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Hepatocellular carcinoma (HCC) is a malignant tumor without effective therapeutic drugs for most patients in advanced stages.
Scutellariae Radix (SR) is a well-known anti-inflammatory and anticarcinogenic herbal medicine. However, the mechanism of SR
against HCC remains to be clarified. In the present study, network pharmacology was utilized to characterize the mechanism of SR
on HCC. ,e active components of SR and their targets were collected from the traditional Chinese medicine systems phar-
macology database and the traditional Chinese medicine integrated database. HCC-related targets were acquired from the liver
cancer databases OncoDB.HCC and Liverome. ,e gene ontology and the Kyoto Encyclopedia of Genes and Genomes pathway
were analyzed using the Database for Annotation, Visualization, and Integrated Discovery. Component-component target and
protein-protein interaction networks were set up. A total of 143 components of SR were identified, and 37 of them were
considered as candidate active components. Fifty targets corresponding to 29 components of SR were mapped with targets of
HCC. Functional enrichment analysis indicated that SR exerted an antihepatocarcinoma effect by regulating pathways in cancer,
hepatitis B, viral carcinogenesis, and PI3K-Akt signaling. ,e holistic approach of network pharmacology can provide novel
insights into the mechanistic study and therapeutic drug development of SR for HCC treatment.

1. Introduction

Hepatocellular carcinoma (HCC) is the fifth most common
and lethal malignancy in the world [1]. It is a complex
disease closely linked to chronic viral infection, carcino-
genesis of toxins, and cirrhosis induced by fatty liver disease
or alcohol abuse and genetic factors [2]. Several common
therapeutic options for HCC are currently considered, in-
cluding surgical resection, local ablation, transarterial che-
moembolization, liver transplantation, and systemic
treatment with sorafenib [3]. Sorafenib is a kinase inhibitor
drug approved for the treatment of primary kidney cancer,
advanced primary liver cancer, FLT3 internal tandem du-
plication (FLT3-ITD) positive acute myeloid leukemia

(AML), and radioactive iodine resistant advanced thyroid
carcinoma. However, a majority of patients with HCC are
diagnosed at advanced stages, and the only feasible treat-
ment for these patients is sorafenib [4]. Furthermore, less
than 20% of patients respond well to sorafenib that often
causes serious adverse reactions [5]. ,erefore, more ef-
fective alternative therapies with low toxicity should be
developed to improve the overall survival of patients with
HCC.

Chinese herbal medicine (CHM) has been used clinically
for thousands of years. With advanced scientific evaluation
in basic research and clinical trials [6], CHM is recognized as
a treasure house for alternative anticancer drug development
[7]. Extensive research has shown that some specific herbs
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and natural compounds can effectively inhibit cell prolif-
eration, interfere with tumor progression, and block tumor
metastasis [8, 9]. Scutellariae Radix (SR) is the root of plant
Scutellaria baicalensis Georgi (Lamiaceae). SR is a well-
known anti-inflammatory and anticarcinogenic herbal
medicine [10, 11], which can prevent and treat liver injuries
caused by hepatitis and liver cancer. SR has certain com-
ponents, such as baicalin and baicalein, which show an
evident antitumor effect on hepatocarcinoma [12–14].
However, the mechanism of antitumor action of SR against
HCC is still unclear.

As an emerging discipline in modern CHM pharma-
cological research, network pharmacology has been suc-
cessfully undertaken to screen active components and reveal
the pharmacodynamic mechanisms of CHM [15]. In con-
trast to Western medicine based on one drug and one target,
CHM exerts its pharmacological action as a whole through
multicomponents and multitargets. With the holistic per-
spective of CHM, network pharmacology intends to in-
vestigate the effects of drugs on disease at a holistic level [16].
It changes the research strategy from the existing “one drug,
one target” mode to the emerging “one drug, network
targets” mode [17] or “multicomponents, network targets”
mode [18]. ,is approach is feasible for investigating the
mechanisms of the effect of CHMs and their synergistic
actions in cancer treatment [19]. To the best of our
knowledge, only two network pharmacology reports are
associated with SR, i.e., SR against diabetes mellitus [20] and
baicalein on HCC [17]. However, network pharmacology
evaluation has yet to be performed to determine the mo-
lecular mechanism of SR for HCC treatment.

,e present study applies computer simulation and
bioinformatic data mining to build a pharmacological
network of SR for HCC treatment and search for the can-
didate bioactive components, protein targets, and pathways.
Network pharmacology provides a potent and promising
approach for the application and development of CHM to
HCC therapy (Figure 1).

2. Methods

2.1. Active Components in SR. All herbal medicinal ingre-
dients of SR were obtained from the traditional Chinese
medicine systems pharmacology database (TCMSP; http://
tcmspw.com/tcmsp.php) [21], which is a unique analysis
platform of systems pharmacology contributing to drug
discovery from herbal medicines. ,e candidate active
components of SR were obtained on the basis of the criteria
of drug likeness (DL) of ≥0.18 and oral bioavailability (OB)
of ≥30%, which are the principal properties to determine the
drug ability of compounds.

2.2. Prediction of Drug Targets for SR. ,e human protein
targets of the active components of SR were obtained from
the traditional Chinese medicine integrated database
(TCMID), http://www.megabionet.org/tcmid/) and the
TCMSP database [21]. ,e TCMID database is a compre-
hensive database to offer a reference and build bridges

between traditional Chinese medicine and current medicine.
,e gene symbol names were further clarified with their
UniProt ID from the UniProtKB database (http://www.
uniprot.org), which is a unique protein database partially
revised by experts.

2.3. Candidate Targets of SR for HCC Treatment.
HCC-related genes were retrieved from Liverome (http://
liverome.kobic.re.kr/index.php) [22] and OncoDB.HCC
(http://oncodb.hcc.ibms.sinica.edu.tw) [23], which are two
liver cancer-related databases. ,e drug targets of the
candidate active components of SR were mapped to HCC-
related targets to obtain the candidate targets of SR for HCC
treatment. ,e network between the components and cor-
responding targets was constructed and visualized using the
Cytoscape software 3.7.2 (http://www.cytoscape.org/).

2.4. Protein-Protein Interaction Network Construction and
Analysis. ,e candidate targets of SR for HCC treatment
were imported into the STRING database (Version 11.0)
[24] (https://string-db.org/) to construct a protein-protein
interaction (PPI) network. ,e criteria settings were set as
follows: high confidence score >0.7 and max number of
interactors ≤60. ,en, the results were imported into the
Cytoscape software for visualization and further analysis.
Network Analyzer [25], a Cytoscape plugin, was used to
analyze the important network parameters of nodes and
edges for constructing the PPI network of core targets.

2.5. Gene Ontology and Pathway Enrichment Analysis.
,e gene ontology (GO) and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment were
analyzed using DAVID [26] 6.8 (http://david.abcc.ncifcrf.
gov). DAVID is an online functional annotation database to
understand the biological meaning of a large list of genes.
,e results of GO and KEGG pathway analyses were vi-
sualized with GraphPad Prism 7.0 and OmicShare platform
(https://www.omicshare.com/), respectively. ,e com-
pound-target-signaling pathway network was comprehen-
sively constructed using Cytoscape 3.7.2.

3. Results

3.1. Active Components of SR. A total of 143 components of
SR were retrieved from the TCMSP database; among them,
37 components conformed to the screening standards of the
DL index≥ 0.18 and OB≥ 30%. ,ese 37 components were
chosen as candidate active components, and the properties
of the active components are shown in Table 1.

3.2. Prediction of the Drug Targets of SR. A total of 797
protein targets corresponding to the 37 candidate active
components were obtained from the TCMID and TCMSP
databases. A total of 291 targets and 506 targets were derived
from the TCMSP and TCMID databases, respectively. ,e
detailed information is shown in Supplementary Table S1.
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Figure 1: Flowchart of designed analysis in Scutellariae Radix against hepatocellular carcinoma.

Table 1: Information of the candidate bioactive components of Scutellariae Radix.

Molecule ID Molecule name MW OB (%) DL Herb
MOL000073 Ent-epicatechin 290.29 48.96 0.24 Scutellariae Radix
MOL000173 Wogonin 284.28 30.68 0.23 Scutellariae Radix
MOL000228 (2R)-7-hydroxy-5-methoxy-2-phenylchroman-4-one 270.30 55.23 0.20 Scutellariae Radix
MOL000358 Beta-sitosterol 414.79 36.91 0.75 Scutellariae Radix
MOL000359 Sitosterol 414.79 36.91 0.75 Scutellariae Radix
MOL000449 Stigmasterol 412.77 43.83 0.76 Scutellariae Radix
MOL000525 Norwogonin 270.25 39.40 0.21 Scutellariae Radix
MOL000552 5,2′-Dihydroxy-6,7,8-trimethoxyflavone 344.34 31.71 0.35 Scutellariae Radix
MOL001458 Coptisine 320.34 30.67 0.86 Scutellariae Radix
MOL001490 bis[(2S)-2-ethylhexyl] benzene-1,2-dicarboxylate 390.62 43.59 0.35 Scutellariae Radix
MOL001506 Supraene 410.80 33.55 0.42 Scutellariae Radix
MOL001689 Acacetin 284.28 34.97 0.24 Scutellariae Radix
MOL002714 Baicalein 270.25 33.52 0.21 Scutellariae Radix
MOL002879 Diop 390.62 43.59 0.39 Scutellariae Radix
MOL002897 Epiberberine 336.39 43.09 0.78 Scutellariae Radix
MOL002908 5,8,2′-Trihydroxy-7-methoxyflavone 300.28 37.01 0.27 Scutellariae Radix
MOL002909 5,7,2,5-Tetrahydroxy-8,6-dimethoxyflavone 376.34 33.82 0.45 Scutellariae Radix
MOL002910 Carthamidin 288.27 41.15 0.24 Scutellariae Radix
MOL002911 2,6,2′,4′-Tetrahydroxy-6′-methoxychaleone 302.30 69.04 0.22 Scutellariae Radix
MOL002913 Dihydrobaicalin_qt 272.27 40.04 0.21 Scutellariae Radix
MOL002914 Eriodyctiol (flavanone) 288.27 41.35 0.24 Scutellariae Radix
MOL002915 Salvigenin 328.34 49.07 0.33 Scutellariae Radix
MOL002917 5,2′,6′-Trihydroxy-7,8-dimethoxyflavone 330.31 45.05 0.33 Scutellariae Radix
MOL002925 5,7,2′,6′-Tetrahydroxyflavone 286.25 37.01 0.24 Scutellariae Radix
MOL002926 Dihydrooroxylin A 286.30 38.72 0.23 Scutellariae Radix
MOL002927 Skullcapflavone II 374.37 69.51 0.44 Scutellariae Radix
MOL002928 Oroxylin A 284.28 41.37 0.23 Scutellariae Radix
MOL002932 Panicolin 314.31 76.26 0.29 Scutellariae Radix
MOL002933 5,7,4′-Trihydroxy-8-methoxyflavone 300.28 36.56 0.27 Scutellariae Radix
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After the overlaps were removed, 368 protein targets were
acquired for further analysis.

3.3. Candidate Targets of SR against HCC. A total of 566
HCC-related targets were obtained from OncoDB.HCC and
Liverome databases. ,e detailed information of HCC-re-
lated targets is displayed in Supplementary Table S2. ,e
targets of each candidate active component were mapped to
HCC-related targets. After aggregation, 50 targets of 29
active components were acquired as candidate targets of SR
for HCC treatment. ,e information of these 50 candidate
targets is presented in Supplementary Table S3. ,e com-
ponent-component target network of SR for HCC treatment
was established (Figure 2), and it comprised 79 nodes (50 for
candidate protein targets and 29 for potential active com-
ponents). Of the 29 active components, 3 components,
namely, wogonin (degree� 32), oroxylin A (degree� 12),
and baicalein (degree� 11), and multiple HCC targets
exerted high degree levels. Of the 50 protein targets, 3 that
were linked to more components showed high degree levels,
such as prostaglandin endoperoxide synthase 2 (PTGS2;
degree� 28), heat shock protein HSP 90-alpha (HSP90AA1;
degree� 25), and androgen receptor (AR; degree� 17).
,ese candidate targets with a high degree might play an
essential role in the treatment network of SR for HCC
treatment.

3.4. PPI Network Construction and Analysis. A PPI network
was built to predict and illuminate the relationship between
the candidate protein targets and other human proteins,
with 110 nodes (50 candidate protein targets and 60 other
human proteins that interacted closely with candidate
protein targets) and 738 edges (Figure 3). ,e degree of
nodes ranged from 1 to 53, and the mean degree was 13.906.
,e core targets (hub genes) were nodes whose degree was
≥27.812.,e PPI network of the core targets was constructed
(Figure 4). ,ese targets included candidate protein targets
such as cellular tumor antigen p53 (TP53), cyclin D1
(CCND1), myc protooncogene protein (MYC), vascular
endothelial growth factor A (VEGFA), catenin beta-1
(CTNNB1), transforming protein RhoA (RHOA), cyclin-A2
(CCNA2), AR, and HSP90AA1, and human other targets
including cyclin-dependent kinase 2 (CDK2), cadherin-1
(CDH1), cyclin-dependent kinase 1 (CDK1), E1A binding
protein P300 (EP300), and transcription factor AP-1 (JUN).

3.5. GOandKEGGEnrichmentAnalysis of Candidate Targets.
,e GO and KEGG pathways of the associated targets were
analyzed using the DAVID 6.8 platform to identify the
biological function and signaling pathways of 50 candidate
targets of SR for HCC treatment. A total of 131 biological
process (BP) terms, 23 cellular component (CC) terms, and
35 molecular function (MF) terms met the screening criteria
of count≥ 2 and P≤ 0.05. ,e detailed information of GO
terms is listed in Supplementary Table S4. ,e top 10 re-
markably enriched terms in BP, CC, and MF classification
are presented in Figure 5. In the light of false discovery rate
(FDR)< 0.05, 13 GO terms, including 5 BP, 6 CC, and 2MF
terms, were found, suggesting that SR might regulate fi-
broblast proliferation and nitric oxide biosynthetic process
via the serine-type endopeptidase activity and protein
complex binding in the cytosol, extracellular region, and
extracellular exosomes to produce the treatment action on
HCC. ,e KEGG pathway analysis of 50 candidate targets
was performed using the DAVID platform. A total of 59
pathways were distinctly enriched (P< 0.05), and the de-
tailed information is listed in Supplementary Table S4. With
the screening criteria of P< 0.01 and FDR< 0.01, top 15
remarkably enriched pathways were obtained (Figure 6).,e
following pathways were primarily enriched: biochemical
substances involved with cancer (proteoglycans and
microRNAs); pathways in cancer; human diseases associated
with cancer (colorectal cancer, bladder cancer, prostate
cancer, chronic myeloid leukemia, small cell lung cancer,
and melanoma); diseases linked to virus infection (hepatitis
B, viral carcinogenesis, and human. T-cell leukemia virus
type I infection); and signal transduction pathways (PI3K-
Akt, estrogen, and thyroid hormone signaling pathways).

3.6. Integrated Network Construction. Medicine plays a
pharmacological role through an integrative molecular in-
teraction network [27]. In our research, a compound-target-
pathway network of SR for HCC treatment was constructed
(Figure 7). ,is network was made up of 94 nodes (29 for
components, 50 for targets, and 15 for pathways). ,is in-
tegrative network indicated that the antitumor effect of SR on
HCCmight be attributed to the active components (wogonin,
oroxylin A, and baicalein) acting on candidate protein targets
(PTGS2, HSP90AA1, AR, TP53, GTPase KRas (KRAS),
phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic
subunit gamma isoform (PIK3CG), and CCND1) that reg-
ulate key pathways (pathways in cancer, proteoglycans or

Table 1: Continued.

Molecule ID Molecule name MW OB (%) DL Herb
MOL002934 Neobaicalein 374.37 104.34 0.44 Scutellariae Radix
MOL002937 Dihydrooroxylin 286.30 66.06 0.23 Scutellariae Radix
MOL008206 Moslosooflavone 298.31 44.09 0.25 Scutellariae Radix
MOL010415 11,13-Eicosadienoic acid, methyl ester 322.59 39.28 0.23 Scutellariae Radix
MOL012245 5,7,4′-Trihydroxy-6-methoxyflavanone 302.30 36.63 0.27 Scutellariae Radix
MOL012246 5,7,4′-Trihydroxy-8-methoxyflavanone 302.30 74.24 0.26 Scutellariae Radix
MOL012266 Rivularin 344.34 37.94 0.37 Scutellariae Radix
MOL002776 Baicalin 446.39 40.12 0.75 Scutellariae Radix
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microRNAs in cancer, hepatitis B, and PI3K-Akt signaling
pathway) to affect the survival of HCC cells.

4. Discussion

HCC is a disease with high mortality but without effective
drugs for most patients. Herbal medicine has been used to
treat human diseases for thousands of years and considered a
real treasure source for drug development. Network phar-
macology is a new discipline associated with pharmacy,
medical science, computer science, and bioinformatics. It
provides a platform related to the concept of systems bi-
ology, which is suitable for CHM research [28]. ,erefore,
new drug information should be developed through drug-
target-disease network analysis.

Herbal medicine is a complex system composed of
multiple compounds. ,e compounds with suitable phar-
macokinetic properties (OB≥ 30% and DL index≥ 0.18)

were thought to be potential bioactive compounds. ,e
targets of these potential bioactive components were
mapped with HCC targets to acquire the targets of SR for
HCC treatment. ,e compound-compound target network
was constructed to explore which components of SR act on
their corresponding targets to treat HCC. ,ese results
revealed that wogonin, oroxylin A, and baicalein were three
components with high degrees, and they were consistent
with previous findings [29], which suggested that wogonin,
oroxylin A, baicalein, and their glucuronide/sulfate-conju-
gated metabolites were the main active components in the
liver and tumors. In general, baicalein is one of the most
significant components of SR and has been developed into a
new drug to treat hepatitis in clinical settings. Reviews [30]
and network pharmacology [17] studies on the action of
baicalein against HCC have been reported. Baicalein de-
creased the expression of AKT, beta-catenin (CTNNB1), and
cyclin D1 (CCND1), leading to the cell cycle arrest [31] and
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inhibiting the proliferation of HCC cells by suppressing the
PI3K-Akt pathway [32]. By comparison, fewer studies on
oroxylin A and wogonin have been performed. Notably,
about 34%–63% of baicalin was methylated to oroxylin A in
various organs during absorption. Oroxylin A triggered the
apoptosis of HCC cell line HepG2 by inactivating AKT
signaling [33] or regulating glucose metabolism [34].
Wogonin can regulate the activation of hepatic stellate cells
and their apoptosis to attenuate liver fibrosis, which is an
important pathological process in the progression of liver
cancer [35]. Wogonin inhibits the cell cycle progression and
migration [36] and induces the apoptosis of HCC cells [37].
It is an attractive new anticancer and antihepatitis B virus
[38] drug candidate and is being developed with other drugs
as a targeted therapy for HCC [39, 40]. ,e major active
components, including wogonin, oroxylin A, and baicalein,
in SR can inhibit the proliferation of HCC cells by regulating
the PI3K-Akt signaling pathway [32, 33]. Oroxylin A and
wogonin have a synergistic effect when they are combined
with 5-fluorouracil in HCC cells [41–43]. PTGS2,
HSP90AA1, and AR were the top three high-degree targets.
PTGS2 can serve as one of the biomarkers on account of
aberrant methylation for the precise treatment of HCC [44].
Notably, ketoconazole is regarded as a potential therapeutic
choice for HCC treatment by acting on PTGS2 [45].
HSP90AA1 is a candidate diagnostic and prognostic bio-
marker for HCC [46]. HSP90 can promote glycolysis and
attenuate the apoptosis of HCC cells by affecting pyruvate
kinase M2 [47]. AR has been considered in relation to the
pathogenesis of HCC, which is a male-dominant cancer. A
high mRNA of AR is frequently involved with a better
survival of HCC [48].

,e compound-compound target network indicated the
potential direct protein targets. ,e PPI network revealed
the relationship between the candidate targets and other
human targets and suggested the change in potential bio-
logical functions through the PPI. With topology analysis,
the core targets, including candidate protein targets and
human other targets, were found. ,e degree of the nodes
suggested their significance and the relation with other
nodes. ,e core targets were the nodes whose degree was
more than twice the mean degree of the nodes in the PPI
network. ,ese targets included candidate protein targets
(TP53, CCND1, MYC, VEGFA, CTNNB1, RHOA, CCNA2,
AR, and HSP90AA1) and human other targets (CDK2,
CDH1, CDK1, EP300, and JUN). ,e mutation of TP53
(cellular tumor antigen p53) and CCND1 (G1/S-specific
cyclin-D1), serving as tumor suppressors associated with cell
cycle regulation, is regarded as drivers of HCC development
[49]. VEGFA, a growth factor active in angiogenesis and
endothelial cell growth, can increase endothelial cell pro-
liferation and reduce the apoptosis of blood vessels. Myc
protooncogene protein is a transcription factor that pro-
motes VEGFA production and subsequent angiogenesis.
,e transforming protein RhoA is a small GTPase that is
frequently upregulated in HCC linked to poor prognosis
[50]. CDK1 and CDK2 play an essential role in the

regulation of the cell cycle with multiple interphase cyclins.
CCNA2 interferes with the G1/S and G2/M phases of the cell
cycle by activating CDK1 and CDK2. EP300, acting as a
histone acetyltransferase, regulates transcription via chro-
matin remodeling and is related to the poor prognosis of
HCC [51]. JUN function as a transcription factor specifically
increased in HBV-related HCC [52]. In summary, these
targets are mostly involved with the cell proliferation, me-
tastasis, and survival of patients with HCC.

GO function annotation was performed to acquire the
biological information from BP, CC, and MF aspects. BP,
CC, andMF, respectively, display a series of events produced
by the orderly combination of molecules, cellular localiza-
tion, and molecular activity of the target proteins. In this
study, BP involved events such as responses to drugs or
estradiol, regulation of fibroblast proliferation, regulation of
nitric oxide biosynthesis, and mammary gland alveolus
development. CC indicated that these candidate targets were
mainly localized in the extracellular region and the protein
complex. MF showed a serine-type endopeptidase activity
and protein complex binding. ,e KEGG pathway is a set of
pathway maps depicting our understanding on molecular
interactions and relationship networks. ,e results of the
KEGG pathway enrichment showed that the candidate
targets were remarkably enriched on pathways in cancer,
hepatitis B, viral carcinogenesis, PI3K-Akt signaling path-
way, and so on. Twenty-two targets were enriched in
pathways in cancer (Figure 8), which contained AR signaling
pathway, PI3K-Akt signaling pathway, MAPK signaling
pathway, estrogen signaling pathway, p53 signaling pathway,
and cell cycle. Among these targets, TP53, KRAS, MYC, and
CCND1 were the vital targets existing in the crosstalk with
other signaling pathways that regulate the cycle, prolifera-
tion, and apoptosis of cancer cells. Moreover, the AR and
estrogen signaling pathways indicated the significant role of
hormones in HCC, as HCC occurs in menmore often than it
does in women. Hepatitis B is a predominant reason leading
to HCC, and the therapeutic effect of SR on HCC may be
associated with its antiviral effect. ,irteen potential targets
were enriched in the PI3K-Akt signaling pathway, which
plays a crucial role in the occurrence and development of
HCC [53].

Network pharmacology is an essential field providing a
vital approach for ascertaining novel targets for rational drug
discovery. Different from conventional drug discovery ap-
proaches which are commonly based on specific targeting of
single proteins, network pharmacology focuses on drug
targets concerning myriads of proteins involved in a disease.
Network pharmacology helps to build pragmatic network
models and predict drug targets on the basis of public da-
tabases. Additionally, it also facilitates the establishment of
drug-target-disease network models using bioinformatics
and high-throughput screening. ,e application of network
pharmacology for the design of potent anticancer drug
combinations has been demonstrated [54]. ,erefore, net-
work pharmacology approaches may revolutionize future
drug discovery and development.
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5. Conclusion

In the current study, network pharmacology was applied to
characterize the mechanism of SR for HCC treatment. In-
tegrated compound-target-pathway network analysis dis-
played the candidate active components (such as wogonin,
oroxylin A, and baicalein) exerted their antitumor effect by
regulating pathways in cancer, hepatitis B, viral carcino-
genesis, PI3K-Akt signaling, and so on. ,is holistic ap-
proach can provide novel insights into the mechanistic study
and therapeutic drug development of herbal medicine on
HCC.
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