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Paeoniflorin (PF), a water-soluble monoterpene glycoside, is initially isolated from the dried roots of Paeonia lactiflora Pall., which
has effects on ameliorating cholestasis in our previous study. However, comprehensive approaches for understanding the
protective effects and mechanisms underlying cholestatic liver injury from the regulating of bile acid metabolism have not been
sufficiently elucidated. -is study was aimed to explore the effectiveness as well as potential mechanism of PF on alpha-
naphthylisothiocyanate (ANIT)-induced cholestatic liver injury. Rats with cholestasis induced by ANIT was used to evaluate the
protective effects and mechanism of PF by regulating SIRT1/FXR and NF-κB/NLRP3 signaling pathway. Rats were intragastrically
administrated with ANIT to establish cholestatic liver injury model. Serum levels of ALT, AST, TBA, TBIL, ALP, c-GTand ALB in
rats were detected. -e histopathology of the liver of rats was analyzed in vivo. -e relative mRNA expression and protein
expression levels of IL-18, IL-1β, TNF-α, HO-1, Nrf2, TLR4, NLRP3, Caspase-1, ASC, NF-κB, FXR, and SIRT1 in liver of rats were
investigated. -e results showed that the serum indexes and the liver histopathology were significantly improved by PF. -e
overexpression of IL-18, IL-1β, TNF-α, NLRP3, ASC, and Caspase-1 in liver was markedly reduced by PF. Furthermore, PF
dramatically increased the mRNA and protein expressions of SIRT1, FXR, HO-1, and Nrf2, but decreased NF-κB p65 and TLR4
levels in liver of rats. Taken together, the protective effects of PF on cholestatic liver injury were possibly related to the activation of
the SIRT1/FXR and inhibition of NF-κB/NLRP3 inflammasome signaling pathway. -ese findings might provide a potential
protection for cholestatic liver injury.

1. Introduction

Cholestasis, characterized by bile secretion disorder and
excessive bile acid (BA) accumulation in the liver, is clini-
cally associated with a variety of liver diseases, such as
progressive familial intrahepatic cholestasis, primary biliary
cirrhosis (PBC), primary sclerosing cholangitis (PSC),
pregnancy and drug-induced liver injury [1–4]. -ere are

various factors which can lead to cholestasis, such as mal-
nutrition, drug abuse, viral infection and metabolic diseases.
-e persistent cholestasis can lead to liver fibrosis, cirrhosis,
and even liver failure [5–7]. Current opinions believe that
oxidative stress, inflammatory damage, and transporter
disorders are potential pathological mechanisms related to
the development of cholestasis [1, 8]. At present, the clinical
treatment of cholestasis is very limited. Both obeticholic acid
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(OCA) and ursodeoxycholic acid (UDCA) are the thera-
peutic drugs approved by Food and Drug Administration
(FDA), which can be used in the treatment of cholestatic
liver diseases. However, the clinical effect is not satisfactory,
and approximately 50% of patients show no response to
UDCA treatment. In addition, OCA has serious side effects
such as abdominal pain, aggravating itching and fatigue
[9, 10].-erefore, it is urgent to find new targets and develop
related new candidate drugs to treat cholestatic liver injury.

In recent years, with the vigorous development of
complementary and alternative medicine, the enthusiasm
for exploring new natural plants for the treatment of cho-
lestatic liver injury has increased exponentially. -ese agents
might provide a complementary therapy and alternative
method to enhance the effectiveness of cholestatic liver
injury [11]. Paeoniflorin (PF), a water-soluble monoterpene
glycoside, is extracted from the dried roots of Paeonia
lactiflora Pall.. Studies have shown that PF has a wide range
of pharmacological effects, such as anti-inflammation [12],
anti-oxidation [13], anti-depressant [14], and anti-apoptosis
[15]. Our previous studies have shown that PF significantly
improve cholestatic liver injury [13, 16]. However, the un-
derlying molecular mechanism in regulating cholestasis and
anti-inflammatory has not been fully revealed.

Previous studies have reported the key pathological
mechanisms of cholestatic liver injury, providing the possibility
for the discovery of new drug candidates for the treatment of
cholestasis [17, 18]. Sirtuin 1 (SIRT1) and FXR have been
proved to play a central role in protecting cholestatic liver
injury [8]. SIRT1, an evolutionarily conserved NAD+-depen-
dent histone III deacetylase, is a member of the silent infor-
mation regulator 2 (Sir2) families of proteins and participates
in a wide range of metabolic process including regulating
glucose, bile acid, and lipid metabolism as well as reducing
oxidative stress and inflammation [19, 20]. SIRT1 directly or
indirectly regulates multifarious nuclear receptors and cofac-
tors, such as FXR, LXR, NF-κB, which is considered to be a
sensor for variousmetabolic processes [8, 21, 22]. FXR has been
considered as an important nuclear receptor in bile acid
metabolism, which plays an important regulatory role in
inhibiting BA synthase, restraining liver uptake transporters,
inducing bile efflux transporters, and promoting BA meta-
bolism in the liver [17], and currently represents a promising
target for new treatments for human cholestatic diseases. Some
studies have shown that liver-specific SIRT1 deletion can lead
to BA metabolic dysfunction by downregulating the FXR
signal, which can be reversed by overexpression of SIRT1 [20].

In this study, based on an assessment of the protective
effect of PF on cholestatic liver injury, the effect of PF on
SIRT1/FXR and NF-κB/NLRP3 inflammasome signaling
pathway was further investigated, which might provide a
deeper comprehension of PF for cholestasis.

2. Materials and Methods

2.1. Materials. Paeoniflorin (PF), with purity higher than
98% determined by ultraperformance liquid chromatogra-
phy (UPLC) analysis, was purchased from the Chengdu
Pufei De Biotech Co., Ltd. (Chengdu, China). ANIT

(dissolved in olive oil) was purchased from Sigma Chemical
Co. (St. Louis, MO, USA). As the positive control, urso-
deoxycholic acid (UDCA) was supplied by Losan Pharma
GmbH (Germany). Biochemical indicator kits for alanine
aminotransferase (ALT), aspartate aminotransferase (AST),
total bilirubin (TBIL), total bile acid (TBA), alkaline
phosphatase (ALP), c-glutamyltranspeptidase (c-GT), and
albumin (ALB) were obtained from Nanjing Jiancheng
Bioengineering Institute (Nanjing, China). All the other
experimental supplies were purchased from commercial
sources.

2.2. Animals and Drug Treatments. Male Sprague-Dawley
(SD) rats weighing 200± 10 g were purchased from Sibeifu
(Beijing) Biotechnology Co., Ltd. (Beijing, China, Permis-
sion No. SCXK (jing) 2019-0010). All animals were housed
under standard laboratory conditions of temperature
(25± 2°C) and lighting (12 :12 h light: dark cycle). Rats were
provided with free access to water and chow diet. All animal
experiments were approved by the Ethics Committee of the
Ethics of Animal Experiments of the Fifth Medical Center of
PLA General Hospital (Approval ID: IACUC−2019−004).

All the animals were acclimated for 1 week prior to the
experiment. Sixty rats were randomly divided into five
groups (12 rats per group), including control group, ANIT
group, positive drug group (UDCA, 60mg/kg), PF low dose
group (PFL, 50mg/kg), and PF high dose group (PFH,
200mg/kg) [23]. PF and UDCA were dissolved in normal
saline and intragastrically given to experimental groups for
consecutive five days. At the same time, the control group
and ANITgroup were intragastrically administrated with the
same volume of normal saline. During administration, the
control group was administrated with olive oil alone, while
the other groups were intragastrically given 60mg/kg ANIT
(dissolved in the olive oil) on the third day to induce
cholestatic liver injury. Forty-eight hours after ANIT
treatment, all the rats were sacrificed to collect the blood and
livers. Blood samples were centrifuged at 3000×g for 10min
to obtain serum and stored at −80°C. Liver samples were
immediately collected and divided into two parts: one part of
liver tissue was excised and fixed in 10% neutral-buffered
formalin for HE staining, and another part was snap-frozen
in liquid nitrogen and stored at −80°C for RT-PCR, western
blotting and immunohistochemistry analysis.

2.3. SerumBiochemicalAnalyses. Synergy H1Hybrid Reader
(Biotech, USA) was used for the detection of serum bio-
chemical indices. -e serum levels of ALT, AST, TBIL, TBA,
c-GT, ALP as well as ALB were measured using commercial
kits in accordance with the manufacturer’s instructions.

2.4. Histopathological Assessment. After rats were sacrificed,
the liver tissues of the same leaf of each rat were immediately
collected and fixed in formalin, then embedded in paraffin
and sectioned to 5 μm slices. All the slices were stained with
hematoxylin and eosin (H&E) following a standard protocol.
Histological assessment was carried out independently by
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two researchers unaware of the different groups. Any dif-
ferences arising in the process of were settled through
discussion and negotiation with another pathologist. -en
the pathological changes in the liver tissues were captured
with a Nikon microscope (Nikon Instruments Inc., Japan),
and the microscope analysis was performed by 200x and
400x.

2.5. Quantitative Real-Time PCR. -e total RNA rat liver
tissue of each group was extracted using Trizol reagent
following the manufacturer’s instructions. -e concentra-
tion and purity of the total RNA were determined at 260 nm
and 280 nm on a spectrophotometer. -en, cDNA was
obtained by reverse transcribed 2 μg of total RNA using a
RevertAid First Strand cDNA Synthesis Kit (-ermo Fisher
Scientific, MA, USA). -e cDNA synthesized was stored at
−20°C for subsequent PCR reactions. -e amplification
reaction of RNA was performed by QuantStudio™ Real-
Time PCR System version 1.3 (Applied Biosystems by
-ermo Fisher Scientific). -e quantity of mRNA was
normalized with the GAPDH expression and all the data
were calculated for comparison through 2−∆∆CTmethod.-e
list of primers used in our study is listed in Table 1.

2.6.Western Blotting Analysis. Rat liver tissues (about 80mg)
were homogenized and then lysed in the prepared ice-cold lysis
bufferwith 1mMphenylmethylsulfonyl fluoride and a protease
inhibitor mixture. Subsequently, tissue debris was removed by
centrifugation at 12, 000×g and 4°C for 10min. After cen-
trifugation, the supernatant was aliquoted and stored at −80°C
for the subsequent western blotting assay. -e concentrations
of total protein in supernatants were quantified using a BCA
protein assay reagent kit (Beijing Solarbio Science & Tech-
nology Co., Ltd, Beijing, China). -e samples with the same
amount of protein (10μL) per lane were separated by 10% SDS-
PAGE of gel at 80V for 30min and 120V for 1h. After
electrophoresis, the gels were transferred onto polyvinylidene
difluoride (PVDF) membranes. All the membranes were
blocked with 5% fat-free milk at room temperature for two
hours, then incubated overnight at 4°C with antibodies against
anti-FXR rabbit polyclonal antibody (bs-12867R, Bioss, dilu-
tion: 1 :1000), anti-SIRT1 rabbit monoclonal antibody
(ab189494, Abcam, dilution: 1 :1000), anit-NLRP3 rabbit
monoclonal antibody (ab263899, Abcam, dilution: 1 :1000),
anit-Caspase-1 rabbit polyclonal antibody (342947, ZEN BIO,
dilution: 1 :1000), anit-ASC rabbit polyclonal antibody
(340097, ZEN BIO, dilution: 1 :1000), anit-NF-κB p65 rabbit
polyclonal antibody (380172, ZEN BIO, dilution: 1 :1000), anit-
HO-1 rabbit polyclonal antibody (43966, Cell signaling tech-
nology, dilution: 1 :1000), anit-GAPDH rabbit polyclonal an-
tibody (10494-1-AP, proteintech, dilution: 1 :1000). After
washes 5× 5min in TBST (Tris-buffered saline with Tween 20),
the membranes were incubated with horseradish peroxidase
conjugated secondary antibodies (ab6728, abcam, dilution: 1 :
10,000) at room temperature for 1 hour, and subsequently the
protein bands were measured using an enhanced chem-
iluminescence detection system. Samples were assessed for
GAPDH content as an internal control.

2.7. Immunohistochemical Analysis. -e protein levels of
NF-κB p65 (380172, ZEN BIO) and Nrf2 (380773, ZEN BIO)
were analyzed by immunohistochemistry as previously
described [24]. In brief, the liver tissues sections were in-
cubated with primary antibodies directed against NF-κB p65
and Nrf2 overnight at 4°C, then treated with corresponding
peroxidase-coupled secondary antibodies for 50min at
room temperature and then developed by diaminobenzidine
(DAB). Next, the sections were stained with hematoxylin for
3 minutes. Last, images were captured with a digital camera
system under 200x magnification.

2.8. Statistical Analysis. All data were presented as the
mean± standard deviation (X ± SD). -e differences be-
tween the groupmeans were calculated by one-way ANOVA
analysis and Duncan’s multirange test with the SPSS
computer program (version 24.0). GraphPad Prism software
(version 8.2.0) was used to visualize the results. -e dif-
ferences were considered to be statistically significant when
P< 0.05 and highly significant when P< 0.01.

3. Results

3.1. Protective Effect of Paeoniflorin against ANIT-Induced
Liver Injury

3.1.1. Effect of PF on Liver Function Indexes. As shown in
Figures 1(a) and 1(b), serum ASTand ALTwere increased in
the ANIT-treated rats and were significantly reduced by PF
pretreatment (P< 0.01). Similarly, PF pretreatment also
alleviated ANIT-induced cholestatic liver injury, as evi-
denced by preventing the ANIT-induced the elevation of
serum TBIL, ALP, TBA, and c-GT (P< 0.01) (Figures 1(c)–
1(f )). -e content of ALB decreased in ANIT-induced
cholestatic rats, compared with the control group. Con-
versely, PF substantially increased the serum level of ALB
(P< 0.01) (Figure 1(g)). Taken together, the results indicated
that the protective effects of PF on cholestatic liver injury are
related to ameliorating liver function, and PF provided
remarkable protection against ANIT-induced hepatotoxicity
and cholestasis.

3.1.2. Effect of PF on Histopathology. H&E staining of liver
sections showed that the control group exhibited the normal
structure without abnormal morphological changes, liver
cell cord in order, sound hepatic cell with uniform stain, and
no evidence of infiltration of neutrophilic granulocyte. In
contrast, the ANIT-induced group displayed acute infil-
tration by polymorphonuclear neutrophils, cellular edema,
sinusoid congestion, hepatic lobules destruction, and as-
sociation with hepatic necrosis. However, the liver tissue
damage severity significantly relieved in the groups of
pretreatment with PF. In the PFL and PFH groups, there was
a certain degree of bile duct epithelial damage and defined
hepatocyte hydropic degeneration, accompanied by less
hepatic neutrophil with infiltration the degree of hepatic
necrosis was significantly attenuated and the inflammatory
cell infiltration was ameliorated in a dose-dependent
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manner. Additionally, UDCA, as positive control drug, had
an ameliorative effect with liver injury. -ese results above
revealed a significant improvement with cholestatic liver
injury in rats pre-treated with PF (Figure 2).

3.1.3. Effect of PF on Inflammatory Factors in the Liver Tissue.
Inflammation is one of the characteristics of cholestatic liver
injury. -erefore, the mRNA expression level of hepatic
inflammation-related factors, including TNF-α, IL-1β, and
IL-18 were determined. As illustrated in Figures 3(a)–3(c)
and Table 2, the results indicated that the expression level of
TNF-α, IL-1β, and IL-18 were remarkably increased by
ANIT-treated groups (P< 0.01). In contrast, PF pretreat-
ment could attenuate the expression of these indicators. To
further explore the anti-inflammatory mechanism of PF in
cholestasis rats, the mRNA and protein expression level of

NF-κB p65, which could modulate various inflammatory
factors including TNF-α, IL-1β, and IL-18 was detected. In
this study, the results indicated that the relative mRNA and
protein expression of NF-κB p65 were significantly increased
in the ANIT-treated group. However, PF significantly
inhibited the mRNA and protein expression of NF-κB p65
(Figures 3(d), 4(a), and 4(d)) (P< 0.01). In addition, the
immunohistochemical analysis was consistent with the re-
sult of western blotting analysis (Figure 3(e)). -ese findings
suggest that PF is responsible for inhibiting inflammation in
ANIT-induced cholestasis via the NF-κB pathway.

3.2. PFActivated SIRT1/FXRSignaling Pathway inCholestasis
Rats. To dissect the potential mechanism of PF for the
inhibition of NF-κB pathway, several protein expressions
associated with BA homeostasis were investigated. As an
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Figure 1: Protective effects of PF on ANIT-induced cholestatic liver injury in rats. Effect of PF on serum levels of AST (a), ALT (b), TBIL
(c), ALP (d), TBA (e), c-GT (f), and ALB (g) in ANIT-induced cholestatic liver injury in rats. Data were expressed as mean± SD. #P< 0.05
and ##P< 0.01 compared with the control group; ∗P< 0.05 and ∗∗P< 0.01 compared with the ANIT group (n� 6).

Table 1: Primers sequences for RT-PCR.

Gene Forward (5′–3′) Reverse (5′–3′)
NLRP3 GCAGCGATCAACAGGCGAGAC TCCCAGCAAACCTATCCACTCCTC
Caspase-1 AAACACCCACTCGTACACGTCTTG AGGTCAACATCAGCTCCGACTCTC
ASC TGGTTTGCTGGATGCTCTGTATGG ACAAGTTCTTGCAGGTCAGGTTCC
NF-κB GGGATGGCTTCTATGAGGCTGAAC CTTGCTCCAGGTCTCGCTTCTTC
TLR4 TTGCTGCCAACATCATCCAGGAAG CAGAGCGGCTACTCAGAAACTGC
HO-1 CAGACAGAGTTTCTTCGCCAGAGG TGTGAGGACCCATCGCAGGAG
Nrf2 CAAACATTCAAGCCGATTAGAGG CGGCAACTTTATTCTTCCCTCT
IL-18 CGACCGAACAGCCAACGAATCC TCACAGATAGGGTCACAGCCAGTC
IL-1β CTCACAGCAGCATCTCGACAAGAG TCCACGGGCAAGACATAGGTAGC
TNF-α ATGGGCTCCCTCTCATCAGTTCC GCTCCTCCGCTTGGTGGTTTG
GAPDH TTCCAGGAGCGAGATCCCGCTAAC CATGAGCCCTTCCACGATGCCAAAG
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important sensor that is critical for bile acid metabolism, the
expression of FXR is tightly controlled by an intricate
regulatory network in response to various complex envi-
ronments. -us, the protein expression of SIRT1, which is
the upstream target of FXR, was determined. In comparison
to the control group, the protein expression of SIRT1 and
FXR decreased markedly in rats treated with ANIT, while
their expression in PF-treated rats were restored
(Figures 4(a)–4(c)) (P< 0.01). -ese findings suggested that
the protective effect of PF against cholestasis might be a
result of suppressing NF-κB, which is mediated via SIRT1
and FXR activation.

3.3. PF Suppressed the Expression ofNF-κBbyActivating FXR/
Nrf2 Signaling Pathway. To further explore the mechanism
underlying protection of PF against ANIT-induced

inflammation, the relative mRNA expressions of Nrf2, HO-
1, and TLR4 were determined. -e results indicated that
ANIT treatment decreased Nrf2 mRNA level (P< 0.01), but
not significantly altered the relative mRNA expressions of
HO-1 (P> 0.05). Furthermore, the relative mRNA expres-
sions of TLR4 remarkably increased in ANIT-induced
cholestasis rats (P< 0.01). As illustrated in Figures 5(a)–5(c),
PF pretreatment dramatically upregulated the mRNA ex-
pression of HO-1, Nrf2, and downregulated the level of
TLR4 (P< 0.01). In addition, immunohistochemical staining
demonstrated that the increased expression of Nrf2 in
ANIT-induced rats after PF pretreatment (Figure 5(f )).
Next, the relative protein expression of HO-1 was deter-
mined by western blotting analysis. As shown in Figures 5(d)
and 5(e), HO-1 was not significantly changed in the ANIT
administration group (P> 0.05). Conversely, PF therapy
increased the relative protein expression of HO-1, especially

Control ANIT UDCA PFL PFH

200×200×200× 200×200×

400× 400× 400× 400× 400×

Figure 2: Effect of PF on histological changes in the liver tissue of ANIT-induced cholestatic liver injury in rats (HE stained, 200x and 400x
magnification).
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Figure 3: Effect of PF on the mRNA expression of inflammatory factors in rats. (a) Relative mRNA expression of TNF-α; (b) relative mRNA
expression of IL-1β; (c) relative mRNA expression of IL-18. (d) Relative mRNA expression of NF-κB p65; (e) immunohistochemically
staining of NF-κB p65. Data were expressed as mean± SD. ##P< 0.01 compared with the control group; ∗P< 0.055 and ∗∗P< 0.01 compared
with the ANIT group (n� 6).
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in high dose of PF (Figures 5(d) and 5(e)) (P< 0.01). Overall,
the results suggested that PF could exert an anti-inflam-
matory action on ANIT-induced hepatotoxicity and cho-
lestasis via the FXR/Nrf2 signaling pathway.

3.4. PF Inhibited the NF-κB/NLRP3 Inflammasome Pathway
in Cholestasis Rats. To further evaluate the mechanism
underlying protection of PF against ANIT-induced chole-
static liver injury, NF-κB/NLRP3 inflammasome pathway
was determined. As shown in Figures 6(a)–6(c), the effect of
PF on NLRP3 inflammasome mRNA expression, including
NLRP3, Caspase-1, and ASC was further detected. As ex-
pected, after ANIT stimulation, the relative mRNA ex-
pression of NLRP3, Caspase-1, and ASC were increased in
the liver tissues compared with that in the control group
(P< 0.05 or P< 0.01). However, PF at the dose of 50 and

200mg/kg significantly reduced the relative expression of
NLRP3, Caspase-1, and ASC in ANIT-induced cholestatic
liver injury (P< 0.05 or P< 0.01). To verify the accuracy of
the mRNA results on the induction of these indices by PF,
the relative protein levels of NLRP3, Caspase-1, and ASC
were measured using western blotting analysis. -e results
were in consistent with the RT-PCR results (Figures 6(d)–
6(g)) (P< 0.01). Taken together, these observations showed
that PF ameliorated ANIT-induced cholestasis by
restraining NF-κB/NLRP3 inflammasome pathway.

4. Discussion

-e present study showed that PF had a good protective
effect on cholestatic liver injury induced by ANIT, and the
main role of PF on improving cholestatic liver injury were to
attenuate inflammation and regulate bile acid metabolism.
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Figure 4: Effect of PF on the protein expressions of SIRT1, FXR, NF-κB p65 in ANIT-induced cholestatic liver injury in rats. (a) Western
blot images of SIRT1, FXR, and NF-κB p65; (b) relative protein expression of SIRT1; (c) relative protein expression of FXR; (d) relative
protein expression of NF-κB p65. Data were expressed as mean± SD. ##P< 0.01 compared with the control group; ∗P< 0.05 and ∗∗P< 0.01
compared with the ANIT group (n� 3).

Table 2: Effect of PF on the relative mRNA expression of TNF-α, IL-1β, and IL-18 in rats.

Group TNF-α IL-1β IL-18
Control 0.71± 0.11 3.65± 1.20 9.11± 1.51
ANIT 3.00± 0.41## 6.60± 0.44## 14.75± 3.60##
PFL 2.44 ± 0.37∗ 4.63 ± 0.51∗∗ 14.02± 3.88
PFH 1.07 ± 0.36∗∗ 3.58 ± 1.15∗∗ 10.46 ± 1.83∗

Data were expressed as mean± SD.##P< 0.01 compared with control group; ∗P< 0.05 and ∗∗P< 0.01 compared with the ANIT group (n� 6).
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Further research showed that the protective effect of PF
against ANIT-induced cholestatic liver injury by upregu-
lating the expression of SIRT1/FXR and inhibiting NF-κB/
NLRP3 inflammasome pathway (Figure 7).

Cholestasis is characterized by intrahepatic accumula-
tion of toxic bile acids due to defective secretion of hepa-
tocellular or cholangio cellular and bile ducts obstruction.
Bile acid metabolism disorder and inflammation are known
to be the common feature of cholestatic liver injury. -e
accumulation of bile acids may cause hepatocyte toxicity and
liver injury-induced inflammatory response [24–26]. It is
believed that inflammation and bile acid metabolism dis-
order are the decisive generating factors in the pathogenesis
of cholestatic liver injury, and anti-inflammatory and reg-
ulating bile acid metabolism therapy will be the recom-
mended therapeutic strategy. Up to now, UDCA and OCA
are commonly used in the treatment of cholestatic liver
diseases, however, the effect are not satisfactory. PF has been
proved to have liver protective effect [23]. In our study, ALB,
like AST and ALT, is a commonly used clinical indicator of

liver function. -is study showed that the content of ALB
decreased significantly in cholestatic rats, which was in
agreement with the previous finding [27]. Pre-administra-
tion of PF significantly increased the content of ALB, which
provided protection for the liver. In addition, PF signifi-
cantly decreased ANIT-induced elevation of serum ALT,
AST, ALP, TBA, and TBIL levels. Moreover, the pathological
injuries were relieved after PF pretreatment at the dose of 50
and 200mg/kg, which were coincident with the previous
report [28].

SIRT1/FXR signaling pathway plays a key role in in-
flammation and BA metabolism in cholestatic liver injury
[29, 30]. One of the interesting findings from the previous
study was the significant reduction of SIRT1 in human and
mouse cholestasis [31]. In addition, studies have shown that
the expression of FXR is suppressed in liver injury, and the
activation of FXR has been proved to improve liver injury
[8, 32]. Interestingly, it has been found that SIRT1 and FXR
can together form an interactive regulatory network [33].
Previous studies have demonstrated that SIRT1 was a critical
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Figure 5: Effect of PF on the expression of FXR/Nrf2 signaling pathway in ANIT-induced rats. (a) -e relative mRNA expression of Nrf2;
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transcriptional and transactivation regulator of FXR and
regulated its activity by deacetylating proteins and histones.
More importantly, loss of liver-specific SIRT1 can lead to BA
metabolic dysfunction by downregulating FXR signaling,
while it can be reversed by SIRT1 overexpression [20, 34]. In
addition, activation of the SIRT1/FXR signaling pathway has
been confirmed to have a protective effect on cholestatic liver
injury [35]. In the current study, our data indicated that
SIRT1 and FXR were greatly reduced by ANIT treatment,
which were in line with previous studies [25, 36]. While after
pretreatment with PF at the dose of 50 and 200mg/kg, the
expression of SIRT1 and FXR were substantially attenuated.
Our results suggest that the protective effects of PF against
ANIT-induced cholestatic liver injury may be dependent on
the activation of the SIRT1/FXR signal.

Interestingly, it has also been shown that activation of
FXR exerts anti-inflammatory effects in liver diseases.

Accumulating studies have reported that NF-κB is a
downstream gene of FXR, and activating FXR signaling
pathway had an effective protective effect on liver injury by
reducing inflammatory responses [36–39]. In addition to the
direct regulation of NF-κB, FXR can also indirectly regulate
the expression of NF-κB through Nrf2 [40, 41]. With the
discovery of new target genes, it has been found that Nrf2
not only plays a key role in the dynamic balance of redox, but
also affects the inflammatory response [42]. Previous studies
have shown that Nrf2/HO-1 pathway is considered to be one
of the upstream molecules against inflammation induced by
NF-κB [42, 43]. Wu et al. recently reported that the lack of
Nrf2 effectively prevents PF-mediated inhibition of LPS-
induced NF-κB translocation and inflammatory mediator
expression [44]. Furthermore, toll-like receptors are im-
portant pattern recognition receptors that mediate innate
immunity, and their mediating signal pathways play an
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important role in the occurrence and development of in-
flammation. -e activation of TLR4 can cause the activation
of NF-κB into the nucleus. It has previously been reported
that the high expression of HO-1 significantly inhibited the
expression of TLR4/NF-κB [45]. In the current research,
ANIT treatment displayed significant inhibition on Nrf2
expression, but had little effect on the expression of HO-1,
along with induction on TLR4 and NF-κB. Moreover, PF
pretreatment exhibited an advantageous regulation pattern,
which caused the increase of Nrf2 and HO-1, and the de-
crease of TLR4 and NF-κB. -e protective effect of PF in
ANIT-induced cholestasis liver injury has been indicated to
be due to decreased the levels of NF-κB/TLR4, which is
closely related to Nrf2-mediated HO-1 upregulation. Taken
together, the above data demonstrate an anti-inflammatory
role for PF during cholestatic liver injury, and shed new
insights into the significance of the FXR signaling pathway in
mediating the protective effect.

-e NF-κB/NLRP3 inflammasome pathway is an im-
portant pathway for regulating inflammatory factors. Recent
studies have shown that NLRP3 may cause liver injury
through the activation of NF-κB-related pathways, and
NLRP3 inflammasome is of great significance in regulating
the occurrence and development of inflammatory response
in liver injury [46, 47]. When stimulated by external factors,
NF-κB is activated to regulate the expression of NLRP3, IL-
18, TNF-α, and other genes. -en, macrophages activate the
NLRP3-ASC-Caspase-1 inflammasome complex, and the
expression of NLRP3 protein regulated by NF-κB provides
raw materials for the assembly of the complex. NLRP3

inflammasome activates Caspase-1 via the adaptor protein of
ASC, and activated Caspase-1 mediates the maturation of
IL-1β precursor. Mature IL-1β can lead to the aggregation
and activation of macrophages in the liver, further ampli-
fying inflammation reaction [48]. With the increase of IL-1β
and other pro-inflammatory factors, NF-κB is further ac-
tivated, and the cascade of inflammation is gradually am-
plified. Eventually, the inflammatory response cannot be
controlled and causes severe liver tissue injury. In the
current study, the inflammatory factors, including TNF-α,
IL-1β, and IL-18 were significantly elevated in ANIT-treated
rats. However, PF reversed the change of inflammatory
factors. Furthermore, we found that PF dramatically
inhibited the relative protein and mRNA expressions of
NLRP3, ASC, and Caspase-1 in ANIT-induced cholestatic
liver injury in rats. All the evidence suggest that PF has the
ability to alleviate ANIT-induced cholestatic liver injury by
negatively regulating inflammation via the NF-κB/NLRP3
signaling pathway.

5. Conclusion

In summary, this study demonstrated PF protects against
ANIT-induced cholestatic liver injury in rats, and the po-
tential mechanism is related to upregulating the expression
of SIRT1/FXR, and inhibiting NF-κB/NLRP3 inflammasome
pathway. -us, PF may be a promising therapeutic agent for
the treatment of cholestatic liver disease. -ese findings may
provide evidence why PF has potential protective effects on
cholestatic liver injury in the clinic.
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Figure 7: Schematic diagram of molecular biological mechanism of PF in the treatment of cholestatic liver injury.
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