate fat tissue metabolism [33, 34]. Together, these results show that bone and fat exist in a complex regulatory environment, suggesting that control of the bone-fat balance is important for the prevention and treatment of PMOP.

JGSQP is a TCM prescription used to treat KYD syndrome and many other diseases. It has been shown to play important roles in the regulation of ageing [35], tissue repair [36], and apoptosis [37] and to help prevent acute and critical diseases, including heart failure [38], diabetes [35, 39], asthma [40], neonatal hypoxic-ischemia [41], adrenal insufficiency [42], and hypertension [43–45]. Research conducted using metabolomic and proteomic approaches has demonstrated that JGSQP effectively treats kidney impairment with KYD syndrome involved in Wnt, chemokine, PPAR, and MAPK signaling pathways [36]. Furthermore, tonification of the kidney yang more effectively facilitates osteogenic differentiation and suppresses adipogenic differentiation of BMSCs than does tonification of the kidney yin [27]. However, the effect of JGSQP in terms of bone-fat balance control in an in vivo murine model of OVX-induced osteoporosis with KYD has not been reported previously. In the present study, we demonstrated that JGSQP could ameliorate changes to bone microarchitecture in such a model, as confirmed by

![Figure 4: Effect of JGSQP treatment on the mRNA expression of Akt, adipogenic (Fndc5, PPARγ, and Fabp4) and osteogenesis-specific genes (Wnt10b and Osx). Data are expressed as means ± SDs. * P < 0.05, ** P < 0.01, *** P < 0.001, and **** P < 0.0001 (one-way ANOVA with Tukey’s multiple comparison test); ns: not significant.](image-url)
histomorphological assessment by micro-CT and H&E staining. Furthermore, the quantification of bone histomorphological parameters revealed that JGSQP promoted increases in osteoblast number and surface area while inhibiting such increases in the adipocyte number and area, consistent with the in vitro findings of Cheng et al. [27].

To further elucidate the pathogenetic molecular mechanisms possibly underlying these effects, the mRNA and protein expression levels of several genes involved in bone and fat metabolism in the lumbar spine were analysed. Wnt10b, Osx, and BMP2 are defined broadly as positive regulators of bone formation [46–48], whereas PPARc and Fabp4 are generally considered to be upregulators of adipogenesis [49, 50]. The role of Fndc5 in bone formation and adipogenesis remains controversial. Fndc5 knockout has been shown to block OVX-induced bone loss, suggesting that this gene plays a positive role in adipogenesis [51, 52]. In our study, the bone formation-specific genes Wnt10b and Osx were upregulated, whereas the adipogenesis-related genes Fndc5, PPARy, and Fabp4 were downregulated in the JGSQP group compared with the Model group, indicating that JGSQP promoted bone formation and inhibited bone marrow lipogenesis, thereby controlling the bone-fat balance in mice with OVX-induced osteoporosis and KYD. In accordance with the results, in protein expressions, the osteogenesis-specific protein BMP2 was increased, whereas the adipogenesis-related protein FNDC5 was decreased in the JGSQP group relative to the Model group.

AKT signaling remains a key pathway that regulates the balance of bone and fat metabolism [53–55]. Increases in p-AKT contributed to the inactivation of GSK-3β, which increased downstream β-catenin transcription to the nucleus, promoted osteogenic differentiation (e.g., of Osx, Runx2), and inhibited lipogenic differentiation (e.g., of Fabp4, PPARy) [56–58]. In our study, JGSQP activated the expression of p-AKT along with multiple bone formation and adipogenesis-related genes (Wnt10b, Osx, BMP2, PPARy, Fabp4, and Fndc5), suggesting that it may ameliorate murine OVX-induced osteoporosis with KYD by controlling the bone-fat balance via the AKT pathway. Our investigations demonstrated that JGSQP is an important regulator of the bone-fat balance, and thus that it may be an attractive option for the treatment of PMOP.

5. Conclusion

JGSQP treatment reversed murine ovariectomy-induced osteoporosis with KYD through controlling bone-fat balance via the AKT pathway. Thus, this study provides evidence supporting the effectiveness of JGSQP for the treatment of PMOP with KYD.

Although we successfully demonstrated the protective effect of JGSQP treatment on murine ovariectomy-induced osteoporosis with KYD and also gained insight into its underlying mechanism concerning regulating bone-fat balance, this study had several limitations. First, the
evaluation of ovariectomy-induced osteoporosis with KYD model lacked precise quantitative index. Second, although some differentially expressed genes were found, advanced techniques such as high-throughput sequencing, gene knockout, and overexpression studies were not employed to explore potentially underlying mechanisms in this study. Third, the findings of this study should be further verified by additional clinical and experimental investigations.

Abbreviations

PMOP: Postmenopausal osteoporosis
OVX: Ovariectomy
JGSQP: Jingui Shenqi Pills
KYD: Kidney yang deficiency
BV: Bone volume
BS: Bone surface
Ob.N/BS: Osteoblast number/bone surface
Ob.S/BS: Osteoblast surface/bone surface
TV: Tissue volume
Tb.Th: Trabecular bone thickness
Tb.N: Trabecular bone number
Tb.Sp: Trabecular bone space
Osx: Osterix
Phosphorylation-AKT: p-AKT
GAPDH: Glyceraldehyde 3-phosphate dehydrogenase.

Data Availability

The data used to support the findings of our study are available from the correspondence author upon request.

Conflicts of Interest

The authors declare that there are no potential conflicts of interest to disclose regarding the publication of this paper.

Authors’ Contributions

Qi Shang, Wenhua Zhao, and Gengyang Shen contributed equally to this work. All authors listed in the current study carried out the experiments, participated in the design of the study, performed the statistical analysis, conceived the study, and helped to draft the manuscript.

Acknowledgments

This work was generously supported by National Natural Science Foundation of China (81904225, 81674000, 81774338, and 81503591), Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2018), Science and Technology Program of Guangzhou (201707010298), the Youth Scientific Research Training Project of GZUCM (2019QNPY04), Key Project of Basic Research and Applied Basic Research of the Department of Education of Guangdong Province (2018KZDXM021), and Guangdong Natural Science Foundation (2018A030310615).

References

Evidence-Based Complementary and Alternative Medicine

F. Zhang, J. Ye, Y. Meng et al., “Calcium supplementation enhanced adipogenesis and improved glucose homeostasis through activation of camkii and PI3K/Akt signaling pathway in porcine bone marrow mesenchymal stem cells (pBMSCs) and mice fed high fat diet (HFD),” *Cellular Physiology and Biochemistry*, vol. 51, no. 1, pp. 154–172, 2018.

