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Acne vulgaris (AV) is a chronic skin disease involving inflammation of the pilosebaceous units. Propionibacterium acnes (P. acnes)
hypercolonization is one pathogenic factor for AV. P. acnes that triggers interleukin-1β (IL-1β) by activating the pyrin domain-
containing 3 protein (NLRP3) inflammasome of the NOD-like receptor family in human monocytes. Reactive oxygen species
(ROS) acts as a trigger for the production of IL-8 and activates theNLRP3 inflammasome. IL-8 promotes the metastasis and
multiplication of different cancerous cells, whereas keratinocyte proliferation and migration contribute to the progression of AV.
A steroidal saponin called polyphyllin I (PPI) that is extracted from Paris polyphylla’s rhizomes has anti-inflammatory properties.
.is study investigates the regulatory role of P. acnes in the secretion of IL-8 mediated by the CD36/NADPH oxidase 1 (NOX1)/
ROS/NLRP3/IL-1β pathway and the effects of PPI on the CD36/NOX1/ROS/NLRP3/IL-1β/IL-8 pathway and human keratinocyte
proliferation and migration. HaCaTcells were cultured and stimulated with 108 CFU/ml of P. acnes for 0, 6, 12, 18, 24, 30, and 36
hours. P. acnes induced IL-8 secretion from HaCaT cells via the CD36/NOX1/ROS/NLRP3/IL-1β pathway. PPI inhibited the
CD36/NLRP3/NOX1/ROS/IL-8/IL-1β pathway and HaCaT cell proliferation and migration. PPI alleviates P. acnes-induced
inflammatory responses and human keratinocyte proliferation and migration, implying a novel potential therapy for AV.

1. Introduction

.e skin is the primary stress perceiving organ; hence, it is
prone to inflammatory dermatoses [1, 2]. Acne vulgaris
(AV) is a chronic skin disease that involves the inflammation
of the pilosebaceous unit that affects adults as well as teens,
but it is not fatal. However, affected individuals may be
socially maladjusted due to severe acne and ongoing psy-
chological effects [3]. Conventional treatments include
hormonal therapy, oral antibiotics, and isotretinoin, but
these strategies have different side effects including chapped
lips and teratogenicity that limit isotretinoin medication [4].
In addition, isotretinoin is also known for causing

inflammatory bowels in adolescents and children [5], and it
is also reported to cause depression [6]. Drug resistance is
another major concern due to the long-term and extensive
use or overuse of antibacterial drugs [7]. .erefore, a more
effective and safer AV therapy targeted to all age groups is in
demand.

.is study is aimed at exploring the underlying mo-
lecular and cellular mechanisms regarding the pathogenesis
of AV. Previous studies have revealed that the hyper-
colonization of Propionibacterium acnes (P. acnes) is one
mechanism of AV pathogenesis [8, 9]. P. acnes is a rod-
shaped, anaerobic, Gram-positive pathogen mostly inhab-
itates the deep microaerophilic parts of healthy follicles,
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where it comes into contact with follicular keratinocytes and
cells in the proximal part of the sebaceous duct. Clinical
isolates of P. acnes (889) are capable of inducing primary
human epidermal keratinocyte growth in vitro [10]. In
addition, P. acnes mediates keratinocyte proliferation and
elevates inflammation in the region where it resides, making
it a key factor in causing inflammatory acne lesions and the
development of microcomedos in the initial acne stages
[11, 12].

.e NOD-like receptor family, pyrin domain-containing
3 protein (NLRP3) inflammasome contains a variety of
sensor molecules including NLRP3, the adaptor protein
apoptosis-associated speck-like protein containing a CARD
(ASC), and procaspase-1. NLRP3 has a pyrin domain (PYD)
and an ASC that harbors both PYD and CARD domains.
After its activation, NLRP3 interaction with ASC occurs
through PYD and CARD domains of procaspase-1 to form
the NLRP3-ASC-procaspase-1 complex, which is also re-
ferred to as the NLRP3 inflammasome [13]. By promoting
caspase-1 activation, the NLRP3 inflammasome enhances
the proteolytic maturation of the proinflammatory cytokine
interleukin-1β (IL-1β) to facilitate its attachment to the IL-1
receptor [14]. IL-1β further induces the expression of the
canonical IL-1 target gene interleukin-8 (IL-8) in human
macrophages [15] and human endometrial stromal cells [16].
P. acnes activates IL-8 secretion by interacting with toll-like
receptor 2 and toll-like receptor 4 (TLR-2 and TLR-4)
present on the surface of human epidermal keratinocytes,
contributing to the development of inflammatory lesions
[10, 17]. .erefore, the assembly of NLRP3 inflammasome
promotes caspase-1-mediated IL-1β secretion [18]. Previous
studies show that P. acnes activates NLRP3 inflammasome
and caspase-1 which promotes IL-1β secretion in human
monocytes and sebocytes [19, 20]. .is indicates the role of
P. acnes in activating the NLRP3 inflammasome-mediated
IL-8 secretion in human keratinocytes.

P. acnes activates NADPH oxidase 1 (NOX1) that
triggers the release of reactive oxygen species (ROS) and
secretion of IL-8 which is an essential proinflammatory
cytokine in the pathogenesis of AV, by recognizing the
thrombospondin receptor (CD36) on the surface of human
keratinocytes (HaCaT cells) [21]. CD36 and other scavenger
receptors bind to a range of microbial and endogenous
cargoes and mediate their internalization [22, 23]. Several of
these cargoes activate NLRP3 inflammasome. Based on this
fundamental data, CD36 is likely to activate NLRP3
inflammasome through NOX1 following P. acnes stimula-
tion in human keratinocytes.

ROS serves as a trigger that activates the NLRP3
inflammasome, facilitating the pathological processes. Ex-
ternal stimuli such as a bacterial infection may trigger the
activation of NLRP3 inflammasome [24, 25], causing the
release of cytokines and O−

2 effectors, which leads to chronic
sterile inflammation and tissue injury [26, 27]. If the ROS is
more than their scavengers during the local inflammatory
response, it results in the increasing intracellular and ex-
tracellular oxidative stress and IL-8 secretion [28, 29],
bringing about the progression of AV [30, 31]. Additionally,
IL-1β directly acts on keratinocytes to suppress the

expression of functional protein and nitric oxide availability
to further contribute to local hyperkeratosis [32, 33].

Paris polyphylla is a traditional medicinal herb widely
known in the Shennongjia National Nature Reserve of
China, which has a wide range of beneficial components that
act against immune disorders, infectious diseases, cardio-
vascular diseases, and cancer [34–38]. One of the medicinal
elements of P. polyphylla is polyphyllin I (PPI), which is a
steroidal saponin derived from the rhizomes of P. polyphylla,
and it is known for its anti-inflammatory properties. For
example, PPI reduces the severity of collagen-induced ar-
thritis by suppression of the nuclear factor kappa B (NF-κB)
pathway in macrophages that causes the suppression of the
intracellular inflammatory response [39]. Our previous
study also shows that PPI reduces the secretion of inflam-
matory cytokines, including tumor necrosis factor-α (TNF-
α), interleukin-6 (IL-6), and IL-8, and suppresses the ex-
pression of NF-κB, TLR-2, and the mitogen-activated
protein kinase (MAPK) signal transduction pathways in
HaCaT cells infected by P. acnes [40]. Furthermore, PPI has
been found to possess preclinical anticancer efficacy by
inhibiting proliferation and invasion of various cancer types,
including gastric cancer [41], prostate cancer [42], and
hepatocellular carcinoma [43]. However, the effect of PPI on
IL-8 secretion through modulating the NLRP3 inflamma-
some is unknown.

We, therefore, aimed to elucidate the ability of P. acnes to
regulate IL-8 secretion via the NLRP3/CD36/NOX1/ROS/
IL-1β pathway and the effects of PPI on the NLRP3/CD36/
NOX1/ROS/IL-8/IL-1β pathway and human keratinocyte
proliferation and migration. Our results will further explain
the role of P. acnes in the pathogenesis of AV and supply
basic in vitro experimental data for the application of PPI in
AV therapy.

2. Materials and Methods

2.1. Culturing and Treatment of Keratinocytes.
HaCaTcells (#CRL-1624; ATCC, USA; 5×105 cells/ml) were
cultured in Dulbecco’s minimal essential medium (DMEM;
#D0819, Sigma Aldrich, USA). Fetal bovine serum (10%) and
penicillin-streptomycin (100U/ml) were added to the me-
dium as supplements followed by 24 h of incubation in an
environment optimized at 37°C and 5% carbon dioxide
(CO2). .e culture was then substituted with a medium
containing no serum and the indicated concentration of PPI
(#HR138751; Hairui Chemical, China; 0.3, 0.6, and 0.9 μg/
ml). Dimethyl sulfoxide (DMSO; W387509, Merck, USA)
was utilized to dissolve PPI, and the terminal concentration
of DMSO was 0.1% in the study. .erefore, 0.1% DMSO was
used as the solvent control in the experiments. After 30min,
the cells were cocultured with heat-inactivated P. acnes
(ATCC No. 6919; #23-003-857; .ermo Fisher, USA;
1.0×108 CFU/ml) for 8 h.

2.2.Western Blot. Lysis of HaCaTcells was carried out using
radioimmunoprecipitation assay (RIPA) and lysis buffer
supplemented with phenylmethanesulfonyl fluoride (PMSF)
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after their isolation. .e mixture was incubated for 30
minutes followed by centrifugation. .e supernatant was
collected after centrifugation, and a BioRad protein assay
reagent was used to read the protein concentration. Lysates
were denatured by thorough mixing with 5x loading buffer.
An SDS-PAGE (10–12%) was run for the separation of the
samples that were then blotted onto Millipore Immobilon®-P Transfer Membranes supplied by Billerica, MA, USA. A
solution of Tris-buffer saline with 0.1% Tween 20 in 5%
nonfat milk was used as a blocking agent, and then, the
samples were incubated with primary antibodies and
horseradish peroxidase-conjugated goat-anti-mouse
(#ab205719; Abcam, USA) and goat-anti-rabbit (#ab6721;
Abcam) secondary antibodies. .e primary antibodies in-
cluded anti-CD36 (#18836-1-AP; Proteintech), anti-NOX1
(#ab55831; Abcam), anti-NOD-like receptor family, pyrin
domain containing-1 protein (NLRP1) (#ab98181; Abcam),
anti-NLRP3 (#ab214185; Abcam), anti-NOD-like receptor
family CARD domain containing 4 (NLRC4) (#06–1125;
Merck Millipore), antiabsent in melanoma 2 (AIM2)
(#ab186043; Abcam), anti-ASC (#AB3607; Merck Millipore),
antiactive caspase-1 (#24232; Cell Signaling Technology),
antiprocaspase-1 (#sc-56036; Santa Cruz Biotechnology,
USA), anticleaved IL-1β (#83186S; Cell Signaling Technol-
ogy), anti-pro-IL-1β (#ab9722; Abcam), and anti-GAPDH
antibodies (#ab9485; Abcam). All the antibodies were diluted
at a ratio of 1 :1000, except the anti-GAPDH antibody,
which was used at a dilution of 1 : 5000. .e results were
analyzed as fluorescent signals generated with the help of
SuperSignal® West Pico Chemiluminescent Substrate
(#34577; .ermo Fisher).

2.3. Enzyme-Linked Immunosorbent Assay (ELISA). A 96-
well plate was used to seed 5×103 HaCaT cells which were
then cultured at 37°C (5% CO2) according to the set pro-
tocols..e supernatant from cultures cells was collected, and
the concentration of IL-8 was calculated by the human IL-8
ELISA kit (#KHC0081; .ermo Fisher) following the
manufacturer’s protocols. .e absorbance reading was done
at a wavelength of 450 nm using a microplate photometer
supplied by .ermo Scientific (#VLBL00D1).

2.4. siRNA Transfection and Reagent Usage. Human CD36
siRNA, NOX1 siRNA, and NC siRNA were synthesized by
GenePharma (China) (Table 1). HaCaTcells were plated in a
dish of 6 cm in size (5×105 cells) a day before transfection
with the Lipofectamine 2000 transfection reagent
(#12566014; .ermo Fisher). Separate dilution of fifteen
microliters (10 nM) of siRNA and 20 μl Lipofectamine 2000
in 500 μl of DMEM were mixed after 5 minutes followed by
an incubation period of 20 minutes at 25°C. .en, the
mixture was poured into the cell culture dishes with 5ml of
DMEM. After 6 h, the medium was substituted by fresh
medium, and cells were harvested after24 hours of
transfection.

HaCaT cells were treated with diphenylene iodonium
(DPI, NOX1 inhibitor; #S8639; Selleck Chemicals, USA;
5 μM), N-acetyl-l-cysteine (NAC, ROS inhibitor; #S1623;

Selleck Chemicals; 600mM), anti-IL-1β antibody (#ACZ885,
canakinumab, Novartis; 100 nM), or IL-1 receptor antago-
nist protein (IL-RA; #280-RA; R&D Systems Inc., USA;
100 nM) for 24 h before the following experiments.

2.5. Detection of ROS Levels. Flow cytometry detected the
intracellular ROS accumulation using the cell-permeable
fluorogenic probe 2′, 7′-dichlorodihydrofluorescein diac-
etate (DCFH-DA; #S0033; Beyotime, China). .e superna-
tant was removed from cultured cells that were treated with
different reagents, following incubation in the dark in a fresh
medium and 10 μM DCFH-DA at 37°C for 1 h. Afterwards,
the media from the culture was removed, and cold PBS was
used to wash the cells. Next, after harvesting the cells, the
pallets were suspended in 500 μl of PBS. Sample analysis was
performed at 480 nm excitation wavelength and an emission
wavelength of 525 nm by a flow cytometer supplied by
FACScan.

2.6. EdU Proliferation Assay. To determine whether PPI
affects HaCaTcell proliferation, an EdU incorporation assay
was carried out. 48 hours after cell seeding, 10 μM EdU was
poured into the culture following incubation for some time
followed by fixation using 4% paraformaldehyde in PBS for
15 minutes. EdU labeling with an azide derivative of Apollo
643 was performed using a Cell-Light™ EdU Apollo 643 In
Vitro Imaging Kit (#C10310-2, RiboBio Co., Ltd., China). A
652 nm laser was used for the excitation of Apollo 643.
Microscopic images were obtained with a FluoView FV1000
confocal laser scanning microscope (Olympus, Japan).
ImageJ (National Institutes of Health, Bethesda, MD, USA)
was used to get composite images.

2.7. Transwell Migration Assay. For the migration assay,
HaCaTcells were exposed to P. acnes and PPI (0.9 μg/ml) or
the same volume of 0.1% DMSO, and then, 5×104 cells were
transferred into each transwell insert pore of about 8 μm
(#3422; Corning, USA). .e cells were then incubated for 24
hours followed by the removal of cells adhered to the upper
surface of the insert, while the ones that adhered to the lower
surface were stained with crystal violet (0.2%). Afterwards,
isopropanol was used to dissolve the migratory cells, and the
wavelength at 595 nm was considered to detect their optical
density.

Table 1: .e sequence of each siRNA used in the study.

Name of siRNA Sequence
CD36 siRNA1 5′-GCAAACAUGUUCAGAAGUC-3′
CD36 siRNA2 5′-CAUAGGACAUACUUGGAUA-3′
CD36 siRNA3 5′-GCAAGUUGUCCUCGAAGAA-3′
CD36 siRNA4 5′-GGAAAGUCACUGCGACAUG-3′
NOX1 siRNA1 5′-GGUUAGGGCUGAAUGUUUU-3′
NOX1 siRNA2 5′-CUGCCUACAUACAGCUAUU-3′
NOX1 siRNA3 5′-GACAAAUACUACUACACAA-3′
NOX1 siRNA4 5′-UGAGAAAGCAAUUGGAUCA-3′
NC siRNA 5′- UAACAAUGAGAGCACGGCTT-3′
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2.8. Statistical Analysis. Data interpretation was performed
by one-way analysis of variance, followed by the Bonferroni
post hoc test for comparing the mean values of multiple
groups using GraphPad Prism 6 (GraphPad Software, USA),
and p< 0.05 was considered a statistically significant dif-
ference. .e results were presented as the mean± SEM.

3. Results

3.1. P. acnes Induces NLRP3 Inflammasome Activation and
IL-8 Release in HaCaT Cells. .e levels of CD36, NOX1,
NLRP3, ASC, active caspase-1, and cleaved IL-1β protein
were elevated in HaCaT cells after stimulation by P. acnes,
while NLRP1, NLRC4, and AIM2 protein level showed no
change (Figures 1(a)–1(g)). In addition, P. acnes also en-
hanced the secretion of IL-8 from HaCaTcells (Figure 1(h)).
.e results indicate that P. acnes induces the activation of
NLRP3 inflammasome in HaCaT cells.

3.2. P. acnes Activates the CD36/NOX1/ROS/NLRP3/IL-1β/
IL-8 Pathway in HaCaT Cell Line. To choose the optimal
siRNA for CD36 or NOX1 knockdown, transfection of
HaCaT cells was carried out by four types of CD36 siRNAs,
NOX1 siRNAs, or NC siRNA each, showing that CD36
siRNA2 and NOX1 siRNA2 were the most efficient (Sup-
plementary Figures 1 and 2). CD36 siRNA decreased the
NOX1 protein level, while NOX1 siRNA did not affect the
protein levels of CD36. NLRP3, ASC, and active caspase-1,
and cleaved IL-1β protein levels were downregulated by
CD36 siRNA, NOX1 siRNA, DPI, and NAC (Figures 2(a)–
2(e)). Similarly, IL-8 secretion was also inhibited by CD36
siRNA, NOX1 siRNA, DPI, NAC, anti-IL-1β Ab, and IL-RA
(Figure 2(f)); this shows that the IL-8 secretion activates the
NLRP3 inflammasome and triggers the production of IL-1β.
Interestingly, CD36 siRNA, NOX1 siRNA, DPI, and NAC
hindered ROS production (Figures 2(g) and 2(h)), indicating
that oxidative stress promotes the activation of NLRP3
inflammasome in HaCaTcell line. .e results suggested that
P. acnes activated the pathways of NLRP3/CD36/IL-1β/
NOX1/ROS/IL-8 in HaCaT cells.

3.3. PPI Inhibits the P. acnes-Induced CD36/NOX1/ROS/
NLRP3/IL-8/IL-1β Pathway in HaCaT Cells. Previous re-
search reports the inhibitive properties of PPI in the
P. acnes-induced HaCaTcell inflammatory response, such as
elevated TLR2 levels and expression of inflammatory cy-
tokines such as TNF-α, IL-6, and IL-8 [40]..erefore, in this
study, we investigated the ability of PPI to influence the
P. acnes-induced CD36/NOX1/ROS/NLRP3/IL-1β/IL-8
pathway. CD36, NOX1, NLRP3, ASC, active caspase-1, and
cleaved IL-1β protein levels were downregulated by different
concentrations of PPI (Figures 3(a)–3(e)). PPI also down-
regulated ROS production in HaCaT cells (Figures 3(g) and
3(h)) and inhibited IL-8 secretion (Figure 3(f)). .e above
results suggested that PPI inhibited the P. acnes-induced
CD36/NOX1/ROS/NLRP3/IL-1β/IL-8 pathway in
HaCaT cells.

3.4. PPI Inhibits HaCaT Cell Proliferation and Migration.
Keratinocyte proliferation and migration contribute to the
progression of AV [44, 45]. Moreover, PPI exhibits inhib-
itory effects on human ovarian cancer HO-8910PM cell
growth, promotes apoptosis, and inhibits cell migration [46].
.erefore, the PPI effect of HaCaT cell proliferation and
migration was evaluated. Consistent with its previously
reported roles, PPI inhibited HaCaT cell proliferation
(Figures 4(a) and 4(c)) andmigration (Figures 4(b) and 4(d))
compared to those of the P. acne’s group..e data suggested
that PPI might alleviate AV by downregulating keratinocyte
proliferation and migration. .e mechanism diagram
showed that PPI inhibited P. acnes-induced CD36/NOX1/
ROS/NLRP3/IL-1β/IL-8 pathway and HaCaT cell prolifer-
ation and migration (Figure 5).

4. Discussion

Human keratinocytes are cultured frequently for in vitro
studies of and understanding of their inflammatory re-
sponses and immunological role. However, due to variable
results from different donors, short culture time and passage
variations may cause difficulty in interpreting the collected
data. HaCaTcells are a sustainable cell line of spontaneously
immortalized human keratinocytes. .e previous study
highlights the influence of cell density, different concen-
trations of Ca2+ ions in the medium, and the presence of
serum at different levels on the secretion of proinflammatory
mediators by these cells. Moreover, HaCaT cells survived in
the low Ca2+ ionic medium and showed 80% resemblance to
normal keratinocytes in their cytokine secretion suggesting
that HaCaT cells are useful anti-inflammatory therapeutic
agents for the investigation of dermatological ailments [47].
Additionally, HaCaT has been widely used for the research
of acne vulgaris, such as the molecular mechanism study
[48, 49], and potential drug screen [50, 51]. .erefore,
HaCaT cells were used for this research.

Herein, we found that P. acnes activated the NLRP3
inflammasome in human keratinocytes. .e NLRP3
inflammasome is a molecular platform that assembles in
response to various stimuli, including excessive ROS levels,
and has been extensively studied [52, 53]. P. acnes can
produce ROS during the infection process [54, 55]. .ere-
fore, whether P. acnes activates the NLRP3 inflammasome in
human keratinocytes by upregulating intracellular ROS
needs further investigation.

.e combined effect of tumor necrosis factor-α and
interleukin-17 enhances ROS release and improves NOX1
activity which in turn triggers the expression of lipocalin-2
(LCN-2) by controlling the expression of a major LCN-2
inducer called IkappaBzeta (IκBζ). In addition, mice models
that were deficient in NOX1 had lowered levels of LCN-2
production and colon damage during TNBS-induced colitis
[3]. Furthermore, UVA activates NOX1-based NADPH
oxidase to release ROS that further stimulates the synthesis
of prostaglandin E2. Hence, NOX1 presents as an appro-
priate target for the components that are designed to protect
from UVA-induced skin injury [56]. Moreover, the NOX1
gene is knocked down using RNA interference for the
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confirmation of NOX being the major source of O•−
2 in

keratinocytes infected by P. acnes. .e results showed that
NOX1A-siRNA reduced significantly the production of O•−

2
P. acnes-transfected keratinocytes, with almost 100%

inhibition rate after stimulation for 3 hours [21]. .erefore,
previous research as well as our currents experiments
support that NOX1 is the main source of P. acnes-induced
oxidative stress in HaCaT cells.
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Figure 1: P. acnes inducing IL-8 release and the activation of NLRP3 inflammasome in HaCaTcells. (a) .e CD36, NOX1, NLRP1, NLRP3,
NLRC4, AIM2, ASC, active caspase-1, and cleaved IL-1β protein levels in HaCaT cells following 108 CFU/ml P. acnes treatment detection
done by Western blot. GAPDH was used as the loading control. CD36, NOX1 (b), NLRP1, NLRP3 (c), NLRC4, AIM2 (d), and ASC
(e) relative protein levels compared to the GAPDH level, active caspase-1/pro-caspase-1, and cleaved IL-1β/pro-IL-1β are calculated by
ImageJ. (h) ELISA was performed for the analysis of IL-8 protein levels in the culture supernatant of HaCaT cells. n� 5/each group.
∗P< 0.05 and ∗∗p< 0.01 vs. 0 h group.
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Figure 2: P. acnes inducing the CD36/NOX1/ROS/NLRP3/IL-1β/IL-8 pathway in HaCaTcells. (a) .e CD36, NOX1, NLRP3, ASC, active
caspase-1, and cleaved IL-1β protein levels in HaCaTcells following 108 CFU/ml P. acnes treatment with CD36 siRNA, NOX1 siRNA, DPI,
NAC, NC siRNA, or 01% DMSO exposure detected byWestern blot. GAPDH is used as the loading control. CD36, NOX1 (b), NLRP3, and
ASC (c) relative protein levels compared to GAPDH expression, active caspase-1/procaspase-1 (d), and cleaved IL-1β/pro-IL-1β
(e) calculated by ImageJ. (f ) .e IL-8 protein levels in the culture supernatant of HaCaT cells determined by ELISA. (g) Cytofluorometric
profiles representing the distribution of HaCaT cells after staining with DCFH-DA. (h) ROS positive ratio calculated by cytometry flow.
n� 5/each group. ∗∗P< 0.01 vs. control group. #P< 0.05 vs. P. acnes treatment group.
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Figure 3: PPI inhibiting the P. acnes-induced CD36/NOX1/ROS/NLRP3/IL-8 pathway in HaCaT cells. .e CD36, NOX1, NLRP3, ASC,
active caspase-1, and cleaved IL-1β protein levels in HaCaT cells following 108 CFU/ml P. acnes treatment with PPI at different con-
centrations (0.3, 0.6, and 0.9 μg/ml) or 0.1%DMSO exposure detected byWestern blot. GAPDH is used as the loading control. CD36, NOX1
(b), NLRP3, and ASC (c) relative protein levels compared to GAPDH expression, active caspase-1/procaspase-1 (d), and cleaved IL-1β/pro-
IL-1β (e) calculated by ImageJ. (f ) .e IL-8 protein levels in the culture supernatant of HaCaT cells determined by ELISA. (g) Cyto-
fluorometric profiles representing the distribution of HaCaT cells after staining with DCFH-DA. (h) ROS positive ratio calculated by
cytometry flow. n� 5/each group. ∗∗P< 0.01 vs. control group. #P< 0.05 vs. P. acnes treatment group.
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ROS triggers not only the NLRP3 inflammasome but
also the downstream effector molecule of this inflamma-
some. It is clearly understood that the ROS initiated ox-
idative stress and is directly or indirectly responsible for
causing AV [31, 57]. .us, antioxidant therapies have been
applied for AV and have shown the expected efficacy
[58, 59]. For example, topical or oral zinc, the vitamin C
precursor sodium ascorbyl phosphate, and nicotinamide
were reported to be effective against acne in multiple
studies [60, 61]. Whether PPI plays an antioxidant role in
human keratinocytes must be elucidated in future
research.

In the previous study, researchers have identified that
caspase-1, ASC, and NLRP3 knockdown or knockout in-
hibits P. acnes-induced IL-1β production in acne [33]. IL-1β
drives inflammatory responses in Propionibacterium acnes

both in vitro and in vivo. P. acnes activates the NLRP3
inflammasome of monocyte-macrophages and promotes the
processing and secretion of IL-1β. Additionally, ultraviolet
irradiation stimulates the NLRP3 inflammasome activation
in keratinocytes [62]. .erefore, we did not perform similar
experiments to confirm that P. acnes induces the NLRP3/
ASC/caspase-1/IL-1β pathway in keratinocytes. Upon the
stimulation of pattern recognition receptors, keratinocytes
secrete IL-1β that causes rapid initiation of the immune
response, leading to the expression of other cytokines, in-
cluding IL-8 [63]. In the present study, we also found that IL-
1β promoted IL-8 secretion by HaCaT cells following
P. acnes treatment.

In summary, P. acnes induced the production of ROS,
activation of the NLRP3 inflammasome, and IL-8 release
in HaCaT keratinocytes, while PPI inhibited ROS
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Figure 4: PPI inhibiting proliferation and migration of HaCaTcells. (a) .e proliferation of HaCaTcells following P. acnes treatment with
PPI (0.9 μg/ml) or 01% DMSO exposure detected by the EdU incorporation assay. .e red color represents EdU positive, and the blue color
represents DAPI (nucleus)..e average ratio of EdU positive HaCaTcells is calculated by ImageJ. (b).emigration of HaCaTcells following
P. acnes treatment with PPI (0.9 μg/ml) or 0.1% DMSO exposure detected by the transwell assay. (d) .e average number of migrated
HaCaT cells calculated by ImageJ. n� 5/each group. ∗∗P< 0.01 vs. control group. ##P< 0.01 vs. P. acnes treatment group.
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production, NLRP3 activation, IL-8 secretion, and HaCaT
keratinocyte proliferation and migration, therefore sug-
gesting a potential treatment strategy for AV. Certainly,
there are some limitations of our study that were worthy of
being addressed in future studies; for example, the detailed
mechanisms of NLRP3 inflammasome activation and
human AV lesion observation should be studied in the
future.
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Vénéréologie, vol. 139, no. 2, pp. 118–123, 2012.

[7] J. H. Kim, D. Yu, S. H. Eom et al., “Synergistic antibacterial
effects of chitosan-caffeic acid conjugate against antibiotic-
resistant acne-related bacteria,” Marine Drugs, vol. 15, 2017.

[8] T. Nakatsuji, M. C. Kao, J.-Y. Fang et al., “Antimicrobial
property of lauric acid against propionibacterium acnes: its
therapeutic potential for inflammatory acne vulgaris,” Journal
of Investigative Dermatology, vol. 129, no. 10, pp. 2480–2488,
2009.

[9] A. C. Jahns, B. Lundskog, R. Ganceviciene et al., “An increased
incidence of propionibacterium acnes biofilms in acne vul-
garis: a case-control study,” British Journal of Dermatology,
vol. 167, no. 1, pp. 50–58, 2012.

[10] I. Nagy, A. Pivarcsi, A. Koreck, M. Széll, E. Urbán, and
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