Research Article

Icariin Alleviates Glucocorticoid-Induced Osteoporosis through EphB4/Ephrin-B2 Axis

Mi Huang,1 Ying Wang,2,3 and Rui Peng1

1Hubei University of Chinese Medicine, Hubei, Wuhan 430000, China
2South China Botanical Garden, Chinese Academy of Sciences, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Key Laboratory of Guangdong Province Applied Botany, Guangzhou 510650, China
3Gannan Normal University, Ganzhou, Jiangxi 341000, China

Correspondence should be addressed to Rui Peng; 974831374@qq.com

Received 21 February 2020; Accepted 1 May 2020; Published 18 May 2020

Guest Editor: Reggiani Vilela Gonçalves

Copyright © 2020 Mi Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Purpose. Glucocorticoid (GC) is the most important risk factor for osteoporosis (OP); in the present study, we examined the potential mechanism of icariin, a natural bioactive compound isolated from the traditional Chinese herbal *Epimedium*, for GC-induced OP to explore its potential therapeutic effect. Methods. We used a GC-induced OP mice model and treated with icariin. Pathological changes were measured by H&E staining, and the effects of icariin on osteoblasts and osteoclasts were measured by immunohistochemistry (IHC) staining and western blot (WB) analyses, while trabecular bone parameters were detected by micro-CT imaging in vivo. Results. The results showed that in GC-induced OP symptoms, icariin treatment significantly increased the density of the trabecular bone when exposed to GC, revealed by H&E staining and micro-CT imaging. IHC staining showed that GC-induced OP had a lower EphB4 expression and higher Ephrin-B2 expression, but icariin could promote EphB4 while suppressing Ephrin-B2 expression. The WB results also provided evidence of the same protein expression trend, showing that the osteoblast marker OCN and the EphB4 downstream factor RhoA in the GC group were decreased, while both OCN and RhoA expression were significantly increased and the Ephrin-B2 downstream factor Grb4 in the GC group was increased after icariin treatment. Conclusion. Icariin could improve the characteristics of OP through regulating the balance of the EphB4/Ephrin-B2 pathway. Further preclinical trial is needed to provide certainty of clinical benefits for OP patients.

1. Introduction

Osteoporosis (OP) is a skeletal disorder characterized by decreased bone strength and increased risk of fracture. OP can be divided into primary and secondary damage, and the secondary damage is mainly caused by any disease or drug that affects bone formation, among which glucocorticoid (GC) is the most important risk factor for OP. GC is widely used in the clinic due to its anti-inflammatory and immunosuppressive effects. However, long-term use of GC usually resulted in a 30%–50% incidence of osteoporotic fractures, which seriously affects the quality of life of patients [1–5].

A number of signal pathways have been found participating in osteoblasts and osteoclasts in bone formation, and EphB4/Ephrin-B2 is the bidirectional signal axis that is separately expressed in the osteoblast and osteoclast cells [6], which produce positive or reverse signals. Ephrin-B2 inhibits osteoclast function through c-Fos/NFATc1, while EphB4 factor promotes osteoblast function by osteogenesis Dlx5, Osx, and Runx2 [7]. Similarly, Sema3A/Nrp, another signaling pathway between osteoblasts and osteoclasts, has been found to inhibit RANKL-induced osteoclast differentiation by inhibiting ITAM and RhoA signaling pathways [8]. Also, KEGG analysis found that EphB4 could participate in cytoskeleton development through the RhoA signaling pathway, while Ephrin-B2 could bind to Grb4 to generate inhibitory regulation. Nevertheless, the destruction of such signal axis causes functional changes of osteoblasts and
with a secondary antibody (HRP, DAKO, Carpinteria, CA, USA) for 1 hour. Diaminobenzidine (DAB-DAKO, Carpinteria, CA, USA) was used for positive visualization. The sections were observed with an inverted microscope (Olympus, Tokyo, Japan).

2.4. Western Blot (WB) Analysis. Whole proteins were isolated according to the kit protocol (KeyGen Biotech, Nanjing, China), and protein was then separated by 10% SDS-PAGE gels and transferred to polyvinyl difluoride (PVDF) membranes. Nonfat milk diluted in TBST was used for blocking for 1 hour at room temperature. Primary antibodies Grb4 (Proteintech, 10206-1-AP), RhoA (Proteintech, 10749-1-AP), and OCN (Proteintech, 23418-1-AP) (all from Wuhan SanYing, Wuhan) were incubated overnight at 4°C and then incubated with the anti-rabbit antibody for 2 hours at room temperature. The proteins were detected by the ECL detection kit, and relative expression levels were normalized to β-actin.

2.5. Micro-CT Imaging. After the mice in each group were sacrificed, the right tibia was quickly removed, and then the attached soft tissue was removed and the bone tissue was fixed in a 4% paraformaldehyde solution. The specimen was placed in a sample cup and fixed, and the trabecular microstructure of the tibia was scanned using an in vitro micro-CT tomography technique (SkyScan 1176, Institute of Hydrobiology, Chinese Academy of Sciences). The scanning conditions were set to a voltage of 70 kV, a scanning current of 200 μA, a layer spacing of 14.80 μm, a planar resolution of 300 ms, and a continuous scanning of about 808 layers. After the scan is completed, the sacral enlargement and the backbone area are selected as the region of interest (ROI). After the three-dimensional reconstruction threshold is set, the three-dimensional reconstruction of the ROI is performed. The airborne software CTan analysis is used. The main detection parameters are as follows: (1) bone mineral density parameters: BMD (bone mineral density), TMC (tissue mineral content), and BMC (bone mineral content); (2) bone structure parameters: BV/TV (bone volume/total volume), Tb.N (trabecular bone number), and Tb.Th (trabecular thickness) [19].

2.6. Statistical Analyses. One-way ANOVA followed by Tukey post hoc test was used for statistical analyses. The data were expressed as means ± SD. P values <0.05 were considered as statistically significant.

3. Results

3.1. Icariin Alleviates GC-Induced OP. HE staining (Figure 1) showed abundant, continuous, and dense trabecular bone in normal mice, but the GC treatment group showed a larger marrow cavity and a decreasing number of trabecular bones, revealing the typical characteristics of osteoporosis. The icariin treatment revealed reverses of those osteoporosis
changes, suggesting icariin along having no changes as compared with the normal mice.

3.2. Icariin Improves Trabecular Bone Parameters in GC-Induced OP. Trabecular bone parameters were analyzed by using micro-CT (Figure 2), and the results showed that GC treatment had significantly negative effects on BV/TV, Tb.N, Tb.Th, BMD, TMC, and BMC, while icariin treatment significantly reduced the negative effects of structural properties of the trabecular bone on BV/TV, Tb.N, BMD, TMC, and BMC. Icariin along had no structural changes as compared with the normal mice.

3.3. Icariin Elevates EphB4 While Suppressing Ephrin-B2 Expression in GC-Induced OP. To further explore the relationship between EphB4 and Ephrin-B2 in GC-induced OP, IHC staining (Figure 3) was used, revealing GC-induced Ephrin-B2 expression, while after icariin treatment, Ephrin-B2 expression was significantly decreased. We further found that GC can suppress EphB4 expression, while after icariin treatment, Ephrin-B2 expression was significantly increased. The WB results also confirmed the protein expression trend.

3.4. Icariin Alleviates GC-Induced OP through the EphB4/Ephrin-B2 Axis. We also examined the signaling pathway involved in GC-induced OP. The WB results (Figure 4) showed that the osteoblast marker OCN and the EphB4 downstream factor RhoA in the GC group were decreased, while after icariin treatment, both OCN and RhoA expression were significantly increased. Furthermore, we found that the Ephrin-B2 downstream factor Grb4 in the GC group was decreased, while after icariin treatment, Grb4 expression was significantly increased. The results suggested that icariin might regulate the balance of the EphB4/Ephrin-B2 axis, thus promoting the recovery of GC-induced OP.

4. Discussion
The clinical treatment for GC-induced OP relies on drugs including calcium supplementation, vitamin D, bisphosphonates, hormones, calcitonin, and fluoride. However, the effect of drug therapy is still unsatisfactory [20]. Icariin, a natural product from traditional Chinese medicine (TCM), has been studied for treatment of osteoporosis [21], and its pharmacological function remains unclear. In the present study, we found that icariin could alleviate GC-induced OP through regulating the balance of the EphB4/Ephrin-B2 axis, thus enhancing the recovery of OP.

GC is an important pathogenetic factor for OP and affects the differentiation and longevity of osteoclasts and osteoblasts through redox pathways [22]. GC reduces replication of osteoblastic lineage cells and inhibits osteogenic differentiation or mineralization, resulting in the osteoblasts
Figure 2: Icariin can improve trabecular bone parameters in GC-induced OP. Micro-CT was used to test trabecular bone parameters in the control group (a), GC group (b), icariin group (c), and icariin treatment of GC-induced OP group (d). Results on bone mineral density (BMD) (e), bone volume fraction (BV/TV) (f), trabecular number (Tb.N) (g), trabecular thickness (Tb.Th) (h), tissue mineral content (TMC) (i), and trabecular bone mineral content (Tb.BMC) (j). The GC treatment made significant negative effects on microstructural quantitative parameters, while icariin can prevent those changes. *P < 0.05 vs the control group and #P < 0.05 vs the GC group.
in an immature state, thereby reducing their numbers and function. GC can also indirectly inhibit osteogenic differentiation and promote adipogenic differentiation in stromal cells [23]. Moreover, GC also increases the function and number of osteoclasts and their survival time, such as caspase-3 can prolong its life and M-CSF can enhance its activity [24, 25].

The Eph receptor is a primary component of the tyrosine kinase receptor family. EphB4/Ephrin-B2 signaling is an important axis which regulates the functional balance of osteoblasts and osteoclasts [26]. The regulation was via the transmembrane ligand, such as Ephrin-B2 on osteoblasts and receptor tyrosine kinase and EphB4 on osteoclasts [7]. Previous studies suggested that EphB4 receptor activation by Ephrin-B2 could affect resorption factors and their activities in the subchondral bone [27]. Ephrin-B2 treatment of osteoarthritic chondrocytes increases the gene expression levels of type II collagen in these cells [28], suggesting that Ephrin-B2 also plays a role in regulating chondrocyte differentiation. It was also reported that osteoclastogenesis could be attenuated through bidirectional EphB4/Ephrin-B2 signaling in vitro [29], while another study found that Claudin 11 may regulate bone homeostasis via bidirectional EphB4/Ephrin-B2 signaling [30]. In the present study, we found that GC treatment could induce typical characteristics of osteoporosis, while icariin treatment reversed those osteoporosis changes and demonstrated a therapeutic effect of icariin on GC-induced OP. Further study found that both EphB4 and Ephrin-B2 participated in the pathological changes of OP, which is consistent with previous studies that EphB4/Ephrin-B2 signaling also promotes the differentiation of osteoblasts and osteoclasts [26], indicating an imbalance expression of EphB4 and Ephrin-B2 could be a potential mechanism which might disturb the function of osteoblasts and osteoclasts.

Moreover, through KEGG analysis, we found that EphB4 could act on the RhoA signaling pathway; i.e., Ephrin-B2 could bind to Grb4 and might further regulate cytoskeleton development. To test whether RhoA and Grb4 pathways are involved in the EphB4/Ephrin-B2 signaling, we detected
Figure 4: Icariin alleviates GC-induced OP through the EphB4/Ephrin-B2 axis. WB analysis of the osteoblast marker OCN, EphB4 downstream factor RhoA, and Ephrin-B2 downstream factor Grb4. The result showed that the osteoblast marker OCN, the EphB4 downstream factor RhoA, and the Ephrin-B2 downstream factor Grb4 in the GC group were decreased, while after icariin treatment, their expressions were all significantly increased. Protein expression levels were normalized to β-actin. *P < 0.05 vs the control group and #P < 0.05 vs the GC group.
their protein levels and found lower expression of RhoA but higher Grb4 levels in GC-induced OP, while treatment with icariin reversed the expression, which implied that EphB4 could further inhibit osteoblasts through the RhoA signaling pathway, while Ephrin-B2 regulated Grb4 to promote osteoclast function. As their functional properties are similar to testosterone [17], our findings provided new evidence that icariin regulates the expression of EphB4/Ephrin-B2 and maintains the functional balance of osteoblasts and osteoclasts through RhoA and Grb4, respectively, to protect the bone structure.

5. Conclusions

In the present study, we found icariin could improve characteristics of OP through regulating the balance of EphB4/Ephrin-B2 to protect the bone structure. A further preclinical trail might be needed to provide certainty of clinical benefits for OP patients.

Abbreviations

OP: Osteoporosis
GC: Glucocorticoid
IHC: Immunohistochemistry
WB: Western blot
ROI: Region of interest
BMD: Bone mineral density
TMC: Tissue mineral content
BMC: Bone mineral content
BV/TV: Bone volume/total volume
Tb.N: Trabecular bone number
Tb.Th: Trabecular thickness.

Data Availability

The data used to support the findings of this study are included within the article. Any further data can be made available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

M.H contributed to the design of the work, data collection, analysis and interpretation of the data, statistical analysis, and drafting the manuscript. Y.W contributed to the critical revision of the manuscript and provided financial support. R.P contributed to project design and critical revision of the manuscript. All authors read and approved the final manuscript.

Acknowledgments

This project was supported by the Key Area R&D Project of Guangdong Province (2020B020221001), Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences (AB2018027), and the Science and Technology Department of Hubei Province, Natural Science Foundation of Hubei Province (2018CFB695).

References

[15] X. Huang, X. Wang, Y. Zhang et al., “Absorption and utilisation of epimedin C and icariin from Epimedi herba, and the regulatory mechanism via the BMP2/Runx2 signalling...

