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Objective. Oxidative stress-mediated inflammatory events involve in the progress of several diseases such as asthma, cancers, and
multiple sclerosis. Auraptene (AU), a natural prenyloxycoumarin, possesses numerous pharmacological activities. Here, the anti-
inflammatory effects of AU were investigated in lipoteichoic acid- (LTA-) induced macrophage cells (RAW 264.7).Methods. *e
expression of cyclooxygenase (COX-2), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and inducible nitric oxide synthase
(iNOS) and the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, c-Jun N-terminal kinase (JNK),
heme oxygenase (HO-1), p65, and IκBα were all identified by western blotting assay. *e level of nitric oxide (NO) was measured
by spectrometer analysis. *e nuclear translocation of p65 nuclear factor kappa B (NF-κB) was assessed by the confocal mi-
croscopic staining method. Native polyacrylamide gel electrophoresis was performed to perceive the activity of antioxidant
enzyme catalase (CAT). Results. AU expressively reduced NO production and COX-2, TNF-α, IL-1 β, and iNOS expression in
LTA-stimulated cells. AU at higher concentration (10 µM) inhibited ERK and JNK, but not p38 phosphorylation induced by LTA.
Moreover, AU blocked IκB and p65 phosphorylation, and p65 nuclear translocation. However, AU pretreatment was not effective
on antioxidant HO-1 expression, CAT activity, and reduced glutathione (GSH, a nonenzymatic antioxidant), in LTA-induced
RAW 264.7 cells. Conclusion. *e findings of this study advocate that AU shows anti-inflammatory effects via reducing NF-κB/
MAPKs signaling pathways.

1. Introduction

Various chemicals and pathogens considered as harmful
stimuli produce inflammation, which is a protective re-
sponse of our body. Inflammation can be classified as

acute and chronic, which induces pain and tissue injuries.
Rapid onset and short duration of action can be noticed in
the acute form, which is facilitated by the excretion of
numerous cytokines including interleukin-1 (IL-1), IL-6,
IL-11, IL-8, and tumor necrosis factor-alpha (TNF-α)
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[1, 2]. Nevertheless, in chronic inflammation, persistence
of the inflammatory reactions could induce the migration
of lymphocytes and macrophages to the damaged tissues
[3]. Chronic inflammatory responses have been associated
with the progression of various diseases such as asthma,
arthritis, and neurodegenerative disorders [4]. Studies
have established the involvement of several mediators
including prostaglandin E2 (PGE2) in inflammatory
events. Various symptoms including bone metabolism,
wound healing, kidney function, blood vessel, and the
immune responses have been associated with PGE2 se-
cretion [5]. Cyclooxygenase (COX-2) protein can be
expressed in response to physical, chemical, and biological
stimulation [6]. *e production of PGE2 can be aug-
mented by COX-2, which denotes a central step in the
events of inflammation.

Oxidative stress is known to be induced by elevated
reactive oxygen species (ROS) and nitric oxide (NO) or
reduced antioxidant enzymes catalase (CAT) and super-
oxide dismutase (SOD) and nonenzymatic glutathione
(GSH) [7, 8]. Studies have indicated that oxidative stress
plays a major role in the progress of inflammatory diseases
[9]. *e major component of Gram-positive bacteria,
lipoteichoic acid (LTA), induces pathogenesis of sepsis [10]
and lung injury by producing inflammatory reactions [11].
*erefore, examining the mechanisms that control LTA-
stimulated cell activation is important for the analysis and
treatment of lung inflammatory diseases. *is bacterial
component stimulates the release of IL-1β, IL-6, and TNF-α
[12]. LTA induces TNF-α and IL-6 expressions by inducing
the phosphorylation of ERK1/2 in macrophages, and it also
activates nuclear translocation of nuclear factor- (NF-) κB
from the cytoplasm [13]. It has been proposed that various
plant-based natural components have reported to have anti-
inflammatory effects through suppressing inflammation-
associated mediators and enhancing antioxidant defense
molecules.

Auraptene, a geranyloxyl moiety of C-7 (7-ger-
anyloxycoumarin), is a promising and most rich natural
prenyloxycoumarin compound [14]. Plants of the Ruta-
ceae family are the highest source of auraptene, and it is
also the most general component of citrus fruits. Hence,
citrus species are the major natural source of auraptene
[14]. Several exciting pharmacological activities have been
reported for this bioactive phytochemical such as anti-
oxidant [15], anti-inflammatory [16], antimicrobial [17],
antigenotoxic [18], neuroprotective [19], and immuno-
modulatory properties [20]. Murakami et al. [16] had well
discussed the effect of auraptene in inflammation-medi-
ated carcinogenesis. A study specified that dietary sup-
plementation of auraptene in mice diminishes pulmonary
metastasis of B16BL6 melanoma cells and prevents the
growth of metastatic tumors in the lungs via inducing
apoptosis [21]. In addition, auraptene showed promising
effects of wound healing through inhibiting the secretion
of inflammatory mediators in vitro, including IL-6 and IL-
8 [22]. Hence, this study aimed to assess the anti-in-
flammatory mechanism of auraptene against LTA-stim-
ulation in RAW 264.7 cells.

2. Materials and Methods

2.1. Materials. RAW 264.7 cells were obtained from the
American Type Culture Collection (ATCC, Manassas, VA,
USA, TIB-71). Auraptene (AU, >98%, Figure 1(a)) was
purchased from ChemFaces Biochem, Wuhan, Hubei,
China. Sigma (St Louis, MO, USA) supplied potassium
ferricyanide, ferric chloride, and dimethyl sulfoxide
(DMSO). Santa Cruz Biotechnology (Dallas, TX, USA)
supplied anti-iNOS and COX-2 polyclonal antibodies (pAb).
We purchased antibodies against TNF-α, phospho-p38
MAPK *r180/Tyr182, phospho-c-JNK (*r183/Tyr185),
phospho-p44/p42 ERK (*r202/Tyr204), phospho-IκBα
Ser32/36, and phospho-NF-κB p65 (Ser536) pAbs from Cell
Signaling (Beverly, MA, USA). Anti-IL-1β and anti-HO-1
pAbs were purchased from BioVision (Milpitas, CA, USA)
and Enzo (Farmingdale, New York, USA), respectively. *e
antibody against α-tubulin was purchased fromNeoMarkers
(Fremont, CA, USA). AU was dissolved in 0.1% DMSO.

2.2. Cell Viability andMorphology of RAWCells. RAW 264.7
cells were cultivated in Dulbecco’s Modified Eagle’s Medium
(DMEM) at 37°C under 5% CO2 and 95% air. At a con-
centration of 1× 105 cells/well, they were pretreated with AU
(5–20 μM) for 24 h. *e 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl-2H-tetrazolium bromide (MTT) assay was used to
measure cell viability in which 5mg/mL of MTT working
solution was added to the culture medium.*e formation of
crystals was digested by suing 300 µl of DMSO. *e formula
of absorbance of treated cells/absorbance of control
cells× 100% is used to measure the cell viability index.

2.3. Measurement of NO Production. To estimate the level of
NO, AU at 5 and 10 μM was added to cells with or without
LTA (5 μg/ml) for 24 h in the medium. Briefly, a 100 µl equal
volume of culture suspension and Griess reagent was mixed
and incubated for 10min. NO levels were estimated by
quantifying nitrite levels by an MRX absorbance reader with
the optical density at 550 nm.

2.4. Immunoblotting Assay. *e equal amount (50 µg) of
proteins from 6×105 cells were run on 12% sodium dodecyl
sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)
gels. *e separated proteins were transferred to poly-
vinylidene difluoride (PVDF) membranes and then blocked
using 5% skim milk for 40min. After blocking, the mem-
brane was titrated with different primary antibodies of
targeted proteins for 2 h and consequently incubated with
anti-rabbit IgG or sheep anti-mouse IgG for 1 h. *e in-
tensity of protein bands was measured by using the Biolight
Windows Application, V2000.01 (Bio-Profil, Vilber Lour-
mat, France) software.

2.5. Confocal Microscopy Assay. Cells were seeded at
5 ×104/well, cultured on cover slips, and treated by AU
(10 μM) for 30min and then triggered by LTA (5 μg/ml)
for 1 h. Coverslips were successively fixed with 4%
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Figure 1: Chemical structure of auraptene (AU) and the effects of AU on morphology and cell viability and on LTA-induced NO
production and iNOS expression in RAW 264.7 cells. (a) Chemical structure of AU. (b), (c) Cells were pretreated with AU (5, 10, or 20 μM)
for 24. Cell viabilities were determined by the MTT assay. Scale bar� 25 μm. (d), (e) Cells were untreated or pretreated with AU (5 and
10 μM) for 30min prior to stimulation with LTA (5 μg/ml) for 24 h. Control cells were not treated with LTA or AU. NO was measured using
the Griess reaction assay. iNOS expression was detected using western blotting assay. *e values shown are the means± S.E.M. of four
independent experiments. ∗∗∗P< 0.001 vs. the control cells; ##P< 0.01 vs. LTA-stimulated cells.
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paraformaldehyde for 10min at 37°C, double washed
using PBS, incubated with 0.1% Triton X-100 for 10min,
and then, blocked with 5% BSA for 1 h. Besides, the
primary p65 antibody was added over the coverslips at 4°C
overnight, and then, secondary goat anti-rabbit IgG an-
tibody was incubated for 1 h at 37°C. 4,6-Diamidino-2
phenylindole (DAPI) was used to stain nuclei in cells. *e
location of nuclear translocation of p65 was spotted by
using the Leica TCS SP5 confocal spectral microscope
imaging system (Mannheim, Germany).

2.6. Detection of Antioxidant Enzyme Catalase (CAT).
According to the method defined by Woodbury et al. [23], a
native polyacrylamide gel electrophoresis (NATIVE-PAGE)
was run to spot the relative banding patterns of antioxidant
enzyme catalase (CAT). To this analysis, unlike normal SDS-
PAGE, the running buffers and protein samples did not heat
and omit SDS.*e equal amounts of 50 μg proteins were run
in 8% PAGE.

2.7. Statistical Analysis. *e results are presented as
mean± standard error (S. E. M). *e statistical difference
among the groups was determined using one-way analysis of
variance (ANOVA). Statistical alterations were detected
significant. *e P value of the Student–Newman–Keuls test
was regarded as P< 0.05.

3. Results

3.1. AU Did Not Affect the Viability and Morphology of RAW
264.7 Cells. Cell morphology and viability were studied to
evaluate the toxic effect of AU in RAW 264.7 cells. Among
the tested concentrations of 5, 10, and 20 μM AU in RAW
cells for 24 h, 5 and 10 μM did not affect cell morphology as
well as viability (Figures 1(b) and 1(c)), respectively.
However, AU at 20 μM significantly affected the morphology
and viability of RAW cells. *us, AU at feasible concen-
trations of 5 and 10 μM were used for the subsequent
investigation.

3.2. LTA-InducedNOProduction and iNOSWere Inhibited by
AU. Griess reaction was applied to measure the level of NO
production in AU pretreated LTA-induced RAW 264.7 cells.
Systemic inflammatory events have been reported to induce
a proinflammatory mediator NO [24]. A rate-limiting en-
zyme, inducible nitric oxide synthase (iNOS), regulates the
production of NO [25]. To examine if AU inhibits NO
production via the modulation of iNOS expression, the
expression of iNOS was detected as shown in Figure 1(e).
Figures 1(d) and 1(e) show that, at a high concentration of
10 μM, AU significantly inhibited the LTA-induced pro-
duction of NO and its enzyme iNOS expression (control:
1± 0, DMSO: 2.5± 0.2, 5 μM: 2.2± 0.2, 10 μM: 1.5± 0.2) in
RAW 264.7 cells. *is result apprehends that the inhibition
of iNOS expression by AUmay be involved in the inhibition
of LTA-induced NO production.

3.3. AU Inhibited LTA-Induced IL-1β, TNF-α, and COX-2
Expressions. LTA stimulated the levels of COX-2 (2.1± 0.3,
P< 0.01), IL-1β (3.1± 0.3, P< 0.001), and TNF-α (3.3± 0.4,
P< 0.001) dramatically compared to the nonstimulated
control RAW cells (Figures 2(a)–2(d)). In contrast, AU at 5
and 10 μM distinctly alleviated COX-2 (5 μM: 1.5± 0.2,
10 μM: 1.1± 0.2), IL-1β (5 μM: 1.9± 0.3, 10 μM: 0.7± 0.1),
and TNF-α (5 μM: 1.7± 0.3, 10 μM: 0.9± 0.2) induced by
LTA. Moreover, AU more prominently inhibited IL-1β and
TNF-α (Figures 2(c) and 2(d)).

3.4. AU Inhibits ERK1/2 and JNK1/2, But Not p38 MAPK
Phosphorylation. We examined the effect of AU on LTA-
induced mitogen-activated protein kinases (MAPKs), since
several studies have shown that these molecules actively
involve on inflammation-related events. Figure 3 shows the
elevated phosphorylation of ERK1/2 (3.1± 0.5), JNK1/2
(3.2± 0.3), and p38 MAPK (3.2± 0.3) in LTA-induced RAW
cells compared to control cells. However, AU at a higher
concentration of 10 µM significantly diminished the LTA-
induced phosphorylation of JNK1/2 (1.9± 0.2), and it
concentration-dependently inhibited the ERK1/2 phos-
phorylation (5 μM: 1.8± 0.4, 10 μM: 1.4± 0.2); however, it is
not effective on p38 (5 μM: 2.9± 0.4, 10 μM: 2.8± 0.2). *ese
outcomes designated that AU reveals its inhibitory effects in
LTA-induced inflammatory events in RAW 264.7 cells via
suppressing ERK1/2 and JNK1/2 signaling cascade.

3.5. LTA-Induced NF-κB Signaling PathwayWas Inhibited by
AU. NF-κB, a major transcription factor, is constantly in-
ducing proinflammatory mediators and cytokines. *is
transcription factor translocates to the nucleus once it ac-
tivates and binds with target DNA and then controls the
activation of numerous inflammatory cytokines [25]. Here,
the inhibitory effect of AU on NF-κB signaling pathways was
examined by investigating the phosphorylations of IκBα and
p65 and also the nuclear translocation of p65 in LTA-in-
duced RAW cells.*e results showed that AU reduced LTA-
induced IκBα (DMSO: 4.0± 0.7, 5 μM: 2.5± 0.5, and 10 μM:
1.4± 0.3) and p65 phosphorylation (DMSO: 3.5± 0.3, 5 μM:
2.7± 0.2, and 10 μM: 1.9± 0.2) (Figures 4(a) and 4(b)) and
withdrew the nuclear translocation of p65 (Figure 4(c)).
*ese results demonstrate that AU’s anti-inflammatory ef-
fect in LTA-induced cells may probably be via inhibiting the
NF-κB signaling pathway.

3.6. AU Enhances Antioxidant Defense Molecules.
Oxidative stress occurs by the elevated levels of reactive
oxygen species (ROS) and NO or reduced levels of anti-
oxidant defense molecules, such as reduced glutathione
(GSH), catalase (CAT), and superoxide dismutase (SOD)
[7]. Numerous studies have established that oxidative stress
could induce the progress of inflammatory diseases [26].
LTA stimulation in RAW cells has been demonstrated to
decrease in the expression of HO-1 (1.7± 0.3), antioxidant
enzyme catalase, and the nonenzymatic GSH (Figures 5(a)–
5(c)). AU pretreatment was not effective on LTA-stimulated
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reduction of HO-1 (5 μM: 2.4± 0.4, 10 μM: 2.3± 0.3), CAT,
and GSH in RAW cells. *ese results indicate that the
antioxidant defense systems could not play a role in AU-
mediated anti-inflammatory effects in LTA-stimulated
RAW cells.

4. Discussion

Auraptene (AU), a natural prenyloxycoumarin, is mostly
present in citrus fruits. Auraptene (AU) possesses numerous
pharmacological properties such as anticancer, antibacterial,
antioxidant, and antiinflammatory [27]. Here, we found that
auraptene (5 and 10 μM) did not display cytotoxicity in both
control and LTA-stimulated RAW cells. Hence, the ideal
concentrations of 5 and 10 μMof auraptene were used in this

study. A study exposed that auraptene at concentrations of
5–40 μM had no cytotoxicity on murine lymphocytes [28].
Together, as revealed in the present study, anti-inflammatory
and antioxidative effects of auraptene are not through its
cytotoxicity. Moreover, this study found that anti-inflam-
matory effects of AU was facilitated via preventing the
production of NO and its enzyme iNOS expression. Aur-
aptene also inhibited the LTA-induced protein expression of
IL-1β and TNF-α by inhibiting themitogen activated protein
kinases (MAPKs)/NF-κB pathways.

As it is established, proinflammatory cytokines and
mediators such as NO, IL-1β, IL-6, and TNF-α play a major
role in the inflammatory process. Chronic inflammation has
been reported to cause several diseases such as cancers,
arthritis, and cardiovascular diseases [29]. A recent study
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Figure 2: Effects of AU on the LTA-induced expression COX-2, IL-1β, and TNF-α in RAW264.7macrophages. (a)–(d) Cells were untreated
or pretreated with AU (5 and 10 μM) for 30min and then stimulated with LTA (5 μg/ml) for 24 h. COX-2, IL-1β, and TNF-αwere detected as
described in Section 2. *e values shown are the means± S.E.M. of four independent experiments. ∗∗P< 0.01 and ∗∗∗P< 0.001 vs. the
control cells; #P< 0.05, ##P< 0.01, and ###P< 0.001 vs. LTA-stimulated cells.
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specified that AU at 10–90 μM reduced the levels of IL-6 and
TNF-α in phytohemagglutinin- (PHA-) stimulated
human lymphocytes [30]. A previous study from these
authors has also established that AU alleviates IL-4, IL-10,
and interferon (IFN-c) levels [29]. NO plays a role in the
pathogenesis of several inflammatory disorders, and its
production in activated macrophages via the rate-limiting
enzyme iNOS induces several acute and chronic inflam-
matory conditions [31]. COX-2 is reported to be overex-
pressed during the course of LPS-induced inflammatory
reaction [32]. Studies have described that the overexpression
of iNOS and COX-2 stimulates the activation of NO and
PGE2 in activated macrophages, respectively. Overproduc-
tion of such inflammatory mediators can result in chronic
inflammatory diseases [33]. Here, we found that AU

expressively and without causing cytotoxicity inhibits the
level of NO in LTA-stimulated RAW 264.7 cells. *e AU’s
inhibitory effect on LTA-induced NO production appears to
involve the reduction of iNOS expression. Moreover, AU
dramatically inhibited the LTA-induced expression of iNOS,
COX-2, TNF-α, and IL-1β. Okuyama et al. [34] showed that
AU suppressed the LPS-induced expression of COX-2, IL-
1β, and TNF-α in astrocytes isolated from the cerebral cortex
of ICR mice. Niu et al. found an inhibitory mechanism for
AU via IL-2, IFN-c, and IL-4 in lymphocytes isolated from
C57BL/6 mice [28]. *ese results are consistent with our
results and evident of the anti-inflammatory properties of
AU.

*e induction of inflammatory mediators involves the
activation of multiple signal transduction pathways,
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Figure 3: Effects of AU in LTA-induced phosphorylation of MAPKs in RAW 264.7 macrophages. (a) Cells were untreated or pretreated
with AU (5 and 10 μM) for 30min and were then stimulated with LTA (5 μg/ml) for 1 h.*e specific pERK, pJNK, and p38MAPK antibodies
were used to detect these proteins. α-Tubulin was used as the internal control. (b)–(d)*e statistical values shown are the means± S.E.M. of
four independent experiments. ∗∗P< 0.01 and ∗∗∗P< 0.001 vs. the control cells; #P< 0.05 and ##P< 0.01 vs. LTA-stimulated cells.
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including mitogen-activated protein kinases (MAPKs) such
as p38, ERK, and JNK [35]. It is reported that blocking p38,
ERK, and JNK MAPK pathways could decrease iNOS and
COX-2 expression and TNF-α and IL-1β production in
macrophage inflammation [36]. *e MAPK/NF-κB signal-
ing pathway was conveyed to play a vital role in the ex-
pression of TNF-α, IL-6, IL-1β, and COX-2 in many cell
types [37]. *erefore, we examined the effect of AU on
MAPK/NF-κB pathway activation. Niu et al. found esculin
significantly inhibited the activation of the MAPK pathway

in LPS-induced peritoneal macrophages [38]. Guo et al.
found both degradation and phosphorylation of IκBα and
activation of NF-κB p65 stimulated by LPS are significantly
controlled by imperatorin in RAW 264.7 macrophages [39].
Our recent study found that pterostilbene, a natural sub-
stance of blueberry and an analog of resveratrol, significantly
inhibited the NF-κB signaling pathway and ERK phos-
phorylation in RAW 264.7 cells [40]. *us, it is proposed
that coumarin derivatives may inhibit the MAPK/NF-κB
signaling pathway in LPS-induced inflammatory reaction.
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*e results of this study consistently showed that AU
strongly reversed the LTA-induced phosphorylation of JNK
and ERK and the nuclear translocation of the p65 subunit.
*e induction of NF-κB is controlled by IκB kinase (IKK)
complex activation, and IKK phosphorylates IκBα and
initiates ubiquitin-dependent IκBα degradation [41]. *is
process could lead NF-κB translocation to the nucleus,
where it attaches to the promoter regions of the target gene
and brings proinflammatory mediators such as iNOS, COX-
2, TNF-α, and IL-6 [42].*e phosphorylation of IκB and p65
can be induced by LTA, and it also can induce p65 trans-
location from the cytoplasm to nuclei [13]. LTA binds with
toll-like receptor (TLR2), which in turn activates NF-κB and
consequently translocated to nuclei from the cytoplasm [43].
Hence, these outcomes may propose that AU decreases
LTA-induced inflammatory events in RAW cells via
inhibiting the activation of JNK/ERK and NF-κB pathways.

Activated oxygen (O2
∗) radicals are metabolized to H2O

and successively converted to H2O2 by superoxide dismutase
enzymes (SOD) and then to H2O by glutathione peroxidase
or to H2O2 and O2 by catalases (CAT) [44]. A previous study
found that irisin, a molecule secreted from skeletal muscle in
response to physical exercise, plays a regulatory role in an
immune system activity and can protect the cell from free-
radical-induced cellular oxidative damage by the activation
of antioxidative mechanisms [45]. Furthermore, a rise in
HO-1 expression was identified to exert both antioxidant
and anti-inflammatory effects [44]. HO-1 plays an important
role in the protection of oxidative stress in chronic disease
[46]. Furthermore, HO-1 has been reported to inhibit
various inflammatory responses to exhibit its cellular pro-
tective role. Several antioxidants can induce HO-1 expres-
sion to cope oxidative damage, and thus, compounds that
can activate HO-1 expression may be favorable in the
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Figure 5: AU enhances antioxidant defense molecules in LTA-stimulated RAW cells. Cells were untreated or pretreated with AU (5 and
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treatment of oxidative damage. A natural anti-inflammatory
compound curcumin was found to increase the activity of
CAT to protect RAW cells from LPS-induced ROS damages
[47]. Reduction of reduced glutation (GSH) had reported to
lead the progress of several diseases, as GSH inhibits oxi-
dative stress-induced cell damage [48]. *erefore, we ex-
amined whether AU can involve the downstream
mechanism via interaction with HO-1 to its antioxidative
action. However, AU did not augment HO-1, CAT, and
GSH, which postulates that antioxidant mechanisms may
not associate to AU’s anti-inflammatory role in LTA-in-
duced RAW cells.

5. Conclusions

*is study shows the anti-inflammatory effects of auraptene
via diminishing iNOS, COX-2, IL-1β, and TNF-α expression
in LTA-induced RAW 264.7 macrophages. *e inhibitory
property of AU is mediating at least in part via inhibiting
NF-κB, along with the MAPK (JNK and ERK) pathway.
Moreover, this study also found that AU’s anti-inflamma-
tory role was not depending on antioxidant mechanisms, as
AU was not effective in HO-1, CAT, and GSH in the LTA-
induced inflammatory RAW 264.7 cells.
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